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Estimating the Size of Branch-and-Bound Trees

Gregor Hendel∗ Daniel Anderson† Pierre Le Bodic‡

Marc E. Pfetsch�

April 4, 2020

Abstract

This paper investigates the estimation of the size of Branch-and-Bound
(B&B) trees for solving mixed-integer programs. We �rst prove that the
size of the B&B tree cannot be approximated within a factor of 2 for gen-
eral binary programs, unless P = NP. Second, we review measures of
the progress of the B&B search, such as the gap, and propose a new mea-
sure, which we call leaf frequency. We study two simple ways to transform
these progress measures into B&B tree size estimates, either as a direct
projection, or via double-exponential smoothing, a standard time-series
forecasting technique. We then combine di�erent progress measures and
their trends into nontrivial estimates using Machine Learning techniques,
which yields more precise estimates than any individual measure. The
best method we have identi�ed uses all individual measures as features
of a random forest model. In a large computational study, we train and
validate all methods on the publicly available MIPLIB and Coral general
purpose benchmark sets. On average, the best method estimates B&B
tree sizes within a factor of 3 on the set of unseen test instances even
during the early stage of the search, and improves in accuracy as the
search progresses. It also achieves a factor 2 over the entire search on
each out of six additional sets of homogeneous instances we have tested.
All techniques are available in version 7 of the branch-and-cut framework
SCIP.

1 Introduction

Simultaneous advancement of theory, algorithms, implementation and computer
hardware has, in the span of a few decades, allowed for stunning progress in the
ability to solve real-world problems encoded as Mixed-Integer Programs (MIPs),
see for example [36, 2]. However, in spite of these tremendous performance
improvements, users of MIP solvers still face the seemingly irremediable curse
that comes with solving NP-hard combinatorial problems: it is very hard to
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predict how long a solver will take to solve an instance by any other means than
to just wait for termination. Since the core algorithm of all state-of-the-art MIP
solvers is Branch-and-Bound (B&B) [32], the main problem is that of estimating
the size of the B&B tree. In this article, we focus on online tree size estimation,
i.e., during the execution of the algorithm.

The �rst method to estimate search tree size was proposed by Knuth [30]. It
works by repeatedly sampling paths of the search tree in a Monte Carlo fashion.
Several extensions have been proposed based on partial backtracking [43] and
on strati�ed sampling [12, 35]. All of these methods are carried out o�ine, i.e.,
before the actual search begins. In contrast, recent work, including the present
paper, has focused on online estimation methods. These include the Weighted
Backtrack Estimator [29], the Pro�le Estimation [14] and the Sum Of Subtree
Gaps [40], which we use as reference methods for our computational study. They
are explained in Sections 3 and 4.

Several Machine Learning methods have recently been proposed in the con-
text of solving mixed integer programs [28, 5, 4, 27, 7, 22], for example, to com-
pute approximations of strong branching decisions or to control primal heuris-
tics. Fischetti et al. [16] proposed to train classi�ers to predict at speci�c points
in time whether a solution process will terminate before the time limit.

In our present work, we treat the more general problem of online tree size es-
timation over the entire duration of the search process. The main contributions
are:

◦ a proof that approximating the size of the B&B tree within a factor of 2 is
impossible, unless P = NP (Theorem 4);

◦ a review of state-of-the-art methods which estimate search progress and B&B
tree size online;

◦ a new method, based on the frequency of leaf nodes in the B&B tree, which
approximates the search progress;

◦ new tree-size estimation methods applying Machine Learning techniques to
combine individual methods;

◦ an experimental comparison of all methods.

The experimental results show that at the start of the search, the best ML
method improves upon the best individual method in estimation accuracy by a
considerable margin and by a factor of 10 compared to a method based on the
gap. An e�cient implementation and integration of these algorithms is available
in SCIP, an academic state-of-the-art branch-and-cut framework. In its newest
release, SCIP 7 displays an estimate of the search progress as a percentage in a
new column of the output.

This article is structured as follows. The main theoretical result of this
paper, namely on the hardness of tree size estimation, is proven in Section 2.
Section 3 introduces the necessary notation for the presentation of search tree
estimates. Search tree estimates which are based on approximations of the
fraction of already solved nodes and/or time series forecasting are explained in
Sections 4 and 5, respectively. We present an o�ine simulation to calibrate
time series forecasting in Section 6. In Section 7, we show how to combine the
tools from the previous sections via Machine Learning techniques. Afterwards,
we perform computational experiments to compare all discussed methods on
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Algorithm 1: Speci�c Branch-and-Bound algorithm BVP for solving
VP
Input: undirected simple graph G = (V,E)
Output: optimal value of the vertex packing problem for G

1 T = (VLP), L = −∞;
2 while T 6= ∅ do

3 remove T from front of T ;
4 compute vertex solution x∗ ∈ {0, 1, 1

2} to VLP at T which
maximizes the number of integer components;

5 if x∗ exists and 1>x∗ > L then

6 if x∗ ∈ {0, 1}V then

7 L = 1>x∗;
8 else

9 choose any {u, v} ∈ E with x∗u = x∗v = 1
2 ;

10 create two new nodes Tu and T v in which xu and xv are
�xed to 0, respectively;

11 add Tu and T v at the back of T ;

a general MIP instance set in Section 8, and on homogeneous instance sets in
Section 9.

2 Hardness of Estimating the Size of the Branch-

and-Bound tree

In this section, we consider a B&B algorithm for the Vertex Packing (VP)
problem and show that if there existed a polynomial time oracle that estimates
the size of B&B trees within a factor 2, then the optimal value of a VP instance
could be determined exactly. Since computing the optimal value of VP is NP-
complete [18], this would in turn imply P = NP.

2.1 A Speci�c Branch-and-Bound for the Vertex Packing
Problem

Given a simple and �nite undirected graph G = (V,E), consider the following
binary program for (unweighted) vertex packing:

max
x

∑
v∈V

xv (1a)

s.t. xu + xv ≤ 1 ∀ {u, v} ∈ E (1b)

x ∈ {0, 1}V . (1c)

This problem is also known as the Independent or Stable Set problem. The
Linear Programming (LP) relaxation of (1) will be denoted by VLP.

To prove our complexity result, we need a speci�c LP-based B&B algo-
rithm BVP to solve VP; see Algorithm 1. In each node, the algorithm computes
a particular optimal vertex solution to the LP-relaxation using the techniques
of Nemhauser and Trotter [38]. They provide a strongly polynomial algorithm
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to compute an optimal vertex solution based on a bipartite graph. Moreover,
by iteratively �xing components that assume value 1 and resolving VLP on a
reduced graph, they reach a solution in which the set of components with integer
values is maximal and all fractional values are 1

2 . Picard and Queyranne [42]
proved that this actually yields a solution in which this set is maximum and
unique. The main argument is that vertices of VLP are {0, 1, 1

2}-valued [37].
Algorithm 1 chooses the branching candidates in a non-standard way: the

algorithm will branch on a disjunction xu = 0 ∨ xv = 0, where {u, v} ∈ E.
These disjunctions are also satis�ed by any feasible solution to VP, but are � by
design � not exclusive. If the current optimal solution x∗ to VLP is not integral,
there exists a component with x∗u = 1

2 . Then there exists an edge e = {u, v}
which is tight, i.e., x∗u+x∗v = 1, otherwise x∗ would not be optimal. This implies
x∗v = 1

2 and thus the edge in Step 9 exists.
Algorithm 1 uses a breadth-�rst node selection algorithm, which in the case

of BVP is equivalent to a best-bound node selection. The search could thus stop
at the �rst node whose VLP solution is feasible for VP (by integrality of the
objective function), but for convenience we suppose that all nodes at that depth
are processed and pruned by LP bound.

2.2 Properties of Algorithm BVP

Proposition 1. Branching improves the dual bound by exactly 1
2 .

Proof. As mentioned above, the solution obtained at every node is half-integral
and the number of integer values is maximal. Thus, changing any fractional
variable to 0 changes the dual bound. Therefore, the dual bound di�erence
between a parent node and its children must be at least 1

2 . It is also at most
1
2 ,

as taking the VLP solution of the parent node and setting any fractional variable
to 0 maintains feasibility.

Proposition 2. At termination of BVP, all leaves have the same depth and all

optimal solutions lie at these leaves.

Proof. There always exists an optimal solution to VP, so at termination of BVP,
at least one optimal solution has been found. By design of BVP, optimal solu-
tions can only be found if a VLP solution at a node is integral. This node would
then be a leaf of the �nal B&B tree. Let d denote its depth. By Proposition 1,
all nodes at the same depth have the same dual bound. Since the node selection
strategy is Breadth-First Search, all leaves of the current B&B tree have depth
d or d− 1. All leaves at depth d can be pruned by bound and become leaves of
the �nal B&B tree. Moreover, all leaves at depth d− 1 need to be branched on,
and their children are pruned by bound (but provide all other optimal solutions
if they exist).

Proposition 3. Let zVP and zVLP be the optimal VP and VLP values, respec-

tively. Solve VP to optimality with BVP, and let k denote the number of nodes

of the B&B tree at termination of BVP. Then zVP = zVLP− 1
2 (log2(k+ 1)− 1).

Proof. By Proposition 2, k+1 is a power of 2, the depth of all leaves at optimality
is log2(k + 1)− 1, and at at least one of them, the VLP solution is feasible for
VP. Since branching decreases the dual bound by 1

2 at every depth after the
root node (Proposition 1), all leaves have dual bound zVLP− 1

2 (log2(k+ 1)−1),
since zVLP is the optimal value of VLP at the root node.
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2.3 Hardness Result

Consider a B&B algorithm B and an instance I that is solvable by B. Consider
an algorithm that computes an estimate O(B, I) ∈ Z+ for the total number of
nodes N(B, I) produced by B on I. We call this algorithm a c-approximation

algorithm for a constant c ≥ 1 if

◦ N(B, I)/c ≤ O(B, I) ≤ cN(B, I),

◦ O(B, I) can be computed in polynomial time in the encoding size of I.

Theorem 4. There is no c-approximation algorithm for c ≤ 2, unless P = NP.
Proof. Assume that O(B, I) provides a c-approximation for B&B algorithm
B = BVP described in Section 2.1 and instances I of VP. By Proposition 3,
it su�ces to compute zVLP and the number of nodes of BVP to determine
the optimal value of the VP instance. Indeed, let k = N(BVP, I) and de�ne
` = 2(zVLP − zVP) + 1 ∈ Z+. Then

k = 22(zVLP−zVP)+1 − 1 = 2` − 1.

Therefore, k/c ≤ O(B, I) holds if and only if

(2`−1)/c ≤ O(B, I) ⇔ ` ≤ log2(cO(B, I)+1) = log2(c)+log2(O(B, I)+ 1
c ).

Similarly, c k ≥ O(B, I) holds if and only if

c(2`−1) ≥ O(B, I) ⇔ ` ≥ log2( 1
cO(B, I)+1) = − log2(c)+log2(O(B, I)+c).

If c = 1, then O(B, I) = k, which directly allows to compute zVP. Otherwise,
we have 1

c < 1 < c, which implies:

− log2(c) + log2(O(B, I) + 1) < ` < log2(c) + log2(O(B, I) + 1).

De�ning α := zVLP + 1
2 −

1
2 log2(O(B, I) + 1), this is equivalent to

− log2(c) < `+ 2 (α− zVLP − 1
2 ) < log2(c)

⇔ − log2(c) < 2(zVLP − zVP) + 1 + 2 (α− zVLP − 1
2 ) < log2(c)

⇔ − log2(c)

2
< α− zVP <

log2(c)

2
.

Since c ≤ 2, log2(c) ≤ 1, implying that − 1
2 < α − zVP < 1

2 , i.e., zVP = bαe,
which shows that k can be computed exactly from O(B, I) and zVLP if c ≤ 2.

Therefore the existence of a c-approximation algorithm providing an estimate
for all B&B algorithms B and all MIP instances I implies that zVP can be
computed in polynomial time in the size of I. But since computing zVP is
NP-hard, this would imply P = NP.

Note that this result uses only the NP-hardness of VP. It is known that
VP is also hard to approximate [21]. It may be possible to strengthen the
inapproximability result of Theorem 4 using this fact, though we have not been
able to do so with our current approach.

Finally, note that the c-approximation we study is o�ine, but it is allowed
to solve polynomially many nodes of B. Therefore, if there existed an online 2-
approximation, it would �rst need to visit super-polynomially many nodes of B,
unless P = NP. Despite these pessimistic results, in the remaining part of the
paper, we nevertheless aim to develop practical tree size estimation algorithms,
which are consequently online, i.e., they improve their approximation during
the runtime of the B&B algorithm.
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3 B&B Search States and Search Completion

In this and subsequent sections, we consider mixed-integer programs

c∗ := min {c>x : Ax ≥ b, x ∈ Znz ×Rn−nz}. (P)

Here, c ∈ Rn, A ∈ R`×n, b ∈ R`, and nz > 0 is the number of of integrality
restrictions of the variables.

We assume familiarity with the B&B algorithm [32, 15] (described in Ap-
pendix A for completeness). For iteration (number of solved nodes) k = 0, . . . ,m,
where m is the total size of the search tree at termination, we record the search
state Tk, which is de�ned by the following data:

1. the set Jk of inner nodes of the search tree;
2. the set Fk of �nal leaves of the search tree, i.e., nodes that were infeasible, or

whose LP relaxation was mixed-integer feasible, or nodes that were pruned;
3. the set Lk of open nodes of the search, which are still to be processed;
4. the primal bound Πk, i.e., the value of the best solution until iteration k;
5. a dual bound (lower bound) for each node πk : Jk ∪Fk ∪Lk → R∪{−∞,∞}.

Throughout the paper, we assume 2-way branching decisions, which is most
common in state-of-the-art MIP solvers. Therefore, the explored search tree is
binary, and at each search state Tk, k ≥ 0, the relation

2 · (|Fk|+ |Lk|)− 1 = |Vk| (2)

holds, where we de�ne Vk := Lk ∪ Jk ∪ Fk. Furthermore, since a solved node
enters either Fk or Jk, the relations |Fk|+ |Jk| = k and therefore |Vk|− |Lk| = k
hold at each search state. Note that |Vm| = m.

De�nition 5 (Search Completion). Let T = T0, . . . , Tm be a search state se-

quence. For every state Tk, k ∈ [m], in T , we de�ne the search completion as

the fraction of solved nodes compared to the size of the �nal tree

γk =
k

m
=
|Fk|+ |Jk|
|Vm|

. (3)

In real optimization scenarios, m and thus γk are only known after the
Branch-and-Bound algorithm terminated. In Sections 4 and 5 we review mea-
sures that can be used to estimate γk and m online.

In practice, the search completion γk also approximates the runtime of a
MIP solver quite well. For the data set used in Sections 7 and 8, we show in
Figure 1 the close correspondence between the relative time of the overall search
and the search completion γk. To this end, Figure 1 depicts the data density

of the observed di�erences between the relative time, i.e., the time normalized
to [0, 1], and the search completion in our data set. A high data density at
a coordinate on the horizontal axis re�ects a high number of observed records
near this coordinate. The density has a peak at zero, in which case the search
completion approximates the actual fraction of time exactly. Since deviations
from zero are mostly positive, this means that the search completion is slightly
pessimistic as it often underestimates the remaining time. This can be explained
by the fact that solvers do not spend their entire time on the tree search itself,
but also spend signi�cant time on presolving and root node processing. Hence,
it seems generally reasonable to use the search completion γk as a surrogate for
the runtime.
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Figure 1: Density approximation of the di�erence between the relative time of the
search and the search completion γk

4 Approximations of Search Completion

Let Tk for k ∈ [m] denote a search state during the B&B algorithm. Any
approximation γ̂k of the search completion γk from De�nition 5 provides a simple
way to estimate the search tree size as

m̂ :=
k

γ̂k
, (4)

since k is equal to the number of solved nodes at Tk. Clearly, close approxima-
tions of γk can be expected to give accurate estimates of the �nal tree size.

In the following, we review four approximate measures of γk and the related
weighted backtrack estimation [29]. We start with the well-known gap.

4.1 Gap

Every B&B solver reports the relative gap between the primal and dual bound in
one form or another, which makes the gap the most common progress measure
for B&B. Given a search state Tk, we extend the de�nition of the dual bound
πk to subsets of nodes V ′ ⊆ Vk by setting

πk(V ′) := min
v∈V ′

πk(v).

The dual bound πk(Vk) at Tk is called the global dual bound. We use the standard
gap de�nition for minimization problems

δ(Tk) = δ(Tk, Vk) :=


1, if Πk =∞,
0, if Πk ≤ πk(Vk),

min
{

1, |Πk−πk(Vk)|
max{|Πk|, |πk(Vk)|}

}
, otherwise.

(5)
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The gap monotonically decreases from 1 = δ(T0) to 0 = δ(Tm). Therefore,
taking 1− δ(Tk) yields a monotone approximation of γk.

In the absence of any dedicated progress measure in the output of MIP
solvers, the gap serves as the de facto progress measure. However, as we will see
in our experiments, it provides the poorest approximation of all search progress
measures de�ned in this section. One shortcoming of the gap is that, if the
primal bound does not change, only improvements to the global dual bound
are re�ected in the gap. For instances for which the di�culty lies in �nding an
optimal solution, or towards the end of the B&B search, where the absolute gap
is small, changes in the global dual bound occur very infrequently. The Sum
of Subtree Gaps, presented in the next section, has been designed to take into
account the change of dual bound at every node, rather than only the change
of the worst dual bound.

4.2 Sum of Subtree Gaps (SSG)

The Sum of Subtree Gaps (SSG) has been proposed by Özalt�n [40] as a better
runtime estimate than the gap. Consider a family V = {Ṽ1, . . . , Ṽp} of disjoint
subsets of Vk, for which we de�ne

fk(V) :=
∑
Ṽ ∈V

δ(Tk, Ṽ )

as the (unscaled) sum of subtree gaps, and let

predΠ(k) := min {k′ ∈ [k] : Πk′ = Πk}

denote the last iteration of B&B up to k in which the primal bound improved.
The SSG uses a special family V, namely the

∣∣LpredΠ(k)

∣∣ subtrees rooted at the
open nodes LpredΠ(k) at the time at which the primal bound has improved last.
For v ∈ Vk, let subtree(v) ⊆ Vk denote the set containing v and its descendants.
If v ∈ Fk ∪ Lk, then subtree(v) = {v}. In all other cases, v is an inner node
with at least two descendants. The SSG is de�ned as

σ(Tk) := sk · fk(Vssg(k))

over the disjoint family

Vssg(k) :=
{

subtree(v) : v ∈ LpredΠ(k)

}
with a scaling factor sk de�ned as

sk :=


1, if k = 0,

sk−1, if Πk = Πk−1,

sk−1 · fk(Vssg(k−1))
fk(Vssg(k)) if Πk < Πk−1.

The scaling factor changes every time a new incumbent solution is found to
ensure monotonicity.

Like the gap, the SSG σ(Tk) is monotonically decreasing from σ(T0) = 1 to
σ(Tm) = 0. Therefore, an approximation of search completion based on SSG is
given by

γ̂ssgk = 1− σ(Tk).
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Figure 2: Example search state at termination (m = 9, |F9| = 5, |L9| = 0). We assume
that the tree was traversed from left to right in depth-�rst order. The �nal leaves are
F9 = {4, 5, 6, 8, 9} and internal nodes are J9 = {1, 2, 3, 7}.

One limitation of both the gap and the SSG is that their value is in�nite in
absence of a primal bound, in which case improvements to the (global) dual
bound(s) are not re�ected. The progress measures presented in Sections 4.3, 4.4
and 4.5 are not based on the primal or dual bound. They can thus be used for
feasibility problems and more generally for other tree search algorithms.

4.3 Tree Weight

The tree weight has been �rst used by Kilby et al. [29] as the denominator of
the weighted backtrack estimator (studied in Section 4.4). Its use as a progress
measure was proposed in [6]. This measure assigns to each node v ∈ Vk a weight
2−d(v), where d(v) is the depth of v. Note that every parent weight equals the
sum of the weights of its children. We call

ω(Tk) :=
∑
v∈Fk

2−d(v)

the tree weight at state Tk. At the start of the search, F0 = ∅, thus ω(T0) = 0.
After every �nal leaf node, the tree weight strictly increases and the search ends
at step m with a tree weight of 1 [6]. With those properties, the tree weight ω
can be directly used as approximation of search completion,

γ̂tree weight
k := ω(Tk).

In the running example tree from Figure 2, the leaf weights are w4 = w5 = 0.125
and w6 = w8 = w9 = 0.25. From step 0 to 9, the tree weight therefore assumes
the 6 distinct values ω(T0) = ω(T1) = ω(T2) = ω(T3) = 0, ω(T4) = 0.125,
ω(T5) = 0.25, ω(T6) = ω(T7) = 0.5, ω(T8) = 0.75, ω(T9) = 1.

4.4 Weighted Backtrack Estimation (WBE)

The weighted backtrack estimator (WBE) of Kilby et al. [29] is a projection of
the current tree weight to estimate the number of leaf nodes at completion. To
this end, at search state Tk with positive tree weight ω(Tk) > 0, the weighted
backtrack estimate is computed as

m̂wbe
k := 2 · |Fk|

ω(Tk)
− 1. (6)

9



Table 1: Values of the leaf frequency for the running example in Figure 2

k 1 2 3 4 5 6 7 8 9

|Fk| 0 0 0 1 2 3 3 4 5
λ(Tk) −0.5 −0.25 −0.17 0.13 0.3 0.42 0.36 0.44 0.5

Note that the tree size estimation (6) is not equivalent to the one obtained when
using γ̂tree weight

k = ω(Tk) within (4), which yields

m̂tree weight
k :=

|Fk|+ |Jk|
ω(Tk)

.

One noticeable di�erence is that m̂wbe
k is only sensitive to the creation of �nal

leaves, not open nodes.

4.5 Leaf Frequency

In this subsection we introduce a new progress measure called Leaf Frequency,
based on the well-known observation that due to Equation (2), |Fm| /m ≈ 1/2,
i.e., the �nal leaf nodes comprise about one half of the overall tree at the end of
the search. In order to extend this to a search progress measure at intermediate
search states Tk, we de�ne the leaf frequency as

λ(Tk) :=
1

k

(
|Fk| −

1

2

)
. (7)

The subtraction of 1
2 in the formula above is the necessary correction such that

λ(Tm) = 1
2 at termination. More generally, by combining (2) and the relation

|Vk| − |Lk| = k, we obtain

λ(Tk) =
1

k

(
|Fk| −

1

2

)
=

1

k

(
1

2
(|Vk| − 2 |Lk|+ 1)− 1

2

)
=

1

2
− |Lk|

2k
.

From this equation, we derive that λ(Tk) ≤ 1
2 and that λ(Tk) = 1

2 only for
k = m. Moreover, λ(Tk) ≥ − 1

2 holds for all k and λ(Tk) > 0 after the �rst �nal
leaf, i.e., as soon as |Fk| ≥ 1.

Table 1 lists the leaf frequency for all m = 9 iterations of the running ex-
ample from Figure 2. This example shows that the leaf frequency λ(Tk) is not
necessarily monotone in contrast to the other measures discussed in this section.

We propose to transform the leaf frequency into an approximation of search
completion via

γ̂leaf-freqk = 2 ·max{0, λ(Tk)}.

We prefer this transformation over its alternative λ(Tk) + 1
2 , which has the

disadvantage that it assumes a search completion of at least 50% after the �rst
�nal leaf node, which is often too optimistic.
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5 Estimation of Tree Size via Time Series Fore-

casting

In the last section, we presented approximations of the search completion based
on the four measures gap, SSG, tree weight, WBE, and leaf frequency, which
can be translated into an estimate of the �nal search tree size using (4). In
this section, we present a di�erent approach which uses time series forecasting
for each search progress measure. Double exponential smoothing, presented in
Section 5.1, is also the approach used for runtime estimates with the SSG [40].

5.1 Double Exponential Smoothing (DES)

We consider a time series Y = (yt)t∈K with K ⊆ [m], which represents values
of a suitable measure such as those from the previous section at di�erent steps
during the search. A forecast at an intermediate step t∗ ∈ K uses the available
data y1, . . . , yt∗ to make predictions about the future evolution of Y after t∗.

We use the four measures, tree weight, leaf frequency, gap, or SSG from
Section 4 (not their corresponding search completion approximations). As a
�fth measure, we consider the number of open nodes |Lk|, which is strictly
positive at all intermediate steps 0 < k < m and reaches 0 at k = m. Often,
|Lk| has a unimodal behavior, i.e., it increases during the �rst half of the search
process and decreases during the second half.

Although more complex models of Double Exponential Smoothing (DES)
exist [25], we use a simple variant of DES [23] which estimates the level qt of
the time series, representing a �tted value of yt, and its trend st, which has
the role of a slope. Both are computed as weighted averages of the training
data, with exponentially decaying weights on older observations, as follows. Let
0 < α, β < 1 and denote by q0 and s0 initial level and trend values. For t ∈ K,
DES �ts the level and trend component to the data recursively via

qt = α yt + (1− α)(qt−1 + st−1),

st = β (qt − qt−1) + (1− β)st−1.
(8)

The current level and trend components qt∗ and st∗ are used to compute a linear
forecast of h ∈ N steps into the future as

ŷt∗+h := qt∗ + h · st∗ .

The estimation of the complete tree size m from a forecast at step t∗ simply
consists in predicting the remaining number of steps h∗ of this time series.
Depending on the target value ym of the time series (1 for tree weight, 0.5 for
leaf frequency, 0 for open nodes, SSG, and gap), the smallest number of steps
h∗ is computed such that ŷt∗+h∗ reaches ym. We compute h∗ as

h∗ :=
ym − qt∗
st∗

. (9)

Recall that the leaf frequency and open nodes time series do not necessarily
exhibit a clear monotonicity. Therefore, it may happen that st∗ is zero or has
the wrong sign to reach the target value. A trend component of 0 can also occur
for monotone measures tree weight, gap, and SSG if they keep stalling. In such
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cases, we report twice the number of solved nodes at t∗ as tree size estimation,
according to the intuition that the search has not reached its midpoint if the
leaf frequency has not reasonably stabilized or the number of open nodes has
not started to decrease yet.

5.2 Time Series Steps and Adaptive Resolution

So far, we have left the index set K of the considered time series (yt)t∈K un-
speci�ed. One possibility lies in the full index set K = [m]. In this case, the
tree weight time series, as an example, simply consists of the tree weight values
(ω(Tk))k∈[m] at each search state. Another possible index set is the leaf index

set

Kleaf := {k ∈ [m] : |Fk| = |Fk−1|+ 1} =: {k1, . . . , k|Fm|}.

The leaf index set considers only half as many observations as the full index set.
It always contains the terminal step m. Restricted to the leaf index set, the
tree weight time series becomes strictly monotone, which can be an advantage
for forecasting because the trend component is always positive. Thus, we will
always use the leaf index set K = Kleaf from now on.

DES will assign most of the weight to the most recent individual leaf nodes.
However, the information used by an estimation method at a single leaf can
have a high variance. For instance, in the case of the tree weight, the relative
di�erence between two leaf weights is exponential in the di�erence of their re-
spective depth. We overcome this de�ciency by essentially creating batches of
2r leaves, starting with r = 0, and by adaptively increasing r over time, as more
data becomes available. More precisely, for r ∈ Z≥0 we denote the index set at

resolution 1
2r by

K 1
2r := {k2r , k2·2r , k3·2r , . . . , kR}, where R :=

⌊
|Fm|
2r

⌋
.

For r ≥ 0, we always batch 2r leaves together into a single time series step.
At Tk, the time series has only been recorded for all K 1

2r ∩ [k].
We dynamically change the resolution in order to guarantee a maximum

number of C = 1024 time series values, see also Section 6. Using powers of 2 for
the resolution provides an e�cient way to update the time series data during the
search. For each time series we store at most C values at resolution 1 (r = 0). As
long as the storage size is not exhausted (i.e., |K 1

2r ∩ [k]| < C), every new value
is appended, and the DES level and trend values are incrementally updated
using (8). When the storage size is reached, we divide the current resolution
by 2. At each resolution update we keep only every second observation, which
is an aggregation of the information of two consecutive leaves, since the data at
a leaf is already cumulative. This e�ectively shrinks the number of stored time
series values to half the capacity C

2 . We then recompute the DES �t for the
compressed index set from scratch.

At a time series step t∗, we �rst make a prediction of the remaining number
of time series steps h∗ according to (9). We then take into account the current
resolution to rescale h∗ and estimate the total tree size m at termination via

m̂ := 2 · (t∗ + 2rh∗)− 1, (10)

where the term in parentheses is an estimation of the �nal number of terminal
nodes |Fm| and therefore turned into an estimate of the total tree size via (2).
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Figure 3: Examples of the �ve time series and their DES estimates as a function of
leaves for instance danoint.

5.3 Example Instance danoint

In order to illustrate the DES based tree size estimates, we discuss their be-
havior for the MIPLIB instance danoint in detail. In Figure 3, we visualize
the discussed time series and resulting tree size estimations. The data for the
plots have been obtained with SCIP 6.0, which we extended by the necessary
functionality to record all discussed time series and estimations, see also Ap-
pendix C. The time series estimations are all obtained by a DES forecast. As
time series index, we use the index set Kleaf with an adaptive resolution as ex-
plained in Section 5.2. We allow a maximum number of C = 1024 observations.
The parameters α and β have been calibrated for each time series individually,
see Section 6. Our implementation outputs the estimations at every leaf node
at which another percent of tree weight has been reached, yielding at most 100
records per instance. We compare �ve tree size estimations. The tree weight,
leaf frequency, gap1, SSG, and open nodes are illustrated as a function of the
number of leaf nodes in the top plot of Figure 3. Note that the number of open

1For technical reasons, we show the complement 1− δ(Tk) of the gap.
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nodes is shown with respect to the second scale at the right of the top plot.
The bottom plot illustrates how the corresponding estimations evolves with an
increasing number of leaf nodes.

Figure 3 depicts tree weight values that appear to increase almost linearly
with the number of leaves. The corresponding tree weight estimations start
steep at the beginning, yielding underestimations of the �nal tree size during
the �rst 10,000 leaves. After approximately 20,000 leaf nodes, the estimations
stays very close to the true �nal tree size of 1 million nodes, which is visualized
as a black horizontal line. The tree weight estimation is consistently closer to
the actual tree size than the other estimations during most of the search.

The values of the leaf frequency rise very steeply at the beginning of the
search, but stabilize very soon and increase at a lower pace afterwards. The
steep incline yields underestimations of the actual tree size at �rst. Later, it
shows an overestimation of the actual tree size that is comparable to the SSG
estimation. As noted before, the leaf frequency is not monotonic in general,
although it appears strictly increasing in the top part of Figure 3.

The number of open nodes increases during the �rst half of the search and
drops during the second half until it reaches zero at termination. Linear fore-
casts cannot cope with this reversing trend by themselves. As long as the
number of open nodes increases, also the corresponding trend into the future
stays positive, in which case we use twice the number of already explored nodes
as estimation. When the number of open nodes starts to decrease, and hence
the trend starts to become negative, the �rst few forecasts overestimate the �nal
tree size, especially at the turning point. For the remainder of the search, the
estimations converge to the true tree size. This example shows that the pro-
posed time series estimations on tree weight and leaf frequency can yield quite
accurate predictions early during the search.

6 Calibration of Double Exponential Smoothing

The quality of double exponential smoothing highly depends on the choice of the
level and trend parameters α and β in (8). This section explains the calibration
procedure of α, β, and the choice of capacity C for adaptive resolution. In our
later experimental evaluations, α and β are then �xed for all instances. A direct
calibration technique for α and β could consist, for example, in a grid search,
where at every grid point we evaluate the accuracy of estimates on a set of
MIP instances. In order to avoid repeating the same MIP runs, we solve each
instance once and record the entire search, on which we can evaluate tree size
estimation methods via an o�ine simulation2 as in [8].

6.1 Accuracy Measures for Tree Size Estimation Methods

Similar to primal heuristics, tree size estimation methods need to be evaluated
throughout the entire search process, rather than at the end of the search. An
estimation may over- or underestimate the actual tree size at termination. We

2The simulation code is written in R [44] using the package forecast [26, 24]. It is publicly
available from https://github.com/GregorCH/treesize-estimation.
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therefore minimize the normalized ratio

E(m̂,m) = max

{
e(m̂,m),

1

e(m̂,m)

}
, where e(m̂,m) :=

m̂

m
,

penalizing under- and overestimations by the same factor (see, e.g., [29, 40]).
We report all ratios at di�erent levels of tree weight ω(Tk), which is available

during the search and normalized by de�nition. We simulate up to 95 estima-
tions per tree and time series at those records at which the tree weight level
�rst reaches p ∈ {0.01, 0.02, . . . , 0.95}. There can be fewer than 95 estimations
as multiple weight levels can be �rst reached with a single leaf. As an example,
the number of considered records for the pigeon-10 tree is 91. At a resolution
capacity C = 1024, the total number of considered records over the trees of all
233 instances that we use below is 10,322.

6.2 Simulation Setup

As training set, we use the combination of the following four MIP benchmark
sets: MIPLIB 3 [9], MIPLIB 2003 [1], MIPLIB 2010 [31], and Coral [13]. Each
of those 496 instances is solved using SCIP 6.0 [19] and the entire search tree is
recorded as a VBC �le [34]. Instances not solved to optimality within 2 hours
or with fewer than 10 leaves are discarded, leaving 233 instances. The input
data for every tree size estimation method for all leaves is then extracted from
the VBC trees3. Our simulation code applies adaptive resolution to this o�ine
data exactly as if it had been collected online. For example, the largest tree in
our data set belongs to the instance pigeon-10 and has almost 14 million leaf
nodes. Its compressed tree contains 7507 records, at a �nal resolution of 1

8192 .

6.3 Calibration of the Adaptive Resolution Capacity C

Adjusting the resolution capacity C can lower the variance of the observations
made at leaves by adaptively batching them. While we would like to optimize C,
α and β together, this is computationally expensive. Instead, we �rst optimize C
by a line search. For every value of C, we use ETS4 [45], which considers errors,
trend, and seasonality components of a time series, hence the name ETS. The
key property of ETS for our simulation is that it optimizes α and β at each
record to the available training data, thereby allowing for a calibration of C
independent of the DES parameters.

We test capacities between C = 23 and C = 215, for which we compute
the geometric mean normalized ratio E of the estimation obtained by an ETS
forecast for each of the four measures tree weight, leaf frequency, open nodes,
and SSG, see Figure 4. The rightmost entry uses an in�nite capacity, which
corresponds to not using adaptive resolution. At a capacity of 1024, all four
measures achieve their best or second best normalized ratio over all tested capac-
ities. Therefore, we consider the choice of 1024 as a good compromise between
a coarse view on the entire search process and a �ne view on the local, recent
behavior. Note that in particular, the obtained normalized ratios at C = 1024
are consistently better than without adaptive resolution (C =∞).

3Using a customized version of the Python code https://github.com/pierre-lebodic/

bnb-mip-estimates/.
4We use the forecast-package of R, which features the ETS method.
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Figure 4: Normalized Ratio at di�erent capacities C used by adaptive resolution.

Table 2: DES parameters that minimize the geometric mean normalized ratio E(m̂,m)
for each time series on the training set.

Time Series α β E E ETS

Tree Weight 0.65 0.15 3.32 3.30
Leaf Frequency 0.30 0.33 2.71 2.82
SSG 0.60 0.15 2.71 3.01
Open Nodes 0.60 0.15 2.69 2.90

6.4 Calibration of the DES Parameters α and β

For every time series, we calibrate the values of α and β that minimize the geo-
metric mean normalized ratio. We conduct a grid search by varying α in steps
of 0.05 between 0.1 and 0.95 and β in steps of 0.05

α between 0.1
α and 1. Table 2

shows the obtained values of α and β per time series, their corresponding geo-
metric mean normalized ratio E as well as the obtained normalized ratios using
ETS instead (at C = 1024), which �ts the parameters α and β adaptively to the
time series at hand. Note that we did not explicitly optimize the parameters
for the gap time series, for which we use the same parameters as for the SSG.

Interestingly, the calibrated parameters from Table 2 result in a lower (and
hence, better) normalized ratio over the entire data set than could be obtained
by ETS, despite the additional degrees of freedom of ETS. We explain this
surprising result by the fact that ETS is too sensitive to the past behavior
of the time series compared here, which yields a larger normalized ratio if an
unpredictable event such as a new incumbent solution alters the search process
signi�cantly. The parameters from Table 2 may not �t the training data as
accurately, but produce more robust estimations on average.
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Figure 5: A visualization of the learned regression tree. In contrast to the linear
models, this tree can only output one out of 8 distinct values as approximation of the
search completion.

7 Learning the Search Completion

Recall that any approximation 0 < γ̂ ≤ 1 of γk can be trivially turned into
a tree size estimate by computing m̂ = k/γ̂, see (4). In this section, we use
Machine Learning methods to train such approximations. This section builds
upon both Sections 4 and 5 and the methods introduced therein.

7.1 Data Set

We use the same setup as in Section 6, but we also add MIPLIB 2017 [20],
resulting in a set of 671 unique instances. We consider the 276 instances which
can be solved within 2 hours and require at least 100 nodes, with up to 99
estimations per instance, resulting in a data set comprising 16k observations.

In order to validate the generalization of the learners on unseen instances,
we randomly split the instances of our data set into 80% training and 20%
test set, such that all records for one instance are fully contained in either the
training or the test set.

7.2 Training

We formulate the problem to approximate the search completion based on the
available measurements as a regression task. We have nine features: at each
observation, we take both the measured value and the DES trend of the tree
weight, SSG, leaf frequency, and gap time series. As a ninth feature, we use a
boolean indicator equal to 1 if the number of open nodes has a decreasing trend
component, and 0 otherwise.

We train four di�erent regression models on all nine features, unless indicated
otherwise, to learn the search completion:
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Figure 6: MSE between the search completion γk and its approximations.

1. linear model: a linear regression;
2. linear monotone: a linear regression on only two of the nine features: tree

weight value and SSG value;
3. regression tree: a single regression tree;
4. random forest: a random forest regression.

A regression tree [11] partitions the training data recursively by selecting a
feature and a value to split such that the variance after the split is minimized.
The learned regression tree is depicted in Figure 5.

Random Forests [10] are ensembles of regression trees. For a random forest,
a (prede�ned) number N of regression trees is trained on independently boot-
strapped subsets of the training data samples, which contain approx. 60% of
training data. Also the number of features to consider at each split is limited.
These choices prevent a random forest from over�tting. An approximation by
a random forest regression is the mean approximation of its N regression trees.
We conduct the learning procedure with the R package randomForest. This
package also allows to set a limit on the number of samples at the terminal
nodes of the tree, to prevent over�tting. We train a large random forest random
forest big with N = 200 trees and a minimum terminal node size of 25 as well
as one called random forest reasonable with N = 100 trees and a minimum
node size of 75.

Figure 6 provides a comparison of the quality of the learned approximations
compared to the quality of the base measures tree weight, SSG, leaf frequency,
and gap. Unlike the other sections, we are interested in good approximations
of the search completion γk ∈ [0, 1]. Using the �nal tree size instead as label
for training will likely not give a meaningful generalization to unseen instances.
Therefore, we report the Mean Squared Error (MSE) (γ̂ − γk)2 between the
approximation and the actual value, which is the target function that the learn-

18



ers attempt to minimize. We report the MSE separately for the training and
test set. In parentheses, we show the ratio between the corresponding MSE
and the MSE obtained by the SSG method, chosen as a baseline as it is the
best performing method among the individual (untrained) measures of search
completion. We further categorize the observations into an early, intermediate,
and late stage based on the value of the tree weight measure ω(Tk): we call an
observation early if 0 ≤ ω(Tk) ≤ 0.3, intermediate for 0.3 < ω(Tk) ≤ 0.6, and
otherwise late.

Figure 6 clearly shows that the gap measure alone o�ers the worst individ-
ual approximation quality, especially during the early and intermediate stages.
Instead, the tree weight and SSG measures provide substantially closer approx-
imations of search completion throughout all stages, with a slight advantage for
the SSG.

Moreover, Figure 6 demonstrates that all learned methods improve upon the
results of the best individual method SSG throughout all three stages on the test
set. The monotone linear regression, which combines the SSG and tree weight
measures, and the linear regression on all nine features improve upon the SSG
by relative factors between 15�20% and 20�50%, respectively. Interestingly, a
single regression tree achieves a comparable performance to a linear regression
during the late stage, although the regression tree outputs one out of eight
discrete values only.

The two trained random forest models achieve the best test results by a
signi�cant margin on the training set. On the test set, they improve upon the
SSG by 30%�64% in the MSE.

The reason for the better performance of the regression forests compared
to linear regression is that the feature values are only used indirectly by the
forests, namely for deciding the �bucket� into which an observation falls, but
the actual value that the regression forest assigns to an input is not computed
as a weighted combination of the input as by linear regression. This allows to
better integrate a logical feature such as the decreasing/increasing trend of the
open nodes.

Among the tested methods, a random forest regression outperforms all other
methods in all respects on both the training and the test set. Regarding the
linear methods, it is surprising how well even the monotone estimation based
on only tree weight and SSG works. The next section compares the estimation
performance of these learned search completions to the individual methods from
the previous sections.

Remarks We have also experimented with other regression techniques such as
gradient boosted trees [17] and neural networks to approximate search comple-
tion. Furthermore, we also tried to combine the individual tree size estimates
(including WBE and pro�le). In all cases, we omit the obtained results for
brevity, which were comparable, but inferior to the accuracy of the presented
random forests. In conclusion, it seems that attempting to approximate search
completion instead of the actual tree size indeed works far better, since the
wide variance of tree size estimations makes �tting a linear model, particularly
regression, to the data very di�cult and ine�ective.
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8 Comparison of Tree Size Estimation Methods

We are now ready to compare the tree size estimation quality of all discussed
methods. We categorize the discussed methods into four groups based on how
an estimation is derived.

1. The �rst group comprises the four search progress measures from Section 4.
We treat (a suitable transformation of) each measure as approximation of
the search completion γk and compute a tree size estimation using (4).

2. Two reference methods, the pro�le estimation [14] and the WBE [29], are
treated as a separate group because they use di�erent approaches. The pro�le
estimation is only shortly presented in Appendix B, since it is conceptually
di�erent to the other methods and is not competitive in our experiments.

3. For the third group, all estimates are computed via DES, see Section 5. As
explained in Section 5.2, the considered time series use an adaptive resolution
with maximum capacity of C = 1024 and are indexed over the leaf index set
Kleaf. For each time series, the corresponding parameters α and β from
Table 2 are used to update DES and produce estimations. For the gap time
series, we use the same parameters as for the SSG.

4. The last group comprises �ve learned approximations of search completion
using linear or forest regression, see Section 7.

For the two groups that approximate search completion, the computed approx-
imation is corrected via γ̃ = max{γ̂, 10−6}, which is necessary because the gap
and SSG approximations may still be at 0, and the linear regressions may even
yield negative approximations in rare cases. As data set, we use the same 16k
observations as in Section 7.1 and the same training/test split. We use the
learned predictions based on the training set of Section 7 and apply them to
the test set. We omit the results for the training set, on which the learned
methods from Section 7 already have an advantage, and focus on the test set,
which comprises a total of 3452 records.

We summarize the obtained estimation ratios on the test set records in three
Tables 3�5, where we distinguish an early, intermediate, and late stage depend-
ing on the tree weight value. For every estimation method, we report the geo-
metric mean normalized ratio E of its tree size estimation. This value is bounded
from below by 1, which would be a perfect estimation. Nine of the tested meth-
ods derive their estimation from an approximation of the search completion.
For those, we report the MSE between the approximation and the actual search
completion. As in [40], we also present the percentage of observations that are
ε-accurate, i.e., which satisfy E(m̂,m) ≤ ε for ε = 2, 3, 4.

Analysis of the Search Completion Measures Among the search comple-
tion approximations, the methods SSG and tree weight, which already showed
that they have a better approximation quality of the actual search completion
than their counterparts gap and leaf frequency, are also better in terms of
normalized ratio. Interestingly, the tree weight estimation yields consider-
ably better estimations than SSG despite its worse approximation quality, as
measured by the MSE.

The tree weight search completion achieves the lowest or second lowest
ratio across all search completion methods across stages. Only during the late
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Table 3: Estimate comparison during the early stage (0 ≤ ω(Tk) ≤ 0.3) on test set

Method n MSE E 2-Acc 3-Acc 4-Acc

Search Completion Approximation

gap 861 0.371 36.305 20.7% 34.7% 40.0%
SSG 861 0.053 5.702 43.0% 58.9% 66.3%
tree weight 861 0.081 4.134 30.5% 45.5% 61.6%
leaf frequency 861 0.256 6.590 29.0% 44.5% 52.5%

Custom Estimations

profile 861 � 79.930 19.5% 30.3% 35.7%
WBE 861 � 4.686 30.4% 46.9% 59.1%

Double Exponential Smoothing

open nodes 861 � 5.717 40.9% 52.1% 58.1%
gap 861 � 5.686 36.6% 50.4% 58.5%
SSG 861 � 4.695 39.1% 55.4% 62.6%
tree weight 861 � 4.532 35.1% 51.9% 60.7%
leaf frequency 861 � 4.876 42.4% 56.9% 61.9%

Learned Methods

linear model 861 0.042 7.580 47.0% 59.7% 67.4%
linear monotone 861 0.044 4.088 50.1% 62.8% 70.6%
regression tree 861 0.049 3.447 49.6% 62.0% 69.9%
random forest big 861 0.037 2.835 51.9% 71.0% 75.8%
random forest reasonable 861 0.036 2.830 54.2% 70.7% 75.7%

Table 4: Estimate comparison during the intermediate stage (0.3 < ω(Tk) ≤ 0.6) on
test set

Method n MSE E 2-Acc 3-Acc 4-Acc

Search Completion Approximation

gap 1016 0.256 11.142 41.3% 52.4% 60.3%
SSG 1016 0.090 3.891 62.7% 73.1% 76.2%
tree weight 1016 0.110 3.034 53.4% 75.7% 81.2%
leaf frequency 1016 0.193 3.196 54.8% 62.8% 69.7%

Custom Estimations

profile 1016 � 28.961 34.2% 38.6% 44.9%
WBE 1016 � 3.242 57.1% 70.5% 78.7%

Double Exponential Smoothing

open nodes 1016 � 3.049 59.0% 69.9% 74.3%
gap 1016 � 3.634 47.7% 64.0% 71.2%
SSG 1016 � 2.924 54.8% 70.1% 78.0%
tree weight 1016 � 3.069 56.2% 71.2% 76.2%
leaf frequency 1016 � 2.926 59.0% 72.2% 78.9%

Learned Methods

linear model 1016 0.058 2.495 65.6% 73.8% 81.4%
linear monotone 1016 0.077 2.678 62.5% 75.3% 78.3%
regression tree 1016 0.078 2.554 60.4% 73.5% 78.9%
random forest big 1016 0.051 2.273 65.2% 79.3% 84.4%
random forest reasonable 1016 0.050 2.292 65.2% 79.3% 83.4%
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Table 5: Estimate comparison during the late stage (0.6 < ω(Tk)) on test set

Method n MSE E 2-Acc 3-Acc 4-Acc

Search Completion Approximation

gap 1575 0.183 3.835 65.1% 76.5% 81.4%
SSG 1575 0.090 2.118 78.9% 84.6% 89.4%
tree weight 1575 0.092 1.688 81.4% 87.2% 88.5%
leaf frequency 1575 0.103 1.662 77.8% 85.3% 88.8%

Custom Estimations

profile 1575 � 31.143 47.9% 55.6% 58.2%
WBE 1575 � 1.714 79.6% 86.6% 88.4%

Double Exponential Smoothing

open nodes 1575 � 1.637 81.0% 86.5% 89.0%
gap 1575 � 2.175 70.7% 80.0% 84.1%
SSG 1575 � 1.689 78.0% 84.4% 87.7%
tree weight 1575 � 1.681 81.0% 85.6% 87.7%
leaf frequency 1575 � 1.662 81.5% 88.4% 90.9%

Learned Methods

linear model 1575 0.048 1.581 83.1% 88.6% 90.7%
linear monotone 1575 0.073 1.669 80.2% 85.3% 89.7%
regression tree 1575 0.047 1.511 85.0% 89.2% 91.2%
random forest big 1575 0.032 1.443 86.9% 90.9% 92.4%
random forest reasonable 1575 0.032 1.446 87.2% 90.8% 92.6%

stage, the leaf frequency approximation of search completion yields a better
normalized ratio. The two estimations tree weight and WBE are comparable
in that they use the same measure, namely the tree weight measure ω, from
which they compute an estimated number of nodes (tree weight) or leaves
(WBE) of the �nal search tree. However, the tree weight estimation yields better
estimations during all stages.

Analysis of Double Exponential Smoothing Forecasts Throughout all
stages, the measures SSG and gap yield much better estimations within a time
series approach than by projecting them as a measure of search completion.
Both as search completion and as time series, a direct comparison between the
SSG and gap estimations always shows a favorable behavior of the SSG method.
This con�rms the �ndings of [40] that a time series forecasting using SSG has
a substantially better tree size estimation accuracy than the gap. The results
also show that all three gap, leaf frequency, and SSG bene�t from the use of
DES. In contrast, the tree weight measure is best used as an approximation
of search completion.

The custom method profile has by far the largest normalized ratio across
all stages. A closer look at the individual records reveals that the profile

estimation is the only method with serious overestimations. The most extreme
overestimation of the profile method is on instance ns1952667, where the
estimated tree size of 7 · 1044 overestimates the actual, moderate tree size of
19k nodes by 40 orders of magnitude. Besides, the profile estimation does
not necessarily converge to the actual tree size at termination, unlike all other
tested methods.
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Analysis of Learned Approximations As one may expect, for all time
series, the estimate becomes more accurate at later stages with more data being
available. As for the learned methods, the random forests outperform all other
tested methods by a considerable margin in terms of ε-accuracy and E, as
could be expected from their approximation quality measured by the MSE. The
large normalized ratio during the early stage of the linear regression mostly
arises from a few negative approximations of search completion, and despite
the applied correction that maps these approximations into the allowed range.
Note that the regression forest approximation is always positive, since it is the
mean value of a subset of training labels, which are themselves positive search
completions.

Despite their good performance, regression forests also have disadvantages.
Their estimation cost grows linearly with the number of trees in the forest. In
contrast, the costs to compute one linear (monotone) regression approximation
in the nine-dimensional feature space is negligible5. Random Forests are there-
fore especially advantageous if the estimates do not have to be computed at
every node, but infrequently during the search.

In this section, we have used observations across a variety of publicly avail-
able MIP benchmark sets, which have been compiled to cover a broad range
of MIP applications. For instances from one speci�c type of application, the
learning procedure should ideally be repeated to capture the search process of
the B&B algorithm on those instances better than by our pretrained general
purpose approximations.

Remarks One important in�uence on the behavior of a B&B-solver is the way
in which improving solutions are found during the search. One can suspect that
initializing the solution process with an optimal solution improves the quality of
the predictions of the B&B-tree size. However, evaluating the normalized ratios
as above shows that they actually increase slightly. This happens, because less
records in the last phase of the search are available. If one factors this in�uence
out, the ratios slightly decrease as expected. We do not present detailed results,
because our goal was to predict the size of the B&B-tree for a general solution
run, in which an optimal solution is not available.

9 Comparison on Homogeneous Instance Sets

In this section, we compare the estimation accuracy on six di�erent homogeneous
sets of MIP instances. All instance sets have been obtained from the public
git repository of submissions8 to MIPLIB 2017 [20]. While the MIPLIB 2017
collection of 1065 instances contains at most �ve instances from each such set,
there are many more instances available from the repository. The selection of
the six sets, which are shown in Table 6, has been made with respect to the
following criteria:

1. su�cient number of instances,

5Also note that the monotonicity of the linear monotone regression can be slightly more
pleasing when used as a progress bar during the search, although it is less accurate on average.

623 instances × 4 di�erent random seeds.
742 instances × 4 di�erent random seeds.
8https://git.zib.de/miplib2017/revised-submissions-final.git
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Table 6: Data collected on homogeneous instance sets

Set Example Inst. solv. Records Reference

chromaticindex chromaticindex1024-7 121 105 1287 [33]
generated gen-ip002 92 81 7772 �
iis iis-glass-cov 926 69 6765 [41]
map map06 180 180 12240 [3]
network-flow g200x740 1687 156 3536 [39]
opm2 opm2-z12-s8 150 92 1874 �

2. solvability with SCIP during the performance evaluation for MIPLIB 2017,

3. large enough trees.

A su�cient number of instances guarantees that we can obtain a meaningful
separation into training and test set. For the sets of iis [41] and network-flow

instances, we performed runs with four (default+3) random seeds to in�ate
the actual instance sets of 23 and 42 instances to 92 and 168 instance-seed
combinations. As before, for each set, we �rst discard instances that could not
be solved. Second we split the obtained records into 80% instances for training
and 20% for testing. If multiple random seeds were used, the split ensures
that the test set contains only unseen instances (and their respective seeds).
For each set, we train independent search completion approximations on the
obtained training sets.

Figure 7 summarizes the accuracy of all discussed methods in terms of the
geometric mean normalized ratio E for all test records per instance set. For
simplicity, we report the accuracy over the entire search process regardless of
the early, intermediate, and late stages measured by tree weight. As in the
previous section, we classify the tree size estimates into four groups. Search

Completion comprises the four measures of search completion from Section 4.
DES comprises �ve estimates that are derived from DES forecasts as explained
in Section 5.1. All four measures of search completion also allow a DES forecast
and hence appear twice in the �gure. The group Custom comprises two further
reference methods, WBE [29] and profile [14]. The last group Learned �nally
comprises �ve di�erent learned search completion methods as presented in Sec-
tion 7. In addition, the last group is enriched by random forest miplib, which
corresponds to the random forest model random forest big from the previous
sections 7 and 8 without further training on the application-speci�c data sets.

The learned random forests consistently achieve the smallest ratios among
the methods. The random forest estimates are particularly accurate on the
map instances, for which they achieve (almost) best possible ratios of 1.00 and
1.01, respectively. This very good result is possible because the instance set
of 180 instances can be further grouped into 9 di�erent subsets of instances.
For each subset, the SCIP solution process is identical, because there is only
little variation in the input data. The random forests can reliably recognize
the similarities in the solution process and always assign the correct search
completion even on unseen instances from the test set.

It is noteworthy that the individual estimates based on forecasting or search
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completion approximation vary substantially between the di�erent sets. For in-
stances from the set opm2, all individual forecasts and search completion meth-
ods yield ratios between 2.9 and 5.1, but can be e�ectively combined into a
random forest with an acceptable ratio E < 2. Unsurprisingly, the random
forests with application speci�c training always outperform the general ran-
dom forest random forest miplib, while the latter one still achieves a superior
performance to the DES forecasting estimates on all tested instance sets, and
outperforms the linear regression estimates on three of the six tested instance
sets.

10 Conclusion and Outlook

In this paper, we proved that it is impossible to approximate the size of the
tree of a speci�c B&B algorithm within a factor of 2 in polynomial time, unless
P = NP. We discussed and compared all state-of-the-art online methods and
new methods to predict the size of the B&B tree at termination. We grouped the
presented tree size estimates into approximations of the search completion on
the one side and time series based estimates on the other side. We improved the
time series forecasts by a careful calibration of the corresponding parameters,
and by introducing adaptive resolution.

By far the best estimation quality is achieved by combining value and trend
components of the individual time series into a learned regression forest that
approximates search completion better than any individual method and yields
superior estimation accuracy even on unseen test instances. As an additional
validation, our study on six di�erent homogeneous instance sets showed that
the performance of a random forest can be signi�cantly improved by training
on a particular instance set. Nevertheless, using heterogenous general training
data generalizes quite well to outperform most of the individual estimates.

Our results provide clear evidence that accurate tree size estimation requires
a combination of several atomic measures such as tree weight and SSG to com-
pensate for their individual weaknesses.

An e�cient implementation of these estimates is included into SCIP as of
version 7.0; more details are presented in Appendix C. It manifests during the
solution process as a new display column of approximate search completion. By
default, the display column shows the monotone linear regression because its
approximation is easy to explain, improves upon the accuracy of the tree weight
and SSG, and can be computed faster than its regression forest counterpart. For
an even more accurate search completion approximation, user regression forests
can be trained from SCIP log �les via an external R script and input into SCIP.

The present work can be extended in various ways. Several of our methods
require a binary search tree, which is the default in most state-of-the-art solvers.
Measures such as the tree weight are easily generalized to nonbinary search trees
at the cost of additional memory and computational e�ort [8]. The time series
forecasting methods we used are mainly linear, investigating nonlinear functions
or more advanced forecasting techniques might be bene�cial. Finally, we hope
that this work also inspires the use of the presented methods for algorithmic im-
provements. Two promising directions are the use for triggering restarts within
a single solution process (see also [6]), or the use of search completion proxies
in a massively parallel solver such as [46] for a better load-balancing.
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Appendices

A Formal description of the B&B algorithm

A general B&B algorithm as used in Section 3 is described in Algorithm 2.
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Algorithm 2: Branch-and-Bound search algorithm for MIP

Input: MIP (P)
Output: Search state sequence T = T0, . . . , Tm

1 k ← 0, F0 ← ∅, J0 ← ∅, L0 ← {root(P )};
2 Π0 ←∞, π0(root(P ))← −∞; // primal/dual bounds

3 while Lk 6= ∅ do
4 k ← k + 1;
5 select v ∈ Lk−1 and set Lk ← Lk−1 \ {v};
6 πk(v)← objective value of relaxation of Pv; // ∞ if infeasible

7 Πk ← Πk−1;
8 if relaxation solution is mixed-integer feasible and πk(v) < Πk then

9 Πk ← πk(v)
10 if πk(v) ≥ Πk then

11 Jk ← Jk−1, Fk ← Fk−1 ∪ {v}; // add v to terminal nodes

12 else

13 Fk ← Fk−1, Jk ← Jk+1 ∪ {v}; // add v to inner nodes

14 create two children v′ and v′′, Lk ← Lk ∪ {v′, v′′};
15 m← k;
16 return T := (Ti = (Ji, Fi, Li,Πi, πi) : i = 0, . . . ,m);

The initial search state of the B&B tree is

T0 = (J0 = ∅, F0 = ∅, L0 = {root(P )}, Π0 =∞, π0 = −∞) ,

where root(P ) denotes a (yet) isolated node that represents the original MIP
problem without any tentative branching restrictions. We denote by Pv the
local MIP problem associated with a tree node v. The �rst iteration k = 1
of Algorithm 2 will select root(P ) as the only open node and solve the LP
relaxation Proot(P ) in line 6.

The optimal objective value of the LP relaxation is computed, which de-
termines the dual bound of the current node. The global primal bound Πk is
updated to πk(v), if the solution of the relaxation is integer feasible and de-
creases the bound, otherwise Πk = Πk−1. If the optimal solution to the root LP
relaxation satis�es the integrality requirements for (P), it is necessarily optimal.
Even in this extreme case that the solution process only requires a single node,
i.e., the root node root(P ), there will be two search states T0 and T1.

In all other cases, at least one branching operation takes place. Every time
that the solution of the relaxation of Pv yields a dual bound πk(v) that is still
smaller than the current primal bound Πk, a branching operation in Line 12
creates two children for the currently active node v and adds them to Lk. We
restrict ourselves to dichotomous (2-way) branching decisions in this paper,
which are the most widely used types of branching decisions in current solvers,
but the results can be easily extended to other branching schemes.

Algorithm 2 records a sequence of m + 1 search states T0, . . . , Tm. We
will refer to T1, . . . , Tm−1 as intermediate states and to Tm as the �nal state.
All states represent trees that have the same root and additional information
regarding the primal and dual bounds. Between two successive search states Tk
and Tk+1 at some k ∈ {0, . . . ,m − 1}, the algorithm permanently removes the
current node v from the set of open nodes Lk to either mark it as a �nal leaf
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or split it into subproblems by branching. Concretely, v can be marked to be a
�nal leaf if its dual bound πk(v) exceeds the primal bound Πk.

In particular, v is always added to Fk, if its relaxation is shown to be infea-
sible. Conversely, it may happen that the relaxation is mixed-integer feasible,
which may result in a new primal bound Πk. Also in this case, v is added to Fk
in line 10 of Algorithm 2.

Every node v ∈ Fk ∪ Jk is denoted solved. Note that the number of solved
nodes increases by 1 with every loop iteration, such that k = |Fk ∪ Jk|, i.e., the
number of solved nodes is always equal to k. An important detail of Algorithm 2
is that pruning is performed explicitly so that each pruned node is counted. In
practice, solvers such as SCIP do not report nodes that have been pruned as
solved nodes. This ensures that each search state Tk represents a binary tree.

B Tree Pro�le Estimation

For search state Tk, let dmax
k := maxv∈Fk∪Jk d(v) denote the maximal depth of

any solved node at Tk. A depth pro�le Dk is de�ned as

Dk := {|Dk,i| : i = 0, . . . , dmax
k }, where Dk,i := {v ∈ Fk ∪ Jk : d(v) = i}.

The maximum width depth is dwidthk := argmaxi |Dk,i| and the last full depth

dfullk := max {i : |Dk,i| = 2i}. Following the intuition that between a (reason-
ably initialized) search state Tk and Tm these statistics do not di�er too much,
the pro�le estimate [14] approximates the growth factors9

ρm,i :=
|Dm,i|
|Dm,i−1|

as follows:

ρk,i :=


2, if 1 ≤ i ≤ dfullk ,

1 +
dwidthk −i

dwidthk −dfullk

if dfullk < i ≤ dwidthk ,

1− i−dwidthk

dmax
k −dwidthk

, if dwidthk < i ≤ dmax
k .

The growth factors are �nally turned into an estimation of the �nal tree size as

m̂pro�le := 1 +

dmax
k∑
i=1

i∏
j=1

ρk,i.

C Implementation in SCIP

With the aim to provide a uni�ed and understandable theoretical presentation,
the B&B measures from Section 4 and the forecasting methods from Section 5
have been introduced as functions of the B&B search state Tk. The SSG as
well as the time series methods require information from past search states,
the former in form of a primal bound updating search state, the latter because
double exponential smoothing takes into account the entire search sequence for
forecasting.

9The growth factors are called γ-sequence in the original publication [14].
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Clearly, it is computationally prohibitive to explicitly save the entire search
state sequence. Furthermore, the measures and time series can be e�ciently
incremented during the search and need not be recomputed from scratch. This
section provides some details about our SCIP implementation of the estimation
methods. Our code is encapsulated as an event handler plugin that reacts on
node events of the main search. It is invoked when a branching occurs in line 12
in Algorithm 2 or when a node becomes a �nal leaf in line 10. We extended
the node event system of SCIP in order to capture such events even for open
nodes that are pruned (e.g., because of a new primal bound). The event handler
maintains the statistics |Fk|, |Jk|, |Lk| for an internal model tree that counts all
internal or �nal leaves as solved. We hence ensure that our model tree is in fact
binary, so that our assumptions regarding the tree weight ω(Tm) = 1 or the leaf
frequency measure hold at the end of the search.

Some further remarks about speci�c implementations of the measures and
estimations

Tree Weight, Leaf Frequency, Gap The values of all three measures tree
weight ω(Tk), leaf frequency λ(Tk) and gap δ(Tk) are updated in constant time
from their values at Tk−1.

SSG The SSG [40] is more involved than the previous measures because it
requires e�cient updates of the individual subtree dual bounds for the di�erent
subtrees rooted at LpredΠ(k), i.e. the open nodes at the last primal bound
improvement. For each subtree, we keep a priority queue of all open nodes
v ∈ Lk sorted by their dual bound. This allows for an e�cient removal or
addition of nodes with at most logarithmic e�ort O(log(max{|subtree(v)| : v ∈
LpredΠ(k)})). The value of the SSG only changes if a dual bound de�ning node is
removed from its respective subtree after the node has been branched or pruned.
The priority queues are reinitialized at each update of the primal bound.

WBE The weighted backtrack estimation [29] can be computed in constant
time from the value of the tree weight measure and the statistic |Fk| of the
model tree.

Pro�le Estimation For the pro�le estimation [14], we incrementally update
the depth pro�leDk in constant time by adding 1 to the entry d(v) corresponding
to the selected node v. The computation of m̂pro�le can be done in O(dmax

k ).
In order to save time, we store the statistics (dfullk′ , d

max
k′ , dwidthk′ ) at the last step

k′ < k when the estimation was computed, as well as the estimated tree size. If
the statistics have not changed between k′ and k, we report the same estimation.

D Further Improvements via Correction Factors

As observed in Section 8, the normalized ratio of each forecasting based estima-
tion decreases as the search progresses. More interestingly, however, it can also
be observed that the ratios of some methods tend to follow a particular pattern
with respect to the search completion γk. Figure 8a depicts the ratio of the
leaf frequency estimate for each record of the data set from Section 7.1. On a
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(a) Errors versus search completion
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(b) A curve �t to the ratio versus search
completion

Figure 8: Average errors of the leaf-frequency-based tree size estimate versus the search
completion.

Table 7: Geometric mean normalized ratio of the corrected leaf frequency estimates
compared to the original method.

Method
Stage

0 ≤ ω(Tk) ≤ 0.3 0.3 < ω(Tk) ≤ 0.6 0.6 < ω(Tk)

Training

leaf-frequency 5.250 2.679 1.650
corr-leaf-freq 4.264 2.657 1.841

Testing

leaf-frequency 5.106 2.733 1.645
corr-leaf-freq 4.397 2.721 1.876

logarithmic scale, the ratios display a logarithmic trend, which suggests a poly-
nomial relationship between the normalized ratio and the search completion.
We may exploit this trend in order to correct the estimate and obtain a more
accurate method. We use a least-squares regression to �t a relationship between
the logarithmic ratio and the logarithm of the search completion and use this
result as a correction factor for the forecast estimate of the leaf frequency time
series. Our method estimates this ratio to be e = 2.03 γ0.853

k , the reciprocal of
which is hence our correction factor.

Since knowledge of the search completion is not available during the search,
in an online setting, we instead employ the current tree weight as an approxima-
tion of the search completion. To evaluate the method, we randomly split the
data set: 80% of the data is used for training, and the rest is left for testing. Ta-
ble 7 compares the geometric mean normalized ratios of the corrected estimate,
which we call corr-leaf-freq, to the original leaf frequency estimate. Observe
that early in the search, the corrected estimate is signi�cantly more accurate.
Midway through the search, the two are indistinguishable, and towards the end,
the uncorrected estimate is superior. This suggests that the correction factor
is valuable especially during the early stage of the search, i.e., when the tree
weight value is still small.
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