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Abstract

Many real world problems can be mapped onto graphs and solved
with well-established efficient algorithms studied in graph theory. One
such problem is the following: given a set of objects and an irreflexive and
symmetric relation between these objects, find maximal subsets whose
elements mutually satisfy this relation. This problem can be transformed
to the problem of finding all cliques of an undirected graph by mapping
each object onto a vertex of the graph and connecting any two vertices
by an edge whose corresponding objects satisfy the given relation.

In this paper we study a related problem, where all objects have a
set of binary attributes, each of which is either 0 or 1. We want to find
maximal subsets of objects not only mutually satisfying a given relation;
but, in addition, all objects of a subset also need to have at least one
common attribute with value 1. This problem can be mapped onto a set of
induced subgraphs, where each subgraph represents a single attribute. For
attribute i, its associated subgraph contains those vertices corresponding
to the objects with attribute i set to 1.

We introduce the notion of a maximal clique of a family, G, of induced
subgraphs of an undirected graph, and show that determining all maximal
cliques of G solves our problem. Furthermore, we present an efficient
algorithm to compute all maximal cliques of G. The algorithm we propose
is an extension of the widely used Bron-Kerbosch algorithm [6].

Keywords: Bron-Kerbosch algorithm, maximal cliques, graph with vertex
properties, family of induced subgraphs, backtracking algorithm, branch and
bound technique, recursion.

Mathematics subject classification: 05C85, 68R10.

1 Introduction

A clique of an undirected graph is a complete subgraph which is not contained
in any other complete subgraph. The problem of determining all cliques or
the maximum clique of a graph is NP-complete. Clique-finding algorithms are
used in many application areas [1, 2, 3, 4, 5, 9, 11, 12, 16]. Some applications
involve the comparison of small sets of points, such as pattern matching [4],
or molecular structure analysis [5, 11]. In these applications, clique detection
is used to identify similar subsets of points. Here, one is not interested in the
largest point set, but in diverse large point sets. These large sets, which can be
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seen as proposals, are then analysed in a second step. Undesired sets can be
filtered out automatically, but still several proposals might remain which need
to be looked at by an expert user.

In the following, we give an example from the field of molecular biology. Yet,
we believe that our algorithm can be applied in many other fields. In pharma-
cophore model generation one is interested in those atoms that are most likely
to cause the binding of some drug to a receptor. Given, e.g., two molecules that
bind to a common receptor, we are looking for structural similarities in those
two molecules. This can be done by constructing a correspondence graph in the
following way [5]. For each pair of atoms, one from each molecule, we generate a
new vertex in the correspondence graph, if the two atoms have similar molecular
properties. Two vertices in the correspondence graph therefore correspond to
four atoms, two in each molecule. We connect two vertices by an edge, if the two
pairs of atoms have similar distances with respect to some distance threshold.
The cliques of the correspondence graph represent molecular substructures with
similar distance matrices. They also give a one-to-one mapping of the atoms of
one molecule to the other. Since space-reflection symmetries cannot be distin-
guished via distance matrices, symmetric substructures need to be filtered out
in a post-processing step.

Molecules, in particular small drug-like molecules, are flexible. It is therefore
often not sufficient to compare molecules by considering only a single molecular
structure. In order to overcome this limitation, we have developed an approach
to compare several molecular structures in one go making use of the similarities
between all structures of a molecule. Our approach leads to pseudo-molecules
where each atom can belong to several structures. This introduces binary at-
tributes, since either an atom belongs to a molecular structure or not. For each
molecular structure we get one attribute. The whole approach will be described
elsewhere.

In this paper, we concentrate on one rather technical aspect of our new
approach, which, however, is crucial for its efficiency. We show that computing
cliques of a graph with binary attributes is equal to computing all maximal
cliques of a family of induced subgraphs, where a maximal clique is defined as
a clique of some induced subgraph that is not contained in any clique of any
other induced subgraph. In the following, if not otherwise stated, we use the
term maximal clique when refering to the maximal clique of a family of induced
subgraphs. The computation of all maximal cliques can be easily done by first
computing all cliques of all subgraphs and then determining those cliques that
are maximal. If we have N induced subgraphs and we assume that for each
subgraph we get M cliques, we need O((N − 1)M2) comparisons. This is very
expensive in terms of computational cost. In this paper, we give experimental
results that suggest that the computation of all maximal cliques can be done
in almost linear time, O(M), with respect to the number of cliques, using an
extension of the widely used Bron-Kerbosch algorithm [6]. Our algorithmic
extension computes all cliques of all subgraphs in parallel and only keeps the
maximal ones.

The problem of determining all cliques of a graph has been widely stud-
ied [6, 7, 8, 10, 13, 14, 15]. In 1965, Moon and Moser [13] were the first to give
an exact upper bound to the number of cliques in graphs, which is 3n/3, where
n is the number of vertices. This means, there exist graphs whose number of
cliques grows exponentially with the number of vertices. In 1973, Bron and
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Kerbosch [6] proposed an algorithm to compute all cliques of a graph using a
branch-and-bound technique. This algorithm proved to be much more efficient
than previous ones and to date is one of the most efficient ones. Johnston [8] de-
veloped variations of the Bron-Kerbosch algorithms which differ in performance
depending on the size and density of the graphs. Loukakis [10] and Johnson
et al. [7] gave algorithms to compute all maximal independent sets of a graph,
which are the cliques of the complement graph. In 1989, Tomita et al. [15]
proved the worst-case optimality for an algorithm which they derived from the
Bron-Kerbosch algorithm. In their review on the maximum clique problem [14],
Pardalos et al. also give a good survey of algorithms for generating all cliques
of a graph, including a few more algorithms.

In his article [10], Loukakis claims that his algorithm, LMIS, for generating
all maximal independent sets, is approximately 10 times faster than the Bron-
Kerbosch (BK) algorithm [6]. We implemented both algorithms and tested them
on various random graphs of size 10 to 200 with densities ranging from 10% to
90%. We could not verify the results given by Loukakis. On the contrary, we
found that the implementation of the BK algorithm was always superior to that
of LMIS. These differences might be due to our implementations. However, we
did not see how we could further improve the performance of LMIS. Due to
these experiments and due to the fact, that the BK algorithm is rather easy to
implement, we chose to extend the BK algorithm. We are certain, however, that
other algorithms can be extended in a similar fashion. One disadvantage of the
BK algorithm is that it needs O(n2) space. However, in general, for graphs for
which space problems become an issue the run times are also inacceptable. Thus,
the size of the graphs is restricted by both running time and space requirement,
not only space requirement.

The rest of the paper is structured as follows. In section 2 we describe two
algorithms, a basic version and the BK algorithm, to compute all cliques of
an undirected graph. The reader familiar with the BK algorithm can skip this
section and go directly to section 3, which explains the modifications necessary
to compute all maximal cliques of a family of induced subgraphs. Computational
results are given in section 4, and section 5 concludes the paper. In appendix A
we give the pseudo code for the algorithm described in section 3.

2 Finding all Cliques of an Undirected Graph

In order to allow an easy understanding of our algorithmic extension (section 3),
we decided to develop the algorithm in three steps. In section 2.1 we will recall
the basic algorithm used for the BK algorithm. Here the basic principles used
in all three algorithms are described. Section 2.2 describes the BK algorithm,
which we will extend in section 3 to compute all maximal cliques. Sections 2.1
and 2.2 will closely follow the description given by Bron and Kerbosch in [6].
The BK algorithm uses a branch-and-bound technique to make the algorithm
more efficient by cutting off branches of the search tree that will not lead to
new cliques at a very early stage. The crucial part of our extension described
in section 3 will therefore deal with the modification of this branch-and-bound
technique.

Before continuing, we want to introduce some notations and terminology
that is used throughout this paper.
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• G = (V,E) denotes an arbitrary undirected graph, where V = {1, 2, . . . , n}
is the set of vertices of G, and E ⊆ V × V is the set of edges of G.

• A graph G = (V,E) is called complete, if all its vertices are pairwise
adjacent, i.e., ∀i, j ∈ V, i 6= j : (i, j) ∈ E.
• For a subset S ⊆ V , we call G(S) = (S,E ∩ S × S) the subgraph induced

by S.
• A subset C ⊆ V is called clique, if its induced subgraph, G(C), is complete

and is not contained in any other complete subgraph of G. This definition
of a clique is in slight contrast to the definition given earlier. From now
on, we will refer to the definition given here.

In all of the following three variations of the algorithm, three sets of vertices
play a major role.

• The first set is called CS (for Complete Subgraph), since the set of vertices
in CS induces a complete subgraph of G. At any time during the execution
of the backtracking algorithm, CS is the set to be extended by a vertex
on branching, or to be reduced by a vertex on backtracking.
• The set CA (for CAndidates), contains all vertices that will be used to

extend CS towards a clique.
• The set NOT contains all vertices that were previously used to extend CS

and are now explicitely excluded from the extension.

The statements concerning the three sets have to be slightly modified for
section 3, but to avoid confusion we leave it at this for the moment. The two
sets CA and NOT contain all vertices not contained in CS but adjacent to all
vertices in CS. At recursion depth i, the sets CA and NOT are denoted by CAi
and NOTi, respectively. In the following, let G = (V,E) be the graph for which
we want to compute all cliques.

2.1 Basic Clique Detection Algorithm

The core of the algorithm is a recursively defined extension operator that uses
the three sets described above. A call of the operator generates all extensions
of the current set CS by adding vertices from the set CA but not from the set
NOT. The reason for excluding the vertices in NOT is that all extensions of CS
containing those vertices have already been generated at an earlier stage of the
algorithm. Initially, the sets CS and NOT0 are set to empty sets, and CA0 to
V . Then, at recursion depth i, the extension operator performs the following
five steps.

(1) If CAi is empty, return,
else, take the first candidate, c, and remove it from CAi.

(2) Add c to CS.
(3) Create new sets CAi+1 and NOTi+1 from the old sets CAi and NOTi by

removing all vertices not adjacent to c, keeping the old sets intact.
(4) Call the extension operator to operate on the sets CS, CAi+1, andNOTi+1.
(5) Upon return, remove c from CS and add it to NOTi. Go to (1).
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We will now explain, what the set NOT is needed for. A necessary condition
for the set CS to be a clique is that the set CA is empty. This is not sufficient,
however, because if NOT still contains an element, CS cannot be maximal,
since by adding any element from NOT to CS we obtain an even larger complete
subgraph. This is due to our definition of the set NOT, that any element therein
must be adjacent to all vertices in CS. To summarise, in order for CS to be a
clique, both sets CA and NOT must be empty.

From this observation we can deduce the following bound condition for our
algorithm. If at some stage of the algorithm, NOT contains a vertex, say v,
adjacent to all vertices in CA, we know that calling the extension operator from
this point will not lead to any new clique. The reason for this is that during all
extensions from this point onwards v will remain in NOT, and thus, NOT can
never become empty.

2.2 Bron-Kerbosch Algorithm

The basic algorithm described above generates all cliques in a lexicographic
order. This is due to the way of selecting a new candidate from CA, i.e., we
always take the first candidate. The Bron-Kerbosch algorithm chooses a new
candidate such that the bound condition becomes true at the earliest possible
stage. This means that we cut off all branches that do not lead to any new
clique. We recall that the bound condition of our algorithm was formulated as:
there exists a vertex in NOT which is adjacent to all vertices in CA. Achieving
this at an early stage requires two things at each branching point.

(1) Determine the vertex v from NOT ∪CA with the largest number of adja-
cent vertices in CA, or as Bron and Kerbosch put it, with the least number
of non-adjacent vertices in CA.

(2) If v was found to be in CA, we take v as the next candidate. On back-
tracking of the extension operator, v is moved to NOT.

At this point v is in NOT, and we continue by selecting those candidates
first which are not adjacent to v. Note that this selection of candidates
happens at the same branching point. If all non-adjacent vertices of v have
been added to NOT the bound condition holds and we can backtrack.

Since the BK algorithm does not select candidates in lexicographic order,
the cliques are also not generated in lexicographic order. Moreover, the algo-
rithm tends to generate large cliques first. This is due to the applied branching
strategy.

3 Finding All Maximal Cliques of a Family of
Induced Subgraphs

Assume a set of objects with binary attributes or discrete properties, and an
irreflexive and symmetric relation defined between pairs of objects. Our goal is
to find maximal subsets of objects mutually satisfying the given relation with the
additional constraint, that all objects of the subset have at least one attribute
or property in common. This problem can be mapped to the problem of finding
all maximal cliques of a family of induced subgraphs of a graph G = (V,E),
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whereby we map each object to a vertex of G. An edge between two vertices in
G exists if the given relation between their associated objects is satisfied. Each
binary attribute can then be mapped to a separate induced subgraph of G.

Definition 3.1 Given a graph G = (V,E) and a set of binary vertex attributes
B1, B2, . . . , Bm, where Bi : V 7→ {0, 1}, we can define sets Si ⊆ V as Si = {v ∈
V | Bi(v) = 1}. Note, that the sets Si are not necessarily disjoint.

Remark 3.2 Every set of discrete properties can be transformed into a set of
binary attributes. Let P : V 7→ {p1, p2, . . . , pl} be a discrete property, then P
can be mapped onto l binary attributes Bi of the form

Bi(v) =
{

1 if P (v) = pi
0 otherwise , i = 1, . . . , l.

Definition 3.3 (Maximal Clique) Let G = {G(S1), G(S2), . . . , G(Sm)} be
the family of subgraphs of G induced by the sets Si. Let further Ci be the family
of all cliques of G(Si). Then a clique C ∈ Ci is a maximal clique of G, if there
does not exist a clique C̃ ∈ Cj, such that C̃ ⊃ C. We denote the set of all
maximal cliques of G by MC = {C | C is a maximal clique of G}.

Definition 3.4 (Attributed Graph) Let V be a set of vertices with n = |V |,
let E be a set of edges, and let B1, B2, . . . , Bm be a set of binary vertex attributes.
For each vi ∈ V we define a set Ai by Ai = {l | Bl(vi) = 1}, which we call the
attribute set of vertex vi. We can now define the attributed graph GA as the
triple (V,E,A), where A = {A1, A2, . . . , An}.

Definition 3.5 Let GA = (V,E,A) be an attributed graph. A subset C ⊆ V is
called a clique of GA, if C satisfies the following three properties.

(1) C induces a complete subgraph of the graph G = (V,E).
(2)

⋂
vi∈C Ai 6= ∅.

(3) C is maximal in the sense that there does not exist a subset C̃ ⊆ V ,
satisfying properties (1) and (2), such that C̃ ⊃ C.

Remark 3.6 Since the set
⋂
vi∈C Ai is undefined for C = ∅, we define

⋂
vi∈C Ai =⋃

vi∈V Ai, if C = ∅.

Lemma 3.7 Let G = (V,E) be a graph and B1, B2, . . . , Bm a set of binary
vertex attributes. Let G be the family of induced subgraphs of G associated with
Bi, and let GA = (V,E,A) be the attributed graph defined by G and Bi. Then
a subset C ⊆ V is a maximal clique of G if and only if C is a clique of GA.

Proof: We prove Lemma 3.7 by showing both directions separately.
(→) Let C be a maximal clique of G. We show that properties (1) through (3)

of Definition 3.5 are satisfied.
(i) From Definition 3.3 follows the existence of an index j, such that

C is a clique of G(Sj), hence C induces a complete subgraph of G,
satisfying property (1).

(ii) From Definition 3.1 and the statement above follows that Bj(v) = 1,
∀v ∈ C. From Definition 3.4 then follows that j ∈

⋂
vi∈C Ai, and

hence
⋂
vi∈C Ai 6= ∅, which satisfies property (2).
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(iii) Let’s assume C is not maximal. Then there exists a set C̃ ⊃ C,
satisfying (1) and (2). From (2) then follows the existence of an
index j ∈

⋂
vi∈C̃ Ai and hence C̃ ⊆ Sj . From (1) we know that C̃

induces a complete subgraph of G. This means that either C̃ itself
is a maximal clique of G or C̃ is contained in an even larger set,
which is a maximal clique of G. Thus, C cannot be a maximal clique
of G which contradicts our choice of C. Hence, property (3) is also
satisfied and we have shown that C is a clique of GA.

(←) Let C be a clique of GA. Because of property (1) we only need to show
that C is a contained in any Sj and that C is maximal.

(i) From property (2) and Definition 3.4 follows the existence of an index
j ∈

⋂
vi∈C Ai, such that Bj(v) = 1, ∀v ∈ C, and hence C ⊆ Sj .

(ii) Let’s assume C is not a maximal clique of G, i.e., ∃C̃ ⊃ C, such that C̃
is a maximal clique of G. This means, C̃ induces a complete subgraph
of G, and hence, property (1) is satisfied for C̃. Property (2) must
be satisfied as well, since from (i) we know that ∃j : C̃ ⊆ Sj , and
thus j ∈

⋂
vi∈C Ai, hence

⋂
vi∈C Ai is not empty. Since properties

(1) and (2) are satisfied for C̃ and also C̃ ⊃ C, property (3) is not
true for C, and hence, C cannot be a clique of GA, which contradicts
our choice of C. Hence, our assumption must be wrong and C must
be a maximal clique of G. �

From Lemma 3.7 directly follows that we can compute MC by computing
all cliques of GA, which, as we will show in the following section, can be done
without computing all cliques of all induced subgraphs, and hence, is much more
efficient.

3.1 Extension of the Bron-Kerbosch Algorithm

As mentioned at the beginning of section 2, the definition of the sets CS, NOT,
and CA need to be modified to fit the definition of a clique of GA. For the set
CS it is not sufficient to induce a complete subgraph of G, but at any time it
must also be true that

⋂
vi∈CS Ai 6= ∅. Similarly, the vertices in NOT and CA

not only need to be adjacent to all vertices in CS, but it must also hold that
∀vj ∈ NOT ∪ CA : (

⋂
vi∈CS Ai) ∩Aj 6= ∅.

Having redefined the sets CS, NOT, and CA as stated above, the algorithm
for finding all cliques of GA basically works as the algorithm described in section
2.1. However, the bound condition, which is the crucial part of our extension,
still needs to be modified.

Remark 3.8 We say that a vertex vi is adjacent to a vertex vj with respect
to attribute l, if vi is adjacent to vj in G and l ∈ Ai ∩ Aj. Similarly, vi is
non-adjacent to vj with respect to attribute l, if either vi is non-adjacent to vj
in G or l /∈ Ai ∩Aj.

Lemma 3.9 (Bound Condition) We can now formulate the bound condition
for the algorithm to compute all cliques of GA as follows. If at some stage of
the algorithm NOT contains a vertex, say vj, adjacent to all vertices in CA with
respect to some attribute l ∈

⋂
vi∈CS Ai, calling the extension operator from this

point will not lead to any new clique.
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Figure 1: A simple graph. Let S = {S1 = {1, 2, 5}, S2 = {2, 3, 4}, S3 =
{1, 3, 4, 5}}, i.e., A1 = {1, 3}, A2 = {1, 2}, A3 = {2, 3}, A4 = {2, 3}, and
A5 = {1, 3}. Then the graph GA contains the cliques {2, 3, 4}, {2, 1},
{2, 5}, {3, 5}, and {4, 1}.

Proof: Let vj ∈ NOT be adjacent to all vertices in CA with respect to index
l ∈

⋂
vi∈CS Ai. Now, let’s assume there exists a clique C of GA which can be

found by calling the extension operator from this point. Then it must be true
that CS ⊂ C ⊆ (CS ∪ CA). From

l ∈
⋂

vi∈CS
Ai and l ∈ Aj ∩ (

⋂
vi∈CA

Ai) follows

l ∈ (
⋂

vi∈CS
Ai) ∩Aj ∩ (

⋂
vi∈CA

Ai) .

Since C ⊆ (CS ∪ CA), it must be true that

(
⋂
vi∈C

Ai) ∩Aj ⊇ (
⋂

vi∈CS
Ai) ∩Aj ∩ (

⋂
vi∈CA

Ai) , and hence

l ∈ (
⋂
vi∈C

Ai) ∩Aj = (
⋂

vi∈C∪{vj}

Ai) 6= ∅.

Thus, for C∪{vj} property (2) is satisfied. Since C induces a complete subgraph
of G, and vj is adjacent to all vertices in C, C ∪ {vj} also induces a complete
subgraph of G, and hence, property (1) is also satisfied for C∪{vj}. This means,
property (3) cannot be satisfied for C, since clearly C ∪ {vj} ⊃ C. Hence, C
cannot be a clique of GA, which completes the proof of Lemma 3.9. �

Remark 3.10 Note, that the following bound condition is wrong. If at some
stage of the algorithm, NOT contains a vertex, say vi, and for each vertex vj in
CA there exists an attribute l ∈

⋂
vk∈CS Ak, such that vi is adjacent to vj with

respect to attribute l, calling the extension operator from this point will not lead
to any new clique.
In order to see this, let’s look at the simple example in figure 1. After generating
cliques {2, 3, 4}, {2, 1}, and {2, 5}, the algorithm would backtrack until CS = ∅,
i.e., vertex 2 will be moved to NOT . Now vertex 2 is adjacent to each vertex in
CA and also has at least one attribute in common with each vertex. Therefore
the algorithm would stop at this point and the two cliques {3, 5} and {4, 1} would
not be found.
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CS CA NOT (
⋂
vi∈CS Ai) clique

(1) ∅ {1, 2, 3, 4, 5} ∅ {1, 2, 3} –
(2) {2} {1, 3, 4, 5} ∅ {1, 2} –
(3) {2, 3} {4} ∅ {2} –
(4) {2, 3, 4} ∅ ∅ {2} {2, 3, 4}
(5) {2, 3} ∅ {4} {2} –

(6) {2} {1, 4, 5} {3} {1, 2} –
(7) {2, 1} ∅ ∅ {1} {2, 1}
(8) {2} {4, 5} {3, 1} {1, 2} –
(9) {2, 5} ∅ ∅ {1} {2, 5}

(10) {2} {4} {3, 1, 5} {1, 2} –

(11) ∅ {1, 3, 4, 5} {2} {1, 2, 3} –
(12) {3} {4, 5} {2} {2, 3} –
(13) {3, 5} ∅ ∅ {3} {3, 5}
(14) {3} {4} {2, 5} {2, 3} –

(15) ∅ {1, 4} {2, 5, 3} {1, 2, 3} –
(16) {4} {1} {2, 3} {2, 3} –
(17) {4, 1} ∅ ∅ {3} {4, 1}

Table 1: Execution of our algorithm for the simple graph of figure 1.
At lines (10) and (14) the algorithm backtracks because vertices 3 and
2, respectively, are adjacent to all vertices in CA.

Let’s define the set ATTR =
⋂
vi∈CS Ai. One question that remains to be

answered is, which branching strategy we need to apply for a vertex in NOT
satisfying the bound condition to come about at the earliest possible stage. Let
us recall that in the BK algorithm we first determined the vertex with the least
number of non-adjacent vertices in NOT ∪ CA. Here, instead of determining
the overall number of non-adjacent vertices in NOT ∪ CA, for each attribute
i ∈ ATTR we determine the number of non-adjacent vertices in NOT ∪ CA
with respect to i. We fix both the vertex, say v, and the attribute, say l, with
the least number of non-adjacent vertices in NOT ∪CA with respect to l. If v is
in CA we select v as next candidate. On backtracking, v is added to NOT. If v
already was in NOT or has finally been added to NOT, we take those vertices in
CA as new candidates first that are not adjacent to v with respect to attribute
l. If all of these vertices have been removed from CA, all vertices remaining in
CA are adjacent to v with respect to attribute l. Hence, no new clique can be
generated from this point, since adding the vertex v to any set CS generated
from this point will form a clique of larger size. Table 1 gives an account of
the execution of our algorithm for the graph in figure 1. Pseudo code of the
algorithm can be found in appendix A.

4 Results

We implemented our algorithmic extension in C++ and performed tests on ran-
domly generated graphs. Several parameters could be varied in our tests. First
of all there is the size of the graph G = (V,E), given by the number of vertices,
i.e., |V |. Second, there is the density D of G, given by D = 2|E|/(|V |(|V | − 1).
Third, we have to decide on the number of induced subgraphs of G. And fourth,
we have the size of the subgraphs, that we need to make a decision on. In all
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Figure 2: The computation time per clique is plotted against the size
of the graph. The times are averaged over several graph densities in
two different ways, (*a) and (*b), which are explained in the text. The
graphs (1*) and (2*) correspond to subgraph sizes of 30% and 50%,
respectively.

our tests we fixed the number of subgraphs to 32. Concerning the size of the
subgraphs, we only made tests with subgraphs of the same size and either fixed
the size to 30% or 50%.

4.1 Comparison with Bron-Kerbosch algorithm

In order to compare our algorithm with the BK algorithm, we accomplished
tests similar to the first test case in [6]. We did not perform tests with the so
called Moon-Moser graphs [13], i.e., graphs with 3n/3 cliques.

For two different subgraph sizes, 30% and 50%, we computed all maximal
cliques for graphs with size ranging from 10 to 180 and 10 to 100, respectively,
and densities with values from 10% to 90% with a step size of 10%. We then
generated the averaged computation time per clique for a particular graph size
in two ways.

(1) For each density we computed the averaged time per clique and then
averaged these times again over the densities from 10% to 90%.

(2) We computed the overall number of cliques and the overall time for all
densities, and then averaged the time over all cliques.

From the plot in figure 2 we can deduce that the time per clique is hardly
dependent on the size of the graph. This is in accordance with the results given
by Bron and Kerbosch in [6]. However, one might argue that averaging over
a family of densities is not very meaningful. We therefore performed tests for
several fixed densities in which we only varied the size of the graph.

For a subgraph size of 30%, the results can be seen in figure 3. One can
observe a slight but steady increase in the time per clique for densities 10%,
30%, and 50%. For a density of 70% the time per clique increases at first, but
then stays pretty much constant. Finally, for a density of 90% we observe a
very rapid increase in time per clique up to a graph size of 50 vertices and then
an equally rapid decrease. The results for a subgraph size of 50% were similar.

From the tests we have made, we can conclude that the computation time
per clique hardly depends on the size of the graph. But even if we admitted
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Figure 3: Results for a subgraph size of 30%. For densities of 10%, 30%,
50%, 70%, and 90% the time per clique is plotted against the size of the
graph. For the density of 90% there was no data available for a graph
size greater than 180 due to the large memory requirement.

Figure 4: Number of cliques plotted against the size of the graph for a
subgraph size of 30% and densities from 10% to 90%. Note the loga-
rithmic scale of the y-axis.

a small increase of the computation time per clique with the graph size, the
increase would only be of minor impact compared to the increase of the number
of cliques, which is exponential. Figure 4 shows the rapid increase of the number
of cliques for different densities.

4.2 Computation of all Maximal Cliques via all cliques of
all Subgraphs

In order to compare our results with the approach to compute all cliques of all
subgraphs first, we implemented a straight-forward algorithm. We initialized
the set of maximal cliques with the set of cliques of the first subgraph. We
then iteratively modified the current set of maximal cliques by looking at all
the cliques of each remaining subgraph in turn.

• If a clique is contained in any of the cliques of the current set of maximal

11



Figure 5: Time per clique plotted against the number of cliques for a
graph size of 120 and a subgraph size of 30%. The data points corre-
spond to densities of 10% to 90%. Note, that both axes use a logarithmic
scale. Plot (1) shows the times for computing all maximal cliques via all
cliques of all subgraphs. Plot (2) represents the new approach presented
in this paper.

cliques, it is discarded.
• If a clique contains any current maximal clique, we replace this maximal

clique by the new clique. We then need to check all maximal cliques not
yet tested, whether they are also contained in the new clique.

Figure 5 shows our results. One can observe, that the time per clique grows
linearly or even super-linearly with the number of cliques. This is in accordance
with the theoretical computation time, that the time of the algorithm grows
quadratically with the number of cliques. We are certain, that we can improve
the running time of this approach, but we believe that in general it will be much
slower than our approach.

5 Conclusion

The contributions of this paper are as follows. First, we introduced the notion
of maximal cliques of a family of induced subgraphs. Second, we showed that
all maximal cliques of a family of induced subgraphs can be computed directly
by computing all cliques of a special graph where each vertex is associated with
an attribute set. Third, we extended the algorithm by Bron and Kerbosch [6]
to compute all maximal cliques of a family of induced subgraphs and showed
that this extension is as efficient as the original algorithm.

Acknowledgments. I would like to thank Johannes Schmidt-Ehrenberg for
many helpful discussions, and Marcus Weber and Frank Cordes for valuable
hints concerning the paper.
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A Pseudo Code

Algorithm A.1: ComputeAllMaximalCliques(V,E,A)

comment: Create new sets and call extension operator.
procedure ExtendCSWithNewCand(CS,NOTd, CAd, ATTRd, vj)
CS ← CS ∪ {vj}
ATTRd+1 ← ATTRd ∩ Aj
comment: Fill new set NOTd+1.
NOTd+1 ← ∅
for each w ∈ NOTd

do

{
if w is adjacent to vj with respect to any l ∈ ATTRd+1

then NOTd+1 ← NOTd+1 ∪ {w}
comment: Fill new set CAd+1.
CAd+1 ← ∅
for each w ∈ CAd

do

{
if w is adjacent to vj with respect to any l ∈ ATTRd+1

then CAd+1 ← CAd+1 ∪ {w}
comment: Check whether there still exist candidates.
if CAd+1 6= ∅

then

comment: Call extension operator with new sets.
ExtendCS(CS,NOTd+1, CAd+1, ATTRd+1)
CS ← CS \ {vj}

else if NOTd+1 = ∅

then

{
comment: New clique found.
output clique CS

comment: Recursively extend CS to generate all cliques containing CS.
procedure ExtendCS(CS,NOTd, CAd, ATTRd)

comment: minNod is the current minimum number of disconnections.
minNod← size of CAd

comment: Determine vj with least number of non-adjacent vertices in CAd with respect to any l ∈ ATTRd.
for each vi ∈ NOTd ∪ CAd

do



for each l ∈ ATTRd ∩ Ai

do



nod← 0
for each w ∈ CAd

do


if w is not adjacent to vj with respect to l

then nod← nod+ 1
if nod = minNod

then break
if nod < minNod

then

vj ← vi
minNod← nod
minAttr ← l

comment: If vj is in set CAd, it will be itself taken as new candidate.
if vj ∈ CAd

then ExtendCSWithNewCand(CS,NOTd, CAd, ATTRd, vj)

comment: Choose new candidates to extend CS.
for each w ∈ CAd

do

{
if w is not adjacent to vj with respect to minAttr

then ExtendCSWithNewCand(CS,NOTd, CAd, ATTRd, w)

comment: Compute all cliques of GA = (V,E,A).
main

comment: Initialize sets.
CS ← ∅
NOT0 ← ∅
CA0 ← V \ {vi|vi ∈ V with Ai = ∅}
ATTR0 ←

⋃
vi∈CA0

Ai

comment: Call extension operator.
ExtendCS(CS,NOT0, CA0, ATTR0)
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