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Abstract 1

Molecular simulations of ligand-receptor interactions are a computational challenge, 2

especially when their association- (“on”-rate) and dissociation- (“off”-rate) mechanisms 3

are working on vastly differing timescales. In addition, the timescale of the simulations 4

themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; 5

which further adds to the complexity of observing these mechanisms, and of drawing 6

meaningful and significant biological insights from the simulation. 7

One way of tackling this multiscale problem is to compute the free-energy landscapes, 8

where molecular dynamics (MD) trajectories are used to only produce certain statistical 9

ensembles. The approach allows for deriving the transition rates between energy states as 10

a function of the height of the activation-energy barriers. In this article, we derive the asso- 11

ciation rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl 12

propionamide (NFEPP) in a µ-opioid receptor by combining the free-energy landscape 13

approach with the square-root-approximation method (SQRA), which is a particularly 14

robust version of Markov modelling. The novelty of this work is that we derive the as- 15

sociation rates as a function of the pH level using only an ensemble of MD simulations. 16

We also verify our MD-derived insights by reproducing the in vitro study performed by 17

the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl 18

and NFEPP (Spahn et al. 2017). 19

MD simulations are far more accessible and cost-effective than in vitro and in vivo 20

studies. Especially in the context of the current opioid crisis, MD simulations can aid in 21

unravelling molecular functionality and assist in clinical decision-making; the approaches 22

presented in this paper are a pertinent step forward in this direction. 23

Keywords. Opioid, Ligand-Receptor Interaction, Binding Kinetics, Molecular Dynamics, 24

Metadynamics, SQRA. 25

1 Introduction into the Molecular Background 26

Binding rates of small molecules (ligands) to their target protein (receptor) can be strongly 27

influenced by the pH value of the chemical environment. This observation depends on the 28
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acidity (pKa) of the ligand, and also on whether the receptor structure changes with pH [34]. 29

In the molecular simulation of ligand-receptor binding processes, this pHdependence must be 30

taken into account. It can be assumed that the pH value in an ensemble of ligand-receptor 31

molecular systems influences the probabilities for the occurrence of protonated or deprotonated 32

titratable moieties. This leads to the question of how these probabilities should be considered 33

within molecular simulation. One could imagine including the transport of protons in the 34

simulation and thus also the process of protonation of individual titratable moieties. This 35

procedure has several disadvantages. Since it can only be carried out for a certain pH value, 36

i.e. for a certain proton concentration, and since purely molecular dynamics (MD) simulations 37

do not depict protonation processes, quantum-theoretical aspects would have to be taken into 38

account, which makes it very hard and often impossible to simulate large systems [17]. In 39

addition, the binding modes of ligand-receptor complexes are often also pH-dependent, so that 40

the simulations involving the protonation of molecular moieties would also have to take place 41

on long time scales that allow for a statistical analysis of the different binding motifs. This in 42

turn would mean that the simulations would have to take place over very many time scales, 43

which in turn require a lot of computing time and often even is infeasible. 44

Our approach differs from this approach and is based on a the so-called square root ap- 45

proximation (SQRA) [31], a mathematical method for numerically solving the Fokker-Planck 46

equation [8]. SQRA can be used efficiently in high dimensions as required in molecular simu- 47

lation, and can be seen as a particularly robust version of Markov modelling [6], its variational 48

variants [45], or similar methods well studied in molecular dynamics [26,37]. 49

Our idea is to simulate the different possible scenarios separately. This means taking into 50

account the combination of protonated and deprotonated molecular moieties in the different 51

situations. Based on this approach, it is possible to appropriately average over many individual 52

molecular dynamics simulations, depending on how the external pHaffects the probabilities for 53

the simulated scenarios. Please note, that it is not correct to use weighted averages of the 54

individual binding rates. What can be averaged, however, are the occupation probabilities 55

of the individual intermediate steps of the binding process. SQRA offers a robust way to 56

calculate the binding rates of the overall process from the averaged occupation numbers of the 57

intermediate steps [31]. 58

Figure 1: Potential of mean force (PMF) computed by applying a Metadynamics simulation to
the following receptor-ligand system: “Fentanyl binds to the µ-opioid receptor at pH 7” (see
Sec.2). The reaction coordinate represents the distance of the fentanyl molecule from its known
binding site.
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Figure 2: Binding modes

In this way, SQRA solves one challenge of the calculation of binding rates of complex 59

systems. However, often there is another problem that makes MD simulations very troublesome 60

or even infeasible. This additional challenge concerns the intermediate steps of the binding 61

process, which may differ from the intermediate steps of the dissociation process. 62

The molecular system we will look at in this article is an analgesic molecule (fentanyl or N- 63

(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) [40]) and the receptor it 64

activates (µ-opioid receptor). Figure 1 shows the result of a metadynamics simulation in which 65

the fentanyl molecule started 30 Å (3 nm) away from its binding site and has been placed 66

at the “entrance” of the receptor. Metadynamics calculates the PMF curve of the simulated 67

process. When the molecule is placed at the entrance of the receptor, it is pulled very quickly 68

into the interior of the receptor, as it can then loose a large amount of free energy. Thus, 69

the binding rate depends mainly on the last “locking” of the molecule into its final binding 70

position. However, this part of the PMF cannot be investigated with sufficient accuracy using 71

metadynamics simulations (different curves in Fig. 1). Therefore, in the next section we will 72

perform separate simulations for this last binding step only. The situation is different with the 73

dissociation of the fentanyl molecule out of the receptor. 74

Here the molecular system has to overcome a high PMF energy barrier (up to about 15 75

Å away from the binding site). We will therefore have to determine the dissociation rate in a 76

different way. Once the binding rate is given and the binding affinity is known, the dissociation 77

rate can be calculated from the law of mass action. 78

2 Methods 79

The structure of the µ-opioid receptor was obtained from the RCSB database (PDB: 6DDF 80

[27]). Protonation states of the individual amino acid residues in the receptor were assigned 81

based on calculations at pH 5 and pH 7. The protonated and deprotonated forms of fentanyl 82

and NFEPP were sketched and parameterised using the CHARMM-GUI Ligand Reader & 83

Modeler [22]. 84

2.1 Molecular Simulations of Binding Modes 85

The protonated fentanyl was positioned into the µ-opioid receptor at pH 5 with the Autodock 86

program [35]. The docking calculations were based on the Gasteiger-Marsili charges [12]. Au- 87
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Figure 3: Our simulations take into account the µ-opioid receptor (secondary structure el-
ements) in a membrane (blue surface), the ligand (bonds and atoms), and explicit water
molecules (not shown in this figure).

togrid was used for grid preparation, with a grid spacing of 0.65 Å, that covered the entire 88

receptor. Ten docking runs were performed using Lamarckian genetic algorithm [36], with the 89

rates of gene mutation and crossover kept at 0.02 and 0.8, respectively for the LUDI scoring 90

function employed [3]. All other docking parameters were kept at their default values. The 91

ligand-receptor complex with most energetically favourable docking energy was selected for 92

further simulations. For similar starting conformations, the other ligands were aligned with the 93

docked protonated fentanyl using the RMSD Trajectory Tool of VMD [21]. The ligand-receptor 94

complexes were placed in 1-palmitoyl-2-oleoyl-sn glycerol-3-phosphatidyl choline (POPC) bi- 95

layer models using the CHAMM-GUI Membrane Builder [30] (see Fig. 3). MD simulations were 96

performed with GROMACS 2019.5 [1], using the CHARMM36m force-field for the ligands [13], 97

peptides [19] and lipids [23]. The CHARMM TIP3P water model [44] was used as an explicit 98

solvent. Sodium and chloride counterions were added to neutralize the excess charge and attain 99

a salt concentration of 0.15m. The particle mesh Ewald (PME) method [10] was employed to 100

calculate long-range Coulombic interactions, with a 1.2 nm cut-off for real-space interactions. 101

A force-switch function was implemented for the Lennard-Jones interactions, with a smooth 102

cut-off from 1.0 to 1.2 nm. The temperatures of ligand-receptor complex, membrane lipids, 103

and the water molecules and counterions were coupled separately and maintained at 310 K 104

using the Nosé-Hoover thermostat [18,38]. System pressure was maintained at 1 bar using the 105

Parrinello-Rahman barostat [39] with a semi-isotropic scheme, where pressure along x-y direc- 106

tions, and the z direction were coupled separately. The coupling constant and compressibility 107

of the barostat were kept at 5 ps and 4.5× 10−5 bar, respectively. The LINCS algorithm was 108

used to constrain the covalent bonds between hydrogen and other heavy atoms, allowing a sim- 109

ulation time-step of 2 fs [16]. The simulation systems went through successive minimization, 110

equilibration and production runs using the GROMACS scripts generated by the CHARMM- 111

GUI. First, the systems were energy minimized using 1000 steps of steepest descent algorithm, 112

followed by six-step equilibration runs. The first two runs were performed in the NVT (con- 113

stant particle number, volume, and temperature) ensemble and the remaining runs in the NPT 114

(constant particle number, pressure, and temperature) ensemble. Restraint forces were applied 115
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to the ligand, receptor, lipids, and water molecules, and, z-axis positional restraints were placed 116

on lipid atoms to restrict their motion along the x-y plane. These restraints were gradually 117

reduced during the equilibration process. This procedure leads to different binding modes for 118

the different setups, see Fig. 2. Ultimately, NPT production runs of 1 ns were performed for all 119

systems, with periodic boundary conditions along all three orthonormal directions. Production 120

run trajectories were saved every 10 ps and analysed with GROMACS analysis tools to generate 121

the interatomic distances. VMD software was used for visualization. 122

2.2 Metadynamics Simulations 123

A well-tempered metadynamics simulation [2] was performed on a system consisting of a proto- 124

nated fentanyl ligand and the µ-opioid receptor at pH 7, embedded in a POPC bilayer model. 125

Binding of the ligand at the receptor site was analysed along the funnel pathway [32] of a col- 126

lective variable (CV) of interest [29]. The z-axis component of the distance between the centre 127

of mass of the terminal carboxylic group carbon atom of ASP147 and the carbon atom be- 128

tween the two nitrogen atoms on the imidazole ring of HIS297, and the nitrogen atom that gets 129

protonated in fentanyl at appropriate pH, was chosen as the CV. A history-dependent biasing 130

potential is applied along the CV for a better sampling of the conformational space, compared 131

to a conventional unbiased MD simulation. Funnel restraint with a radius of 0.9 nm along the 132

xy plane restricts the CV to the region of interest and discourages extensive movement of the 133

ligand in the surrounding ionic aqueous environment. The simulation was performed by GRO- 134

MACS 2019.5, patched with PLUMED 2.6.0 plugin [5], using a six-step equilibration process 135

as described earlier for the unbiased MD simulations in Sec. 2.1, and with the same force-field 136

and other simulation parameters. Gaussian hills with an initial height of 2 kJ mol−1 were added 137

along the CV and rescaled with a biasing factor of 20 by the metadynamics algorithm. The 138

biasing potential was applied every 1 ps and the Gaussian hill width was kept at 0.1 nm. The 139

binding free energy profiles were generated using the sum hills function of PLUMED and 140

checked for convergence. The production run in a NPT ensemble was allowed to proceed till 141

100 ns. 142

2.3 The SQRA Method 143

We will compute binding rates on the basis of thermodynamics simulations which provide 144

ensemble-based statistical weights for molecular states. The most robust technique known to us 145

and perhaps even the only feasible method to directly relate statistical weights of intermediate 146

steps of a process with transition rates is the square-root approximation approach (SQRA) 147

[15,31]. In SQRA the system microstates are first clustered by k-means. Then, the proportion 148

of microstates belongs to the respective clusters is determined. Transition rates exist only 149

between spatially adjacent clusters. These rates are determined from the square root of the 150

ratio of the occupation numbers of the neighbouring clusters. 151

The basic idea behind this approach is the following, firstly, it is assumed that after the 152

ligand has reached the location inside the receptor where it “snaps in”, it passes through locally 153

equilibrated states. Regardless of how these ligand states are clustered, the system is locally 154

reversible (based on all state variables). In such an ensemble of molecular system states, the 155

number of ligands leaving a particular cluster at any (instantaneous) time is the same as the 156

number of ligands re-entering the cluster. This behaviour can be imagined as a symmetric 157

matrix. But in which transitions can only occur between clustered system states that are 158

adjacent. Secondly, it is assumed that the rate of transitions between clusters depends only on 159

the equilibrium occupation numbers of the clusters. Then, each entry in this symmetric matrix 160

would be a symmetric function of the cluster occupancy numbers. SQRA assumes that this 161
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function corresponds to the geometric mean of the clusters. 162

Heida et. al [14] have shown, that this type of discretization of molecular transitions con- 163

verges to a Fokker-Planck-Equation in the continuous case. Thus, we will compute this SQRA 164

matrix based on the given cluster occupation numbers and treat it as the rate matrix of the 165

molecular process. Then we will apply the PCCA+ method [28] to compute the kon rate of the 166

process based on a Galerkin projection of this matrix. 167

3 Resulting binding rates 168

Inflamed tissue is characterised in particular by the fact that the pH value is lower than that 169

of healthy tissue. Hence, the µ-opioid receptors in inflamed tissue (the ones intended to be 170

activated by an opioid) are exposed to an acidic environment, in contrast, the µ-opioid recep- 171

tors in the brain or gut (the ones not to be activated because of side effects) have a neutral 172

environment. 173

3.1 Thermodynamic Effects of pH Changes 174

In general, an acidic pH leads to the protonation of titratable chemical groups that have a pKa 175

value that is above the current pH value. This is not only the case for the opioid (fentanyl 176

or NFEPP) itself, but also for some of the amino acids of the receptor. Especially, histidine 177

with a pKa value of 6.04 is protonated in acidic, inflamed tissue. Fentanyl with a pKa value 178

of 8.4 is protonated in both acid and neutral millieu. NFEPP with a pKa value of 6.82 is 179

only protonated in acidic tissue and is largely deprotonated in neutral millieu. Because of the 180

order of the pKa values, there are three different scenarios for the binding of the opioid to the 181

receptor: 182

(S1 ) both the receptor histidines and the opioid molecule are affected by protonation, 183

(S2 ) the histidines are deprotonated, but the opioid is still protonated, 184

(S3 ) neither the histidines nor the opioid are protonated. 185

Each of these scenarios occurs with a certain statistical weight w1, w2, w3 as a function of 186

the pH value. Assuming independence between the protonation events, the weights can be 187

calculated from applying the definition of the pKa values: 188

w1(pH) :=
1

10pH−6.04 + 1
, (1)

w2(pH) :=
1− w1

10pH−pKaop + 1
, (2)

w3(pH) := 1− w1(pH)− w2(pH), (3)

where pKaop is the pKa value of the opioid to be analysed. Figures 4 and 5 show the statistical 189

weights of the three scenarios in relation to the pH value for fentanyl and NFEPP. 190

3.2 Identification of Activation Barriers 191

We performed MD simulations (see Sec. 2) for the three different scenarios and for both of 192

the opioids. It is known, that the activation of the µ-opioid receptor happens by the opioid 193

docking inside the receptor so that it is positioned between the amino acid histidine (HIS297) 194

and aspartate (ASP147). The receptor is activated by pushing the corresponding helices apart. 195

The opioid binds to ASP147 through electrostatic interaction. Thus, it has to be protonated 196
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Figure 4: Statistical weights of the three scenarios for fentanyl. Solid line: Histidines and
fentanyl are protonated. Dashed line: Only fentanyl is protonated. Dash-dotted line: Neither
fentanyl nor histidines are protonated.

Figure 5: Statistical weights of the three scenarios for NFEPP. Solid line: Histidines and
NFEPP are protonated. Dashed line: Only NFEPP is protonated. Dash-dotted line: Neither
NFEPP nor histidines are protonated.

to be able to activate the receptor. In our MD simulations, we focused on the interaction 197

behaviour of the two opioids with respect to these two amino acids. Figures 6 and 7 show 198

the statistical distribution of the distances of the opioid to HIS297 and ASP147 during the 199

simulation of the three scenarios described above for fentanyl and NFEPP, respectively. 200

Comparing the figures, we see that both ligands exhibit a similar qualitative behaviour. In 201

particular, for both ligands, the simulations from S1 show that the opioid in its binding state 202

comes close to the aspartate but not close to the (equally charged) histidine. When only the 203

opioid is protonated, S2, the binding mode is different, and the opioid approaches the histidine 204
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(S1) HIS + FEN 
(S2) FEN 
(S3) neither 
Binding region

Figure 6: Distance distributions of fentanyl to HIS297 and to ASP147. Crosses: Histidines and
fentanyl are protonated. Boxes: Only fentanyl is protonated. Diamonds: Neither fentanyl nor
histidines are protonated. Grey rectangular region: binding region.

(S1) HIS + NFEPP 
(S2) NFEPP 
(S3) neither 
Binding region

Figure 7: Distance distributions of NFEPP to HIS297 and to ASP147. Crosses: Histidines and
NFEPP are protonated. Boxes: Only NFEPP is protonated. Diamonds: Neither NFEPP nor
histidines are protonated. Grey rectangular region: binding region.

(in an euclidean sense) more than the aspartate. In S3, the opioid does not come close to the 205

aspartate nor to the histidine and, thus, does not activate the receptor. 206

Besides this qualitative equivalence of the pH-dependant behaviour of fentanyl compared 207

to NFEPP, there are also some differences in the two figures. In S1, there is a competition 208

between the positive charge of the HIS297 and the positive charge of the opioid that hinders 209

the opioid from reaching its binding position. There is a clear free energy barrier visible by the 210
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low density of sampling points between the activated state and the “pre”-activated state. It 211

can therefore be assumed, that the binding rate is low (but not zero) in this case. In S2, this 212

free energy barrier is also visible for the opioid NFEPP, but not for fentanyl. Thus, we assume, 213

that the binding rate of fentanyl is higher than the binding rate of NFEPP in this case. In 214

S3, the binding rate of fentanyl is assumed to be almost zero. The simulation does not show 215

any binding position. Whereas, there might be a very small probability for NFEPP to reach a 216

binding position, because the simulation shows more states which approach the “pre”-activated 217

positions. 218

3.3 Turning Thermodynamics Into Kinetics 219

For the computation of the on-rate kon, we first determine a unitless pH-dependent rate κon. 220

For this we need the cluster occupancy numbers for each scenario separately, i.e., we perform a 221

clustering of the states. These clusters (6 clusters for fentanyl and also for NFEPP) stem from 222

a k-means approach applied to all data points from the three simulations. Six is the smallest 223

number of k-means clusters, where we can distinguish between activated, “pre”-activated and 224

inactive states of the system. In order to compare two different (monovalent) binding modes, 225

we use the mathematical trick from multivalent binding rate estimations [43], where the 2D- 226

coordinates of the data points representing our system microstates are given by, firstly, the 227

minimum of the distance between opioid and HIS297 compared to the distance between opioid 228

and ASP147, and secondly, by the maximum of these two distances. In this way we get a 229

6-dimensional vector v1, v2, v3 of occupation numbers for each scenario. 230

In order to now derive a pH-dependent 6×6-matrix of SQRA-estimated transition rates from 231

our MD simulations, we have to take the weights (Fig. 4 and 5) of the three different scenarios 232

into account. For a given pH value we take the weights w1, w2, w3 and multiply them with the 233

occupation number vectors v = w1v1 + w2v2 + w3v3. The resulting vector v defines the entries 234

of the 6× 6-rate matrix by applying SQRA. For estimating the overall transition rate, between 235

two macrostates (from inactivated to activated), we compute the Galerkin projection [28] of 236

the SQRA 6×6-rate matrix to a 2×2-projection and extract the on-rate from the off-diagonal. 237

The result is shown in Fig. 8. It is called κon, because there is still one piece of information 238

missing. 239

The only missing quantity in Fig. 8 is the scaling of the y-axis (i.e., its inverse time unit). 240

This is always the case for SQRA, because it is not possible to derive the time unit from the 241

estimate. However, Fig. 8 reflects exactly our qualitative observations based on the simulation 242

data. It is also in good accordance with experimental findings, that in healthy tissue NFEPP 243

is much less able to activate the µ-opioid receptor than fentanyl and that in inflamed tissue 244

fentanyl and NFEPP have a similar pain relief effect [42]. However, recent MD simulations [24] 245

for the receptor in inflamed tissue, S1, imply that self-activation of the µ-opioid receptor may 246

happen more often at low pH. Increased pain suppression may therefore result from self- 247

activation and may not necessarily be due to the opioid binding. Even the off-rates of opioids 248

may be increased at low pH because of (+,+)-Coulomb repulsion effects. Nevertheless, the 249

self-activation effect is independent from the opioid and, thus, still the curves in Fig. 8 imply, 250

that NFEPP and fentanyl should be comparable in receptor activation at low pH due to our 251

simulations. However, this also means that fentanyl should have a stronger overall pain relief 252

effect at low pH than NFEPP, because it activates µ-opioid receptors in the periphery (the 253

inflamed tissue) as well as in the brain, whereas NFEPP only acts at the inflamed periphery. 254

This difference has also been observed experimentally [41]. To now determine the time unit of 255

the y-axis in Fig. 8, we use a result from the literature that says that fentanyl at pH 7.4 has an 256

off-rate of koff = 5.8× 10−7 ms−1 [33]. We also know from literature [40], that at pH 7.4 and 257

at a fentanyl concentration of 1.1× 10−3 µm half of the receptors are bound. This means that 258
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Figure 8: Taking the results from SQRA into account and using the statistical weights of the
three scenarios in Fig. 4 and 5 provides a quantitative picture of the changes of binding rates
of fentanyl (dashed line) and NFEPP (solid line). Left axis: κon from SQRA without scaling.
Right axis: kon by scaling at pH 7.4.

kon can be calculated for this specific pH via the law of mass action 259

koff
kon

=
[R][L]

[RL]
,

where [R] is the concentration of unbound receptors, [RL] is the concentration of bound 260

receptors and [L] is the concentration of the ligand (fentanyl). Then, the on-rate for fentanyl 261

at pH 7.4 is given by, 262

kon =
koff

1.1× 10−3 µm
= 5.3× 10−4 ms−1 µm−1. (4)

This defines the scaling of the y-axis, because at pH 7.4 the y-value of the fentanyl curve 263

should be equal to this on-rate. Figure 8 shows that κon for fentanyl at pH 7.4 was found to 264

be 0.1882 (unitless). Hence, scaling κon by c = 2.82× 10−3 ms−1 µm−1 gives us kon in Eq. (4). 265

With the scaling, kon = c · κon, we can derive the kon are for the desired pH and opioid from 266

Fig. 8. 267

4 Application of the MD derived Binding Kinetics 268

Pharmacodynamic models are mathematical models used to study drug- and disease-dynamics. 269

These mathematical models use the kinetic rates of the drug- target interactions to predict the 270

efficacy of a drug and its putative effects [4, 9, 11, 20, 25]. In practise, these kinetic rates come 271
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from in vitro studies which are intricate and highly technical, resulting in only specific conditions 272

being explored. Hence, deriving kinetic rates from MD simulations is a novel alternative, with 273

the potential to explore multiple scenarios and conditions. As a proof-of-concept, we built 274

a pharmacodynamic model [7], using MD derived rates, to reproduce the in vitro competitive 275

binding assay performed by Spahn et al. [40], in which they determined the inhibition constants 276

(Ki) of fentanyl and NFEPP for increasing pH levels. 277

The competitive binding assay in Spahn et al. involved the application of a mixture of a fixed
concentration of radioactive DAMGO ligands with variable concentration of competitive ligands
to MOR transfected HEK239 cells. After an incubation period, the unbound ligands were
washed away. Then the amount of displaced radioactive ligands were calculated by observing
the reduction in radioactive decay. The experiment was repeated for different pH regimes,
competing ligands (fentanyl and NFEPP), and incubation times. The pharmacodynamic model
for this assay is given by the following system of ordinary differential equation (ODEs):

d [R](t)

dt
= k?,pHoff [RL?](t) + k•,pHoff [RL•](t) (5)

−
(
k?,pHon [R](t) [L?](t) + k•,pHon [R](t) [L•](t)

)
,

d [L?](t)

dt
= k?,pHoff [RL?](t)− k?,pHon [R](t) [L?](t), (6)

d [L•](t)

dt
= k•,pHoff [RL•](t)− k•,pHon [R](t) [L•](t), (7)

d [RL?](t)

dt
= k?,pHon [R](t) [L?](t)− k?,pHoff [RL?](t), (8)

d [RL•](t)

dt
= k•,pHon [R](t) [L•](t)− k•,pHoff [RL•](t), (9)

where [R] is the free receptor concentration; [L?] is the concentration of the radioactive ligand 278

(DAMGO); [L•] is the concentration of the completing ligand of interest (fentanyl or NFEPP); 279

[RL?] is the concentration of the radioactive ligand bound receptor concentration; and lastly, 280

[RL•] is the concentration of the ligand of interest bound to receptor. The kinetic rates for the 281

ligands at the different pHs are given in Table 1. The superscript of the kinetic rates indicates 282

the ligand and the pH level the rate is associated to. Verbosely, the ligands, [L?] and [L•], 283

compete for free receptors, [R], to convert them into bound ligand-receptor complexes , [RL?] 284

and [RL•], at rates k?,pHon and k•,pHon , respectively. The bound receptor-ligand complexes, [RL?] 285

and [RL•], dissociate at rates k?,pHoff and k•,pHoff , respectively. 286

Before analysing the results of the pharmacodynamic model, we will discuss the kinetic rates 287

which we deduced in Table 1. Firstly, Spahn et al. showed that for NFEPP, the inhibition 288

constant (Ki = koff/kon) increases approximately 2.4 fold when the pH is increased from 5.5 to 289

7.4. However, they could not determine the kinetic rates which induced this fold change. Using 290

the kinetic rates from the MD simulations, we could discern that this increase in the inhibition 291

constant is due to a 5.24 fold decrease in kon and a 2.12 fold increase in koff . Furthermore, 292

Spahn et al. also showed that there were no significant changes in the inhibition constant of 293

fentanyl when pH was increased from 5.5 to 7.4. At first glance, it appears as if pH has no 294

effect on the function of fentanyl. However, when we studied the kinetic rates through the MD 295

simulations, we could see that both the kon and koff rate increase approximately 8 fold as the 296

pH is increased from 5.5 to 7.4. Since both rates change in parallel, we do not see significant 297

changes in the inhibition constants, as inhibition constant in the ratio of the two. 298

Using the parameters derived in Table 1, we evolved the pharmacodynamic competitive 299

binding model (6–9) inline with the setup by Spahn et al. [40]. Using the EC50 of DAMGO 300

given in Spahn et al., we estimated the receptor concentration to be approximately 0.005 nm. 301

The initial DAMGO ligand concentrate was set to 4 nm as performed in Spahn et al. [40]. We 302
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pH 5.5 pH 6.5 pH 7.4 Units
DAMGO

kon 2.04× 10−4 (∗) 4.97× 10−4 (∗) 4.46× 10−4 (∗) µm−1 ms−1

koff (†) (†) 5× 10−7 (‡) ms−1

Kd 2.45× 10−3 1.01× 10−3 1.12× 10−3 µm
Fentanyl

kon 7.4× 10−5 3.08× 10−4 5.3× 10−4 µm−1 ms−1

koff 6.79× 10−7 4.25× 10−7 5.8× 10−7 (‡) ms−1

Ki 9.18× 10−4 1.38× 10−3 1.06× 10−3 µm
NFEPP

kon 8.45× 10−5 6.5× 10−5 1.61× 10−5 µm−1 ms−1

koff 6.13× 10−7 2.4× 10−7 2.88× 10−7 ms−1

Ki 7.35× 10−3 3.67× 10−3 1.79× 10−2 µm
(?) The kon rate derived using koff/Kd

(†) The koff rate at pH 7.4 was used
(‡) The koff rates given in Livingston et al. [33]
( ) Ki, Kd rates given in Spahn et al. [40] for incubation time of 90 min
(kon) rates deduced from Fig. 8
(koff ) rates derived using Ki × kon

Table 1: Kinetic Rates deduced from literature and MD simulations

considered eight different initial concentrations of the competing ligand: 5 µm, 1 µm , 0.1 µm, 303

0.05 µm, 0.01 µm, 0.005 µm, 0.001 µm, 5× 10−4 µm, and 1× 10−8 µm. The system was evolved 304

to time t = 90 min. This setup was repeated for the competing ligands fentanyl and NFEPP 305

at pH levels of 5.5, 6.5, and 7.4. 306
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Figure 9: (dashed red line) The pharmacodynamic model of the competitive binding assay
using the parameters from Table 1. (blue dot) Data from the in vitro competitive binding
assay by Spahn et. al. [40], MEAN (± STD).
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In Figure 9 the solution of the pharmacodynamic competitive binding model is overlaid on 307

the in vitro data from Spahn et al. [40]. We see that the pharmacodynamic model captures 308

the ligand competition for concentrations above 0.005 µm. Also the general trend is captured 309

well by the model. However, the model does poorly in capturing the competitive interaction 310

at lower concentrations of the competing ligand. This can be attributed to the approximations 311

which were made to derive the DAMGO kinetics. 312

In the lower concentrations, DAMGO kinetics are dominant and the dynamics in this con- 313

centrations range is sensitive to the accuracy of the kinetic rates. Here we only presented a 314

proof-of-concept to demonstrate the application of the kinetic rates which we derived from MD 315

simulations. In this example, we used the kon rates derived from MD simulations, but the koff 316

rates were deduced from the literature. The natural future research direction would be to for- 317

mulate a method to estimate the koff rates using the MD simulations. Then, having both kon 318

and koff rates would greatly aid in the study of drug-target interactions and their downstream 319

effects. 320

5 Discussion/Conclusion 321

Our novel mathematical approach, which is to combine localised molecular simulations of 322

ligand-receptor interactions in different chemical scenarios with the statistical occurrence of 323

these scenarios, allows an overall view of the pH-dependent kinetics of the system. Even 324

though the effect of pH on these ligands’ binding has been investigated in vitro, we aimed 325

to give a dynamical interpretation to explain the experimentally observed effects. From our 326

MD simulations, we observed that when the amino acid histidine was protonated (describing 327

a low pH scenario) or fentanyl was deprotonated (describing a high pH scenario), the fentanyl 328

ligand was positioned further away from its normal binding position near HIS297. This could 329

be attributed to repelling or non-attracting Coulomb interactions between the ligand and the 330

amino acid. This could suggest that fentanyl mainly activates central µ-opioid receptors in the 331

brain, when the pain-causing tissue is inflamed and has a low pH value. In contrast to fentanyl, 332

our simulations indicate that NFEPP has a lower preference to bind at pH 7 than at pH 5. 333

This drug molecule was designed for peripheral binding in inflamed tissue (low pH) and avoids 334

receptor activation in the brain (neutral pH). However, from our analysis, we could see that 335

the association rate of NFEPP decays nearly 5-fold when the pH level increases by 2. This 336

suggests that perhaps, as inflamed tissue is rising in its pH level due to healing, an increased 337

concentration of the ligand has to be administered for the same efficacy, indicating to possible 338

mixed opioid treatment strategies [41,42]. 339

Our novel approach has four key assumptions at its core. Firstly, we extract kon-rates from 340

localised simulations of the system where the ligand is close to its binding position. The assump- 341

tion is that this last “snap in” step is the rate-determining process for the on-rate. Secondly, 342

we applied the SQRA-method for the rate estimation. This method relies on a clustering of the 343

system states. We assumed that in our clustering, the activation barriers become visible and 344

thus, comparisons between different chemical environments can be done. Thirdly, we assumed 345

that the off-rate of the system is much smaller than the on-rate, which justified its compu- 346

tation on the basis of experimental findings rather than using molecular simulations. Lastly, 347

the pH-dependence of the statistical weights–like in most cases in molecular simulations–is 348

based on mathematical laws which assume well-stirred reaction tubes, which is clearly not the 349

case in human bodies. However, animal testing with fentanyl and its derivates indicate that the 350

pH-dependence of these drug molecules coincide with their (well-stirred reaction tube) pKa val- 351

ues [42]. Our simulations and pharmacodynamical interpretations may be a good explanation 352

for this observation. 353

A naturally ensuing future research direction is to start relaxing some the assumptions. 354
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For example, adding in new scenarios such that the koff rate can also be derived by the cur- 355

rent pipeline. Furthermore, the conditions that led to the use of the SQRA method can be 356

supplemented by other physical or physico-chemical approaches, so that refined rates can be 357

obtained. Since the SQRA method provides a Markov model, this method can also be combined 358

with other methods that generate Markov models, see e.g. cf. [37], yielding an approach that 359

would allow to abstain from the assumption of the ”snap-in step” being rate-limiting. We have 360

demonstrated that mathematically derived rates can be applied to interpret pharmacodynamic 361

measurements. Thus, it is possible to directly correlate pharmacodynamics with the variation 362

of the chemical environment, and consequently, with the variation of binding modes. Further 363

research in this direction will allow for redesigning molecular structures in such a way that the 364

“pharmacodynamical response” to the drug design can be anticipated. 365
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