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1 Introduction

In articles by Cho (2000), Cho and Stockbridge (2002), Helmes (1999), (2002), Helmes
et al. (2001), Helmes and Stockbridge (2000), (2001), (2003), and Röhl (2001) numerical
methods for the computational analysis of exit time problems, invariant distributions
of diffusions and optimal stopping and control problems have been proposed which are
based on a linear programming approach to these kind of problems. The formulation of
infinite dimensional linear programs for such problems is an extension of work by Manne
(1960) who initiated the formulation of stochastic control problems as linear programs
over a space of stationary distributions for the long term average control of finite state
Markov chains, see Hernandez-Lerma et al. (1991) for details and additional references.
The generalization of the LP formulation for continuous time, general state and control
spaces, and different objective functions has been established by Stockbridge (1990), Kurtz
and Stockbridge (1998), (1999), and Bhatt and Borkar (1996).

The basic idea of the LP approach to the analysis of controlled and uncontrolled Markov
processes is to formulate such problems as linear programs over a space of stationary
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distributions. Specifically, the variables in these infinite dimensional linear programs
are measures on the product of the state and control spaces and in the case of exit
problems, each such variable is augmented by a second measure on the exterior of the state
space. These variables are constrained by equations involving the generator of the Markov
process and a family of test functions. Different numerical methods are determined by a
judious choice of a finite set of test functions combined with a selection of a finite number
of variables and/or restrictions imposed on the support of the occupation measure and
the exterior measure. Such choices determine approximations of the infinite dimensional
optimization problem by finite dimensional ones.

One class of approximating problems exploits the characterization of measures on bounded
intervals by their moments and the identification of moment sequences by a countable
family of linear inequality conditions. Hausdorff (1921) and (1923) formulated these
inequalities for measures on the interval [0, 1]. We therefore call these inequality conditions
the Hausdorff Conditions, see Section 2. Hildebrandt and Schoenberg (1933) generalized
these results to the multidimensional case, i. e. to measures with support in [0, 1]d, d ≥
1. For some applications of moment theory see Ang et al. (2002). Using but a finite
number of these inequalities to partially describe the feasible set of finite dimensional
LPs, cf. Section 4, leads us to study the geometry of what we call d-dimensional Hausdorff
Polytopes. Specifically, we are interested in formulae for the vertices of these polytopes
since, as will be illustrated by numerical examples, such formulae enhance the accuracy of
the numerical methods to which we referred above. The geometry of moment spaces for
the onedimensional case was first considered in detail in the paper by Karlin and Shapley
(1953). To approximate moment sequences they introduced special simplices defined as
the convex hull of specific points. In Section 2 we prove that the d-dimensional Hausdorff
Polytopes are in fact extensions to higher dimensions of the simplices described by Karlin
and Shapley.

Since, for dimension 1, the Hausdorff Polytopes of order n contain the first n + 1 com-
ponents of all moment sequences we work with an outer approximation of the projection
of moment sequences onto R

n+1. This approximation greatly differs from the inner ap-
proximation of this set by cyclic polytopes, cf. Ziegler (1995) and also Karlin and Shapley
(1953). Using an outer approximation ensures that no restrictive assumptions on the
support of the occupation measures of Markov processes to be analyzed need to be made,
cf. Section 4. As will be seen in Sections 2 and 3 these ideas can be generalized to higher
dimensions.

An alternative to the finite dimensional linear programs referred to above was recently
proposed by Lasserre and Rumeau (2003). Instead of LPs they suggest using semidefinite
programs, cf. also Schwerer (1996).

While Hausdorff Polytopes are associated with measures whose support is contained in a
hypercube Dale Polytopes, to be introduced in Section 3, are associated with measures

defined on the unit triangle Sd = {x ∈ [0, 1]d |
d∑

i=1

xi ≤ 1}. Dale (1987) gave necessary

and sufficient conditions for a doubly indexed sequence to be the sequence of (joint) mo-
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ments of a measure on the twodimensional triangle S2. This result will be extended to
higher dimensions and will be complemented by formulae for the vertices of the poly-
topes. Stockbridge (2003) recently extended Dale’s result to measures defined on general
polytopes and classes of more general bounded regions.

This paper is organized as follows. Section 2 presents our results on Hausdorff Polytopes
while Section 3 does so for Dale Polytopes. Theorem 2.1 and 3.1 are the fundamental
convergence results which reveal how distributions on [0, 1]d and Sd can be recovered
from their moments. They show that the reconstruction of such measures from their
moments can be given in terms of a sequence of discrete distributions. These distributions
incorporate iterated differences of the moments in an essential way. But requiring iterated
differences (up to a finite order, cf. (8) for the Hausdorff case and (22) for the Dale case)
to be nonnegative are the defining inequalities of Hausdorff and Dale Polytopes. The
connection between the vertices of these polytopes and Dirac measures on [0, 1]d and Sd,
given in terms of iterated differences, is described by Proposition 2.6 and Proposition 3.6,
while the most important results, the formulae for the corner points, can be found in
Theorems 2.5 and 3.5. The basic ideas of the proofs in both sections are very much
alike, and we introduce convenient notation in Section 2 which emphasizes this fact and
which should facilitate reading the proofs. Section 4 includes numerical illustrations of
the theory developed in Sections 2 and 3 and briefly recapitulates the formulation of the
LP approach for these examples.

2 The multidimensional Hausdorff Polytope

For multiindices j = (j1, . . . , jd) ∈ Z
d
+ , n = (n1, . . . , nd) ∈ Z

d
+ , and a vector x ∈ R

d we
use the following abbreviating notation:(

n

j

)
:=

d∏
i=1

(
ni

ji

)
, xj :=

d∏
i=1

xji

i , and

n∑
j=0

:=

n1∑
j1=0

· · ·
nd∑

jd=0

.(1)

For a given real valued function u on Ed = [0, 1]d and multiindex n ∈ Z
d
+ we call the

polynomial

Bn,u(x) :=
n∑

j=0

u
(n)
j

(
n

j

)
xj (1− x)n−j, for x ∈ Ed,(2)

the Bernstein Polynomial of degree n corresponding to u where u
(n)
j = u( j

n
) := u( j1

n1
, . . . , jd

nd
)

and 1 = (1, . . . , 1) is the main diagonal vector in Ed (cf. Knill (1997)).

For any finite or infinite multiindexed sequence {xn} we define the differences

(41
i x)(n1,...,nd) := x(n1,...,ni,...,nd) − x(n1,...,ni+1,...,nd) , i = 1, . . . , d ,

for all indices for which the right hand side is well defined. Note that we are using
backward differences and therefore follow the same sign convention as Dale (1987) and
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Knill (1997), in contrast to the classical notation used by Feller (1971). This convention
avoids unwanted factors in some of the expressions below. Using the notation

(40
1 . . .40

d x)(n1,...,nd) := x(n1,...,nd) ,

we define the iterative differences of higher order as follows:

(4j1
1 . . .4ji+1

i . . .4jd

d x)(n1,...,nd) := (41
i (4j1

1 . . .4ji

i . . .4jd

d x))(n1,...,nd) =(3)

(4j1
1 . . .4ji

i . . .4jd

d x)(n1,...,ni,...,nd) − (4j1
1 . . .4ji

i . . .4jd

d x)(n1,...,ni+1,...,nd) .

For such higher order differences we use the abbreviating notation

4jxn := (4j1
1 . . .4jd

d x)(n1,...,nd),(4)

where j = (j1, . . . , jd), and n = (n1, . . . , nd) are multiindices.

Let Ti, 1 ≤ i ≤ d, denotes the shift operator applied to the i-th coordinate, i. e.

(Ti x)n = xn1,...,ni−1,ni+1,ni+1,...,nd
.

Then we can write the operator 4j as a product of differences of simple commuting
operators, viz.

4j =
d∏

i=1

(40 − Ti)
ji .

Let X be a random variable on Ed = [0, 1]d distributed according to a measure µ having
distribution function F and moments µ = {µj}j∈Zd

+
, i.e.

µj = µ(j1,...,jd) =

∫
Ed

xj1
1 xj2

2 · · ·xjd

d dF (x1, . . . , xd).

By induction over the sum of the components of k and m we see that for all k, m ∈ Z
d
+

the following equation holds

(4mµ)k =

∫
Ed

xk(1− x)m dF (x) .(5)

Integrating Equation (2) with respect to F we obtain the identity,

EF Bn,u =
n∑

j=0

u
(n)
j

(
n

j

)
(4n−jµ)j.(6)

We define

p
(n)
j :=

(
n

j

)
(4n−jµ)j for j = (j1, . . . , jd) , 0 ≤ ji ≤ ni.
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It follows from Equation (5) that p
(n)
j ≥ 0 for all j ≤ n. Using Definition (2) with the

function u(x) ≡ 1 we obtain EF Bn,u = 1 , and hence

n∑
j=0

p
(n)
j = 1 .(7)

So we may interpret the vector {p(n)
j }n

j=0 as a discrete probability measure µ(n) with

distribution function F (n) on the set of points {( j
n
)}n

j=0 = {( j1
n1

, . . . , jd

nd
)}n

j=0 . Here the

notation {.}n
j=0 means { . | 0 ≤ j1 ≤ n1 , . . . , 0 ≤ jd ≤ nd}.

This construction of discrete measures µ(n) together with the following two convergence
and characterization results are the motivation and justification of Defintion 2.3 below,
and the numerical methods to be used in Section 4.

Theorem 2.1 Let u be a continuous function and F be a distribution function on Ed =
[0, 1]d. Then the following two properties hold:

1. For n → ∞, i.e. ni → ∞ for all i = 1, . . . , d , the Bernstein Polynomials Bn,u

converge uniformly to the function u.

2. For every x ∈ Ed where the function F is continuous

F (n)(x) :=
∑
j≤nx

p
(n)
j −→

n→∞
F (x).

For the proofs of Theorems 2.1 and 2.2, see below, we refer the reader to Hildebrandt and
Schoenberg (1933) or Knill (1997), cf. also the proofs of Theorems 3.1 and 3.2 below.

The following d-dimensional Hausdorff Conditions are straightforward generalizations of
the conditions for the one- and twodimensional cases (cf. Shohat and Tamarkin (1943) p.
9 ff or the references above):

Theorem 2.2 A multiindexed sequence µ = {µj}j≥0 of real numbers is a sequence of

moments of a measure µ on Ed = [0, 1]d iff

(4mµ)k ≥ 0(8)

or, equivalently,
m∑

s=0

(−1)s

(
m

s

)
µk+s ≥ 0(9)

for all multiindices k, m ∈ Z
d
+.

Theorem 2.1 and Theorem 2.2 suggest the following definitions.
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Definition 2.3

1. For each element z ∈ R
ñ, ñ = (n1 + 1) · . . . · (nd + 1) , we define the linear trans-

formation R(n) : R
ñ → R

ñ by

(
R(n)(z)

)
j

:=

(
n

j

)
(4n−jz)j for j = (j1, . . . , jd) , 0 ≤ ji ≤ ni.

2. Let H̃d
n ⊂ R

ñ be the set of all arrays {zj}n
j=0 fulfilling the Hausdorff Conditions up

to order n, i.e. we require the Inequalities (8) or (9) to hold only for multiindices k
and m which satisfy k + m ≤ n . The set H̃d

n is called the d-dimensional Hausdorff
Polygon of order n.

3. For c > 0 we define the set

Hd
n,c :=

{
z ∈ H̃d

n | z(0,...,0) = c
}

.

The set Hd
n := Hd

n,1 is called the d-dimensional Hausdorff Polytope of order n.

4. Let Kd
n(∂Ed) :=

{∑
ϕ

νϕ
∣∣∣ νϕ ∈ Hd−1

n,cϕ
,
∑
ϕ

cϕ = 1, ϕ runs over all (n−1)-dimensional

facets of Ed
}
, cf. Section 4.

Remark: The transformation R(n) is an extension of the mapping {µj}n
j=0 7→ p

(n)
j , see

above, where {µj}n
j=0 is the truncated sequence of moments of a finite measure on [0, 1]d.

For any finite measure µ we use the shorthand writing R(n)(µ) to denote the image of the
finite sequence of moments of µ.

Lemma 2.4 For a sequence z = {zj}j≥0 the Hausdorff Conditions up to order n =
(n1, . . . , nd) are equivalent to the following reduced number of conditions (10) or (11):

(4n−kz)k ≥ 0 ,(10)

or, equivalently,
n−k∑
i=0

(−1)i

(
n−k

i

)
zk+i ≥ 0(11)

for all multiindices k with 0 ≤ k ≤ n component-wise.

Proof. These conditions are obviously necessary. By repeatedly applying Definition (3)
of the iterative differences and using Inequalities (10) it is easy to derive all missing Haus-
dorff Conditions (8) up to the given order. Therefore Conditions (10) are also sufficient,
as are Conditions (11). �
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Theorem 2.5 The Hausdorff Polytope Hd
n has ñ :=

d∏
i=1

(ni+1) corner points. The corner

point z(k) associated with the multiindex k = (k1, . . . , kn), 0 ≤ ki ≤ ni, i = 1, . . . , d, has
the following coordinates (which are arranged according to the lexicographic order)

z(k) =
(
z

(k)
(0,...,0,0), . . . , z

(k)
(0,...,0,nd), . . . , z

(k)
(n1,...,nd−1,0), . . . , z

(k)
(n1,...,nd−1,nd)

)
,

where

z
(k)
j =

d∏
i=1

(
ni

ki

)−1(
ni−ji

ki−ji

)
=

(
n

k

)−1(
n− j

k − j

)
;(12)

for t < 0 we define the binomial coefficient
(

s
t

)
= 0 for all s ∈ Z+.

Proof. A vector z = (z(0,...,0), . . . , z(n1,...,nd)) is an element of Hd
n if and only if (i)

z(0,...,0) = 1 and (ii), cf. Lemma 2.4, the ñ =
d∏

i=1

(ni+1) inequalities

n−l∑
j=0

(−1)j

(
n−l

j

)
zl+j ≥ 0(13)

are satisfied for all multiindices l with 0 ≤ l ≤ n. In order to show that the set of vectors
z(k), see (12), is the set of all corner points of Hd

n we need to prove that, first of all,

z
(k)
(0,...,0) = 1. Moreover, since the vectors z(k) are linearly independent, we need to show

that for all vectors z(k) = (1, z
(k)
(0,...,0,1), . . . , z

(k)
(n1,...,nd)) ∈ {1}×R

ñ−1, ñ−1 of the Inequalities

(13) become equations while the remaining inequality is a strict inequality.

Let k ≤ n be given, then the equation z
(k)
0 = 1 trivially holds. Moreover, we know that

z
(k)
l = 0 for all multiindices l for which li > ki for at least one i ∈ {1, . . . , d} . For such

indices l Inequality (13) is actually an equation, because on the left hand side of (13) we
only sum over multiindices which satisfy this index condition. For the case l = k the left
hand side of (13) reduces to

n−k∑
j=0

(−1)j

(
n−k

j

)
z

(k)
k+j = (−1)0

(
n−k

0

)
z

(k)
k =

(
n

k

)−1

,

which is obviously a positive number.

It remains to be shown that the numbers {z(k)
j }j≤k satisfy

k−l∑
j=0

(−1)j

(
n−l

j

)
z

(k)
l+j = 0 for l ≤ k, l 6= k .

By definition,

k−l∑
j=0

(−1)j

(
n−l

j

)
z

(k)
l+j =

(
n

k

)−1 k−l∑
j=0

(−1)j

(
n−l

j

)(
n−l−j

k−l−j

)
.
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For onedimensional binomial coefficients we know that(
r

s

)(
r−s

t−s

)
=

(
t

s

)(
r

t

)
;

this identity easily extends to the multidimensional case by forming products on both
sides. Hence, since l 6= k, we get

k−l∑
j=0

(−1)j

(
n−l

j

)
z

(k)
l+j =

(
n

k

)−1(
n−l

k−l

) k−l∑
j=0

(−1)j

(
k−l

j

)

=

(
n

k

)−1(
n−l

k−l

)
(1− 1)k−l = 0.

�

Proposition 2.6 Let n and k be given multiindices satisfying k ≤ n component-wise.
The transformation R(n) applied to the corner points z(k) of the Hausdorff Polytope Hd

n

yields the set of unit vectors, i. e. j = (j1, . . . , jd) ≤ n,

R(n)(z(k))j =

{
1 for j = k
0 otherwise.

Proof. The Hausdorff Polytope Hd
n is characterized by ñ inequality conditions. For

each corner point z(k) exactly ñ−1 of these conditions are active. We know, cf. proof of

Theorem 2.5, that
n∑

j=0

R(n)(z(k))j = 1 and that for ñ−1 different multiindices j ≤ n

(4n−jz(k))j = 0.

Thus

R(n)(z(k))j =

(
n

j

)
(4n−jz(k))j = 0

for all but one multiindex m ≤ n. For this particular index m the equation

R(n)(z(k))m = 1

holds. But

R(n)(z(k))k =

(
n

k

)
(4n−kz(k))k

=

(
n

k

) n−k∑
s=0

(−1)s

(
n−k

s

)
z

(k)
k+s

=

(
n

k

)(
n−k

0

)(
n

k

)−1(
n−k

0

)
= 1,
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since, by definition of z(k), all other terms of this sum disappear. Hence, m = k and
R(n)(z(k)) is a unit vector. �

So we can think of the image of R(n) of the corner point z(k) as being the Dirac measure
at the point ( k1

n1
, . . . , kd

nd
), and we can think of the range R(n)(Hd

n) as the set of all discrete

probability measures on the set of points {( j
n
)}n

j=0.

3 The multidimensional Dale Polytope

Let Sd ⊂ R
d, d ∈ N, denote the d-dimensional triangle, i. e.

Sd =

{
x ∈ [0, 1]d

∣∣∣∣ Σ(x) ≤ 1

}
,

and let Id
N = {j = (j1, . . . , jd) ∈ Z

d
+ | Σ(j) ≤ N} for d, N ∈ N. For vectors x ∈ R

d ,

multiindices j ∈ Z
d
+ resp., we use the notation Σ(x) :=

d∑
i=1

xi , Σ(j) :=
d∑

i=1

ji resp.

For a real valued function ũ on Sd and single index N we call the polynomial

B̃N,ũ(x) :=
∑
j∈Id

N

ũ
(N)
j

[
N

j

]
xj (1− Σ(x))N−Σ(j) , x ∈ Sd,(14)

the modified Bernstein Polynomial of degree N associated with ũ. We define, cf. Section 2,
ũ

(N)
j := ũ( j1

N
, . . . , jd

N
) and

[
N

j

]
:=

[
N

j1, . . . , jd

]
:=

N !

j1! j2! · · · jd! (N − Σ(j))!
, j ∈ Id

N ;

we call
[

N
j

]
a pseudo multinomial coefficient of dimension d and order N (cf. Dale (1987)).

Note that [
N

j

]
= (Σ(j); j1, . . . , jd)

(
N

Σ(j)

)
,

where (Σ(j); j1, . . . , jd) is the multinomial coefficient of j, cf. Abramowitz and Stegun
(1965), Section 24.1.2.

For any finite or infinite multiindexed sequence x = {xr} we denote by 4̃ the linear
transformation x 7→ 4̃x, where

(4̃x)j := xj −
d∑

i=1

xj1,...,ji−1,ji+1,ji+1,...,jd

for all multiindices j for which the right hand side is well defined.
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Let 4̃0
x :≡ x, then the N -th iterate of 4̃ is defined by

4̃N
x := 4̃(4̃N−1

x) for N ∈ N.

Using the shift operators Ti the operator 4̃N
can be written as the N -th power of a sum

of simple commuting operators:

4̃N
= (4̃0 − T1 − · · · − Td)

N .

By the multinomial theorem we obtain

4̃N
=

∑
(j1,...,jd):

Σ(j)≤N

(−1)Σ(j)

[
N

j1, . . . , jd

]
T j1

1 · · · T jd

d(15)

=
∑
j∈Id

N

(−1)j

[
N

j

]
T j1

1 · · · T jd

d .

Let X̃ be a random variable on Sd distributed according to the measure ν with distribution
function F̃ and moments ν = {νj}j≥0, i.e.

νj =

∫
Sd

xj1
1 xj2

2 · · ·xjd

d dF̃ (x1, . . . , xd).

Then, for all N ∈ Z+ and k ∈ Id
N , the following equation holds:

(4̃N
ν)k =

∫
Sd

xk(1− Σ(x))N dF̃ (x) .(16)

Integrating Equation (14) with respect to F̃ we obtain

EF̃ B̃N,ũ =
∑
j∈Id

N

ũ
(N)
j

[
N

j

]
(4̃N−Σ(j)

ν)j.(17)

Next, we define

p̃
(N)
j :=

[
N

j

]
(4̃N−Σ(j)

ν)j for j ∈ Id
N

and we define the linear transformation R̃(N) as ν 7→ R̃(N)(ν) :=
{
p̃

(N)
j

}
j∈Id

N

. Equa-

tion (16) implies that p̃
(N)
j ≥ 0 for all j ∈ Id

N . Choosing the function ũ(x) ≡ 1

Equation (14) implies EF̃ B̃N,ũ = 1; therefore,∑
j∈Id

N

p̃
(N)
j = 1 .(18)
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So we may interpret R̃(N)(ν) as a discrete probability measure ν(N) with distribution
function F̃ (N) on the set of points {( j

N
)}j∈Id

N
.

For modified Bernstein Polynomials and the distribution functions F̃ (N) we obtain con-
vergence results similar to Theorem 2.1 (cf. Dale (1987)):

Theorem 3.1 Let ũ be a continuous function on Sd, and F̃ a distribution function on
Sd. Then the following two assertions hold:

1. For N → ∞ the modified Bernstein Polynomials B̃N,ũ converge uniformly to the
function ũ.

2. For all points x ∈ Sd where the function F̃ is continuous

F̃ (N)(x) :=
∑

j≤Nx

p̃
(N)
j −→

N→∞
F̃ (x).

Proof. 1. Let {ek}1≤k≤d denote the set of unit vectors in R
d. For fixed x ∈ Sd we consider

a sequence {Xi}i≥1 of i. i. d. discrete random vectors with distribution P (X1 = ek) = xk

for k = 1, . . . , d and P (X1 = 0) = 1 − Σ(x) . From the weak law of large numbers it

follows that 1
N

N∑
i=1

Xi −→
N→∞

x in distribution. Since ũ is a continuous function it follows

that ũ

(
1
N

N∑
i=1

Xi

)
−→
N→∞

ũ(x) in distribution too. This fact implies the convergence of the

expected values, i. e.

E

[
ũ

(
1

N

N∑
i=1

Xi

)]
−→
N→∞

ũ(x) .(19)

By the definition of the random vectors Xi we get:

E

[
ũ

(
1

N

N∑
i=1

Xi

)]
=

∑
j∈Id

N

ũ

(
j

N

)[
N

j

]
xj(1− Σ(x))N−j(20)

= B̃N,ũ(x).

Equation (20) together with Equation (19) show the pointwise convergence of the Bern-
stein polynomials B̃N,ũ.

Since ũ is a continuous function on Sd we know that ũ is bounded and uniformly con-
tinuous, i. e. |ũ(x)| ≤ γ for all x ∈ Sd, and for any ε > 0 there exists a δ > 0 such that
|ũ(x)− ũ(y)| < ε for all x, y ∈ Sd whenever ‖x− y‖ < δ. Let Ax, x ∈ Sd, be the following
event:

Ax =

{
ω :

∥∥∥∥∥ 1

N

N∑
i=1

Xi(ω)− x

∥∥∥∥∥ < δ

}
;
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we denote the complement by Āx. By Tchebychev’s Inequality we have for x ∈ Sd

P (Āx) = P

(∥∥∥∥∥ 1

N

N∑
i=1

Xi − x

∥∥∥∥∥ ≥ δ

)

≤ 1

δ2
E



∥∥∥∥∥ 1

N

N∑
i=1

Xi − x

∥∥∥∥∥
2



=
1

δ2

d∑
k=1

E

[
1

N

N∑
i=1

X
(k)
i − xk

]2

=
1

δ2

d∑
k=1

xk(1− xk)

N

≤ d

4δ2N
.

Therefore,∣∣∣∣∣E
[
ũ

(
1

N

N∑
i=1

Xi

)]
− ũ(x)

∣∣∣∣∣ ≤ E

[
1lAx(ω) ·

∣∣∣∣∣ ũ
(

1

N

N∑
i=1

Xi

)
− ũ(x)

∣∣∣∣∣
]

+ E

[
1lĀx

(ω) ·
∣∣∣∣∣ ũ
(

1

N

N∑
i=1

Xi

)
− ũ(x)

∣∣∣∣∣
]

≤ ε + 2γP (Āx)

≤ ε +
γd

2δ2N
.

The right hand side of the last inequality does not depend on x, and the second term of
the sum tends to 0 for N → ∞. Thus, modified Bernstein Polynomials B̃N,ũ converge
uniformly to ũ.

2. The convergence of F̃ (N)(x) to F̃ (x), whenever F is continuous at x, follows from part 1
and the compactness of Sd. Let k be any multiindex and set

ũ(x) = xk = xk1
1 xk2

2 · . . . · xkd
d .

Then, cf. (17), ∫
Sd

xkdF̃ (N)(x) −→ mk as N →∞,(21)

where mk is the k-th moment of the distribution function F̃ . Next, take any convergent
subsequence {F̃ (Nr)} with limit distribution G. Part 1 again implies that the moments
of F̃ (Nr) converge to the moments of G which, by (21), are equal to the moments of F .
Since distribution on Sd are uniquely determined by their moments, G ≡ F . Hence, the
sequence {F (N)}N≥0 converges to F , which implies part 2. �

12



Theorem 3.2 A multiindexed sequence ν = {νn}n≥0 of real numbers is a sequence of
moments of a measure ν on Sd iff

(4̃N
ν)k ≥ 0(22)

or, equivalently, ∑
j∈Id

N

(−1)j

[
N

j

]
νk+j ≥ 0(23)

for all N ∈ Z+ and multiindices k ∈ Z
d
+.

For a proof of Theorem 3.2 and generalizations of such characterization theorems see
Stockbridge (2003).

Definition 3.3

1. We denote by D̃d
N the set of all arrays z̃ = {z̃n}n∈Id

N
∈ R

K, K =
(

N+d
d

)
, which have

the following property:

(4̃M
z̃)n ≥ 0 for all M ≥ 0 and n ∈ Id

N such that M + Σ(n) ≤ N.

The set D̃d
N is called the d-dimensional Dale Polygon of order N .

2. For c > 0 we define the set

Dd
N,c :=

{
z̃ ∈ D̃d

N | z̃(0,...,0) = c
}

,

and call Dd
N := Dd

N,1 the d-dimensional Dale Polytope of order N .

Similar to the case of the Hausdorff Polytope we are able to reduce the number of con-
straints to characterize the Dale Polytope Dd

N .

Lemma 3.4 A sequence z̃ = {z̃n}n∈Id
N
∈ R

K, K =
(

N+d
d

)
, is an element of the Dale

Polytope Dd
N iff z̃(0,...,0) = 1 and, for all n ∈ Id

N , M = N − Σ(n), the inequalities

(4̃M
z̃)n =

∑
j∈Id

M

(−1)j

[
M

j

]
z̃n+j ≥ 0(24)

are satisfied.

13



Proof. Condition (24) is of course necessary, cf. (15). To see that it is also sufficient,
we shall recursively repeat the arguments spelled out in detail in Step 1, cf. also Step M ,

below. These arguments are based on the following identity, cf. the definition of 4̃M
,

4̃M
= 4̃(4̃M−1

) = 4̃M−1 −
d∑

i=1

Ti ◦ 4̃M−1
,

i. e.

4̃M−1
= 4̃M

+
d∑

i=1

Ti ◦ 4̃M−1
.(25)

Step 0: The following inequalities hold by assumption:

• z̃n ≥ 0, if Σ(n) = N ;

• (4̃z̃)n ≥ 0, if Σ(n) = N − 1;
...

• (4̃M
z̃)n ≥ 0, if Σ(n) = N −M ;

...

• (4̃N
z̃)n ≥ 0, if Σ(n) = N −N .

Step 1: Now it follows:

• z̃n ≥ 0, if Σ(n) = N − 1, by the first and second inequality of Step 0 and Equa-
tion (25) for M = 1;

• (4̃z̃)n ≥ 0, if Σ(n) = N − 2, by the second and third inequality of Step 0 and
Equation (25) for M = 2;

...

• (4̃M−1
z̃)n ≥ 0, if Σ(n) = N −M , by the M-th and (M + 1)-th inequality of Step

0 and Equation (25) for M ;

...

• (4̃N−1
z̃)n ≥ 0, if Σ(n) = N − N , by the N -th and (N +1)-th inequality of Step 0

and Equation (25) for M = N .

Step M : The M-th step only comprises (N −M + 1) inequalities:

• z̃n ≥ 0, if Σ(n) = N − M , by the first and second inequality of Step M−1 and
Equation (25);

...

14



• (4̃N−M
z̃)n ≥ 0, if Σ(n) = N − N , by the next to last and the last inequality of

Step M−1 and Equation (25);

and the final step is but the inequality z̃(0,...,0) ≥ 0 which holds by Assumption (24). �

Theorem 3.5 The Dale Polytope Dd
N has K =

(
N+d

d

)
corner points which can be indexed

by the elements of Id
N . The k-th vertex, k ∈ Id

N , is characterized as follows:

z̃(k) =

[
N

k

]−1
([

N − Σ(j)

k − j

]
j≤k

, 0, . . . , 0

)
∈ R

K ,(26)

where j ≤ k is understood component-wise and the coordinates of the corner points are
arranged according to the lexicographic order on Id

N .

Proof. To verify that each z̃(k) is a corner point of Dd
N it is sufficient to show that each

z̃(k) satisfies (K−1) of the Inequalities (24) as equations and one as a strict inequality.
For any vector z̃(k) defined by (26) the following properties hold:

(i) z̃
(k)
0 = 1.

(ii) For n = k Inequality (24) in Lemma 3.4 is a strict inequality. This follows from

z̃
(k)
k =

[
N

k

]−1

> 0.

(iii) For all Inequalities (24) indexed by k such that n ≤ k component-wise, n 6= k, we
have

∑
j: j+n∈Id

N

(−1)j

[
N − Σ(n)

j

]
z̃

(k)
n+j

=

[
N

k

]−1 k1−n1∑
j1=0

· · ·
kd−nd∑
jd=0

Σ(j)≤N−Σ(n)

(−1)Σ(j)

[
N − Σ(n)

j

] [
N − Σ(n + j)

k − n− j

]
;

since n ≤ k, k ∈ Id
N , and the summation indices j satisfy j ≤ k − n component-wise we

obtain Σ(j + n) ≤ N ; thus the restriction Σ(j) ≤ N − Σ(n) is redundant. Henceforth,
it will be dropped.

Next, we set the multiindex l = k − n and L = N − Σ(n); so the previous expression
becomes [

N

k

]−1 l1∑
j1=0

(−1)j1 · · ·
ld∑

jd=0

(−1)ji

[
L

j

] [
L− Σ(j)

l − j

]
.
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Recombining the (pseudo) multinomial coefficients, i. e.[
L

j

] [
L− Σ(j)

l − j

]
=

L!(
d∏

i=1

ji!

)
(L− Σ(j))!

· (L− Σ(j))!(
d∏

i=1

(li − ji)!

)
(L− Σ(l))!

=
L!

(L− Σ(l))!
d∏

i=1

li!

·

d∏
i=1

li!(
d∏

i=1

ji!

)(
d∏

i=1

(li − ji)!

) ,

we finally see that the left hand side of the n-th inequality equals zero, since

[
N

k

]−1 [
N − Σ(n)

k − n

] l1∑
j0=0

(−1)j1

(
l1
j1

)
· · ·

ld∑
jd=0

(−1)jd

(
ld
jd

)
= 0 .

(iv) For Inequalities (24) such that ni > ki for at least one i ∈ {1, . . . , d} all coordinates

z̃
(k)
n+j in the sum on the left hand side are zero by definition.

Hence (i) – (iv) show that except for one strict inequality all other inequalities are actually
equations. �

Proposition 3.6 Let N ∈N and k ∈ Id
N . The transformation R̃(N) applied to the corner

points z̃(k) of the Dale Polytope Dd
N yields the set of unit vectors, i. e.

R̃(N)(z̃(k))j =

{
1 for j = k
0 otherwise.

Proof. The Dale Polytope Dd
N is characterized by K =

(
N+d

d

)
inequality conditions. At

each corner point z̃(k) exactly K−1 of these conditions are active. We know, because of the
proof of Theorem 3.5, that

∑
j∈Id

N

R̃(N)(z̃(k))j = 1 and that for K − 1 different multiindices

j ∈ Id
N :

(4̃N−Σ(j)
z̃(k))j = 0,

i. e.

R̃(N)(z̃(k))j =

[
N

j

]
(4̃N−Σ(j)

z̃(k))j = 0

for all but one multiindex m ∈ Id
N . For this particular index m the equation

R̃(N)(z̃(k))m = 1
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holds. But

R̃(N)(z̃(k))k =

[
N

k

]
(4̃N−Σ(k)

z̃(k))k

=

[
N

k

] ∑
j∈Id

N−Σ(k)

[
N − Σ(k)

j

]
(−1)j z̃

(k)
k+j

=

[
N

k

] [
N − Σ(k)

0

]
z̃

(k)
k

=

[
N

k

] [
N − Σ(k)

0

] [
N

k

]−1 [
N − Σ(k)

0

]
= 1.

since, by definition of z(k), all other terms of this sum disappear. �

Similar to the case of the Hausdorff Polytope we may interpret the image of R̃(N) of the
corner point z̃(k) as the Dirac measure at the point (k1

N
, . . . , kd

N
) and the range R̃(N)(Dd

N)

as the set of all discrete probability measures on the set of points {( j
N

)}j∈Id
N
.

4 Numerical examples

The examples to be considered in this section are uncontrolled diffusion processes. To
make the exposition self-contained, we briefly recapitulate the formulation of the LP
approach to exit time problems of Markov processes; see Kurtz and Stockbridge (1998)
for an exposition of the general case of controlled processes.

Let X = {Xt}t≥0 be a Markov process on R
d with X0 = x0 and generator A; let D(A)

denote the domain of the generator. We shall partition the states of the process, Ω,
into two disjoint regions, a bounded open region Ω0 and a set Ω1. For simplicity of
the exposition we assume that Ω0 ⊂ [0, 1]d; the general case can be reduced to the
special one by a change of variables. Let τ denote the first time X hits Ω1. So we may
consider the set Ω1 as the stopping region for the process X. For the case of a diffusion
process it is convenient to choose Ω1 as the boundary of Ω0. Since we are interested in
the distribution of τ we shall explain how to compute upper and lower bounds for the
moments of the random variable τ . Since the formulation of the LP approach for the
mean exit time is simpler than the formulation for higher moments we begin with the
simpler case; afterwards we extend the formulation to higher moments.

The basic fact which underlies the LP approach is that for each f ∈ D(A),

f(Xt)− f(X0)−
t∫

0

Af(Xs) ds

is a martingale and, if τ has finite expectation, the martingale property implies the equa-
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tion

E[f(Xτ)]− E[f(X0)]−E


 τ∫

0

Af(Xs)ds


 = 0.(27)

Define the occupation measure µ0 and the exit distribution µ1 by

µ0(B) = E


 τ∫

0

IB(Xs) ds


 and µ1(B) = P (Yτ ∈ B)

for Borel sets B. It then follows, since X0 = x0, that Equation (27) can be written as

〈f, µ1〉 :=

∫
Ω1

f(x) µ1(dx) = f(x0) +

∫
Ω0

Af(x) µ0(dx) =: f(x0) + 〈Af, µ0〉.(28)

We formally define the adjoint operator A∗, µ 7→ A∗µ, by

〈f, A∗µ〉 := 〈Af, µ〉,
for all f ∈ D(A), and use the shorthand writing

µ1 − δx0 − A∗µ0 = 0,(29)

where δx0 denotes the Dirac measure at x0, to express Equation (28). The results in Kurtz
and Stockbridge (1998) imply that for each µ0 and µ1 which satisfy Equation (29) – to
be understood in the sense of (28) – there is a process X and an exit time τ for which
Equation (27) holds. Thus Equation (29) characterizes the occupation measure µ0 and the
exit distribution µ1 of a Markov process starting at x0 and having generator A. Assuming
that the constant function 1l(x) ≡ 1 is an element of the range of A, Equation (29) implies
that the mean exit time can be described as the value of two infinite dimensional linear
programs which have but one feasible solution (µ0, µ1), viz.

Ex0[τ ] = inf
µ0,µ1≥0



∫
Ω0

µ0(dx)

∣∣∣∣∣∣ µ1(Ω1) = 1 and Equation (28) holds for all f ∈ D(A)




= sup
µ0,µ1≥0



∫
Ω0

µ0(dx)

∣∣∣∣∣∣ µ1(Ω1) = 1 and Equation (28) holds for all f ∈ D(A)


 .

More generally, if R, l resp., are bounded measurable functions on Ω1, Ω0 resp., using the
shorthand writing (29), we may write

Ex0


R(Xτ ) +

τ∫
0

l(Xs) ds


 = inf

µ0,µ1≥0
{〈R, µ1〉+ 〈l, µ0〉 | 〈1l, µ1〉 = 1, µ1 − A∗µ0 = δx0}

= sup
µ0,µ1≥0

{〈R, µ1〉+ 〈l, µ0〉 | 〈1l, µ1〉 = 1, µ1 − A∗µ0 = δx0} .(30)
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It needs to be stressed that for exit time problems the linear programs (30) are actually
an artifact since the constraints uniquely determine the feasible pair (µ0, µ1). While this
is true for the infinite dimensional problems (30) this is no longer the case for the finite
dimensional approximating LPs, see below.

Next, if R and l are polynomials, i.e.

R(x) =

nR∑
j=0

rjx
j , l(y) =

nl∑
j=0

λjy
j

for x ∈ Ω1, y ∈ Ω0 and multiindices nR and nl, and A maps monomials onto polynomials,
e.g. for f(x) = xk , k a multiindex, there exist nk and coefficients ckj

, 0 ≤ j ≤ nk, such
that

Af(x) =

nk∑
i=0

ckj
xj ,

if Ω1 is a bounded set and moment sequences on Ω0 and Ω1 can be characterized by linear
inequalities then the infinite dimensional LPs (30) are equivalent to infinite dimensional
LPs whose variables are moment sequences.

Using but finite sequences and a finite number of the characterizing inequalities as con-
straints will determine finite dimensional linear programs whose values provide upper and
lower bounds on the expected value which is to be computed. For instance, assuming R
and l to be polynomial functions defined on [0, 1]d, A the generator of a diffusion with
polynomial coefficients, Ω0 = (0, 1)d, Ω1 = [0, 1]d\(0, 1)d and choosing the Hausdorff
Conditions up to a given order n the following finite dimensional LPs provide bounds on
the quantity of interest, i.e.

ϕ
n
≤ Ex0


R(Xτ ) +

τ∫
0

l(Xs) ds


 ≤ ϕ̄n,(31)

where

ϕ̄n := max
z(0), z(1)

{
nR∑
j=0

rjz
(1)
j +

nl∑
j=0

λjz
(0)
j

∣∣∣∣∣ z(0) ∈ H̃d
n, z(1) ∈ Kd

n,

and for all k such that nk ≤ n : z
(1)
k −

nk∑
j=0

ckj
z

(0)
j = xk

0

}

and

ϕ
n

:= min
z(0), z(1)

{
nR∑
j=0

rjz
(1)
j +

nl∑
j=0

λjz
(0)
j

∣∣∣∣∣ z(0) ∈ H̃d
n, z(1) ∈ Kd

n,

and for all k such that nk ≤ n : z
(1)
k −

nk∑
j=0

ckj
z

(0)
j = xk

0

}
.
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Note, each vector z(1) ∈ Kd
n is the convex combination of scaled elements of Hausdorff

Polytopes associated with (d − 1)-dimensional hypercubes. Since for exit time problems
the total mass of the corresponding occupation measure is typically different from one,
the vectors z(0) are also scaled versions of elements – this time – of d-dimensional Haus-
dorff Polytopes. For the 2-dimensional example below, see Example 4.1, our LP-code
incorporates the corner point formulas for H2

n only once, while we use the 1-dimensional
formulas four times (for each side of the unit square).

The numerical examples below will demonstrate that for reasonably large values of n the
difference between ϕ̄n and ϕ

n
will typically be small. In earlier publications, e.g. Helmes,

Röhl, and Stockbridge (2001), we have implemented the requirements z(0) ∈ H̃d
n and

z(1) ∈ Kd
n using Inequalities (8) or (9) instead of the corner point formulas; actually, to

increase numerical stability we usually used the recursive definition of iterated differences,
i.e. (3), and (8). Such implementations result in large programs, whose size and run times
restrict the values of n. For typical twodimensional problems, e. g. the computation of
the mean exit time of a twodimensional Brownian motion from a square, cf. Example 4.1
below, we took n = (M, M), M ≤ 14. But larger values of M provide better bounds
on E[τ ]. Larger values of M become a possibility when the corner point formulas, cf.
Sections 2 and 3, are used. The following examples will show that by using the corner
point formulas and larger values of M the resulting LPs not only provide better bounds
than the old programs do, but also require fewer iterations.

Finally, to compute bounds for higher moments of the exit times of such processes we
need to augment the time coordinate to the state and consider the time-space generator
Ã,

Ãf(t, x) =
∂f

∂t
(t, x) + Af(t, x),

acting on functions f depending on t and x. The measures µ0 and µ1 are now defined by

µ0(Γ) = Ex0


 τ∫

0

IΓ(s, Xs)ds


 and µ1(Γ) = Px0 ((τ, Xτ ) ∈ Γ)

for subsets Γ of [0,∞) × Ω. The extension of the fundamental Equation (28) takes the
form ∫

R+×Ω1

f(s, x)µ0(ds× dx)− f(t0, x0)−
∫

R+×Ω0

[
∂f

∂t
(s, Xs) + Af(s, Xs)

]
= 0(32)

for all functions f such that f(t, ·) ∈ D(A), and f(·, x) is continuously differentiable in t
and vanishes at ∞. Note that the n-th moment of the exit time is given by

Ex0 [τ
n] = n

∫
R+×Ω0

sn−1µ0(ds× dx).

It follows from the general theory (see Kurtz and Stockbridge (1998)) that, as in the
case of the mean exit time, measures µ0 and µ1 which satisfy (32) characterize processes
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having generator A up to the exit time τ . But while the process {Xt}t≥0 evolves on a
bounded set the process {t, Xt}t≥0 does not. To mimick the LP approach for X, i. e.
exploit the characterization of µ0 and µ1 by their moments, we truncate the unbounded
time domain R

+ to a finite interval [0, T ]. This introduces an additional approximation
into the method in all those cases where τ 6= τ ∧ T . Rather than the exit time τ , the
analysis will evaluate the distribution of τ ∧T . But, by the assumption imposed on τ , for
large values of T the difference between the exit time and the truncated exit time will be
zero with high probability. Moreover, there are many problems, cf. Example 4.3 below,
for which there is a natural bound T .

Example 4.1 Twodimensional Brownian motion on the unit square:

Let (Xs, Ys) =
(
x0 + W

(1)
s , y0 + W

(2)
s

)
, where x0, y0 ∈ (0, 1) and W =

(
W

(1)
s , W

(2)
s

)
is a

twodimensional standard Brownian motion process. The generator of the process (Xs, Ys)
is given for f ∈ D(A) = {f | f twice continuously differentiable on R

2} by

Af(x, y) =
1

2

∂2f

∂x2
(x, y) +

1

2

∂2f

∂y2
(x, y).

In this example we consider the exit time of the process from the bounded domain Ω0 =
(0, 1)× (0, 1); the boundary consists of four parts Γ(b) = [0, 1] × {0}, Γ(t) = [0, 1]× {1},
Γ(`) = {0}× (0, 1) and Γ(r) = {1}× (0, 1). Therefore, we need to work with five measures:
the occupation measure µ0 of the process in the open unit square, and measures on the
four boundary parts which together comprise the exit distribution µ1 of the Brownian
motion process from the unit square. We associate with each boundary measure elements
of the onedimensional Hausdorff Polytope of order M , while the occupation measure is
associated with elements of the twodimensional Hausdorff Polygon, i. e. H̃2

(M,M).

Using the corner point formula (12) the constraints of the associated finite dimensional
LP problems can be expressed as follows. Let z = {zij}M

i,j=0 ∈ H̃2
(M,M) be associated

with the occupation measure µ0 on Ω0 and let z(b) = {z(b)
i }M

i=0, z(t), z(`), z(r), being
associated with the exit distribution on Γ(b), Γ(t), Γ(`) and Γ(r), be elements of H1

M . Then
for 0 ≤ m, n ≤ M ,

0 =
m(m− 1)

2
zm−2,n +

n(n− 1)

2
zm,n−2

+ xm
0 yn

0 − 0nz(b)
m − 1nz(t)

m − 0mz(`)
n − 1mz(r)

n ,

and all the z-vectors are convex combinations of the corner points described in Section 2.

Table 1 reports our results on the mean exit time for a sample of initial values. Because
of the symmetry of the problem we only report the values for initial values in the first
quarter of the unit square. The numbers in parantheses are those which we reported in
Helmes, Röhl, and Stockbridge (2001). There we used the Hausdorff Conditions expressed
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in terms of the Inequalities (9). This restricted our choice of M ; typically, M was chosen
between 11 and 14 resulting in LPs which required approximately 13000 simplex iterations
and ∼ 25 minutes on an Ultra Sun 10/300 using AMPL/CPLEX 6.5. The corner point
formula allows us to choose M ∼ 30 which increases the accuracy of the values while
actually requiring fewer iterations, ∼ 10000 simplex iterations, and less time on the same
machine. The numbers in the column “exact value” are based on the formula for the mean
exit time of Brownian motion from a square, cf. Helmes, Röhl, and Stockbridge (2001).

y0 Lower Bound Upper Bound exact value
0.5 0.14728996 0.14745482 0.147340

(0.14693254) (0.14801697)
0.4 0.14224363 0.14240372 0.142310

(0.14189854) (0.14299119)
0.3 0.12669597 0.12688587 0.126760

(0.12635959) (0.12741458)
0.2 0.09934259 0.09950494 0.099396

(0.09904923) (0.10002026)
0.1 0.05805426 0.05814112 0.058084

(0.05784276) (0.05844282)

Table 1: Bounds on the mean exit time of twodimensional Brownian motion from the
unit square as a function of y0 using corner point formulae; x0 = 0.5, M = 30.

We have observed that the average of the bounds usually give good estimates for the
quantity of interest. In Table 2 we report the bounds and compare the estimates with
the exact values for a different set of initial values. Note that the numerical values nicely
reflect the symmetry of the problem.

y0 Lower Bound Upper Bound Estimate exact value
0.9 0.04171744 0.04183004 0.041774 0.041761
0.8 0.06924839 0.06936745 0.069308 0.069294
0.7 0.08664556 0.08674721 0.086696 0.086682
0.6 0.09627489 0.09637400 0.096324 0.096340
0.5 0.09936082 0.09946310 0.099412 0.099396
0.4 0.09626428 0.09640394 0.096334 0.096311
0.3 0.08663224 0.08678911 0.086711 0.086682
0.2 0.06921902 0.06943718 0.069328 0.069294
0.1 0.04168128 0.04189773 0.041790 0.041761

Table 2: Bounds and estimates of the mean exit time of twodimensional Brownian motion
from the unit square as a function of the initial position using corner point formulae;
x0 = 0.8, M = 30.
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Example 4.2 Twodimensional Brownian motion on the unit triangle:

Let (Xs, Ys) be again twodimensional Brownian motion but, in contrast to Example 4.1,
restricted to S2. This time the variables of the LP model comprise the occupation measure
on the interior of S2 and three boundary measures, µ(`), µ(b) and µ(d) resp., on the left,
bottom and diagonal boundary resp. The dynamics of the process and the geometry of
the state space is reflected in the following equality constraints, where z̃ ∈ D̃2

M and z(`),
z(b) and z(d) ∈ H̃1

M are again expressed as multiples of convex combinations of the extreme
points of D2

M and H1
M :

0 =
m(m− 1)

2
z̃m−2,n +

n(n− 1)

2
z̃m,n−2

+ xm
0 yn

0 − 0nz(b)
m − 0mz(`)

n −
n∑

k=0

(
n

k

)
(−1)kz

(d)
k+m,

for m, n ≥ 0; m + n ≤ M .

Table 3 displays the bounds on the mean exit time of Brownian motion from the unit
triangle for a sample of initial values. We compare the bounds and the estimates based
on the LP-values with the numerical results, labeled “NE”, obtained by using the Matlab
PDE-Toolbox. The initial values we have choosen in Table 3 are part of the grid points
generated by Matlab’s PDE-solver.

x0 y0 lower upper average NE
bound bound value

0.187418 0.576648 0.035876 0.035899 0.035888 0.035934
0.539775 0.079868 0.024828 0.024845 0.024837 0.024837
0.563342 0.320957 0.028271 0.028297 0.028284 0.028277
0.369505 0.540196 0.024245 0.024266 0.024255 0.024275
0.768800 0.153916 0.011122 0.011125 0.011124 0.011108
0.102203 0.853922 0.004365 0.004366 0.004366 0.004363
0.433926 0.356116 0.046865 0.046911 0.046888 0.046884
0.298395 0.651147 0.012590 0.012599 0.012595 0.012594

Table 3: Bounds on the mean exit time of twodimensional Brownian motion from the
unit triangle as a function of (x0, y0) using corner point formulae; M = 30.

Note that for the case of the unit square the Matlab results are also only accurate up to
4 digits if the mesh which is automatically generated by the PDE-solver is refined but
twice. Of course, precision does increase if a finer mesh is used.

Example 4.3 Onedimensional Brownian motion with a moving boundary:
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Let Z = {t, Xt}t≥0, where {Xt}t≥0 denotes onedimensional Brownian motion starting at
x0 = 0.5. We consider the process X on [0, 1] assuming that the right boundary point
{1} is moving to the left at constant speed 1. Let τ denote the first time when Xτ = 0
or Xτ = 1− τ . This description of the situation is equivalent to Z starting at (0, x0) and
evolving on the unit triangle until Z hits either the diagonal {(t, x) | t + x ≤ 1} or the
bottom part of the boundary [0, 1]× {0}. The generator A of Z is given by

Af(t, x) =
∂f

∂t
(t, x) +

1

2

∂2f

∂x2
(t, x) .

The dynamics of the process Z (up to the time of stopping) and the geometry of the state
space determine the following equality constraints, where again z̃ ∈ D̃2

M and z(b) and
z(d) ∈ H̃1

M :

0 = mz̃m−1,n +
1

2
n(n− 1)z̃m,n−2 + 0mxn

0 − 0nz(b)
m −

n∑
k=0

(
n

k

)
(−1)kz

(d)
k+m,

for m, n ≥ 0; m + n ≤ M .

Table 4 illustrates the dependence of the accuracy of the bounds on higher moments of
τ on the parameter M . We report bounds for moments up to order 4 for M = 10 and
M = 20.

moments M lower upper mean
bound bound

0th 10 0.17163196 0.17163199 0.17163198
20 0.17163198 0.17163198 0.17163198

1st 10 0.02013079 0.02013089 0.02013084
20 0.02013083 0.02013083 0.02013083

2nd 10 0.00390564 0.00390591 0.00390578
20 0.02013083 0.02013083 0.02013083

3rd 10 0.00098930 0.00098997 0.00098963
20 0.00098961 0.00098961 0.00098961

4th 10 0.00029713 0.00029874 0.00029793
20 0.00029786 0.00029786 0.00029786

Table 4: Higher moments of the exit time of time-space Brownian motion from the unit
triangle for M = 10 and M = 20; (t0, x0) = (0, 0.5).
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