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Triangulated Manifolds with Few Vertices:
Centrally Symmetric Spheres and Products of
Spheres

Frank H. Lutz

Let M be a simplicial manifold with n vertices. We call M centrally symmetric
if it is invariant under an involution I of its vertex set which fixes no face of
M. Obviously, the number of vertices of a centrally symmetric (triangulated)
manifold is even, n = 2k, and, without loss of generality, we may assume that
the involution is presented by the permutation I = (1 k+1)(2 k+2)--- (k 2k).
The boundary complex dC£ of the k-dimensional crosspolytope C£ is clearly
centrally symmetric with respect to the standard antipodal action, and a subset
F C {1,2,...,2k} is a face of 9C2 if and only if it does not contain any
minimal non-face {i,k + i} for 1 < i < k. Hence, every centrally symmetric
manifold with 2k vertices appears as a subcomplex of the boundary complex
of the k-dimensional crosspolytope.

Free Zs-actions on spheres are at the heart of the Borsuk-Ulam theorem,
which has an abundance of applications in topology, combinatorics, functional
analysis, and other areas of mathematics (see the surveys of Steinlein [50],
[51], and the recent book of Matousek [33]). Centrally symmetric spheres
therefore constitute an important class of triangulated spheres for which we
have a strong interest in understanding their combinatorial properties, like the
range of possible f-vectors, or even more basic, what kind of examples are
there at all?

Centrally symmetric products of spheres are the next more general class of
centrally symmetric manifolds. They show that certain lower bounds on the
numbers of vertices of centrally symmetric manifolds are tight.

The aim of this paper is to give a survey of the known results concerning
centrally symmetric polytopes, spheres, and manifolds. We further enumerate
nearly neighborly centrally symmetric spheres and centrally symmetric prod-
ucts of spheres with dihedral or cyclic symmetry on few vertices, and we present
an infinite series of vertex-transitive nearly neighborly centrally symmetric 3-
spheres.



1 General Properties of Centrally Symmetric Spheres

One way to obtain centrally symmetric spheres is as boundary complexes of
centrally symmetric simplicial polytopes. A d-dimensional polytope P C R? is
centrally symmetric if we can translate P such that P = —P. If d > 0, then,
by convexity, the involution I : # — —z of R? does not fix any non-trivial
face of P, and P has an even number of vertices, n = 2k. Regular 2k-gons,
the icosahedron, and crosspolytopes C’kA are immediate examples of centrally
symmetric simplicial polytopes. The dodecahedron and d-dimensional cubes
are centrally symmetric, but not simplicial.

Not every centrally symmetric sphere needs to be polytopal, and even if so,
resulting realizations need not be centrally symmetric. Centrally symmetric
simplicial (d — 1)-spheres have at least 2d vertices, with the boundary complex
AOC% of the d-dimensional crosspolytope C2 as the unique centrally symmetric
(d — 1)-sphere with exactly 2d vertices.

We recall that for the class of all simplicial spheres, the upper bound the-
orem of McMullen [34] for polytopal spheres and of Stanley [48] for simpli-
cial spheres (see Novik [36] for generalizations to odd-dimensional and certain
even-dimensional simplicial manifolds) as well as the lower bound theorem of
Barnette ([4, p. 354], [5]) and Kalai [18] give restrictions on the numbers f; of
i-dimensional faces of a simplicial sphere for 0 < i < d—1: A simplicial (d—1)-
sphere with n vertices has at most as many i-faces as the boundary sphere of
the corresponding cyclic d-polytope Cy(n) and at least as many i-faces as the
boundary sphere of a stacked d-polytope on n vertices. In contrast, much less
is known on f-vectors f = (fo,..., fa—1) of centrally symmetric d-polytopes
respectively (d — 1)-spheres.

Stanley [49] proved lower bounds (conjectured by Bérdny and Lovész [3]
and by Bjorner) on the numbers of faces of d-dimensional centrally symmetric
polytopes with n = 2k > 2d vertices (see Novik [37] for an alternative and
more geometric proof):

X d d
o> 9itl — <i<d-—
fi>2 <Z_+1)+2(k} d)<i)’ 0<i<d—2,

fa—1 > 244+ 2(k — d)(d - 1).

These bounds are sharp for stacked centrally symmetric d-polytopes, which are
obtained from the d-dimensional crosspolytope by stellarly subdividing n — k
successive pairs of antipodal facets.

A simplicial (d—1)-sphere S is [-neighborly if every set of [ (or less) vertices
forms a face of S. The d-simplex A, (respectively, its boundary 0A ) with d+1
vertices is (d + 1)-neighborly, and for n > d + 2, the cyclic polytope Cy(n) is
LgJ—neighborly7 but not (L%J + 1)-neighborly. Simplicial spheres (respectively,
simplicial polytopes) are called neighborly if they are L%J—neighborly.

Analogously, a centrally symmetric (d — 1)-sphere S with n = 2k vertices
is centrally I-neighborly if every set of [ vertices, which does not contain a



minimal non-face {i,k + i} for 1 < i < k, is a face of S, i.e., if S has the
(I —1)-skeleton of the crosspolytope C2. The d-dimensional crosspolytope C4
with 2d vertices is centrally d-neighborly. A centrally symmetric (d — 1)-sphere
with n = 2k vertices is nearly neighborly if it is centrally ng-neighborly7 ie., if
fi =21 (zfl) fori < %—1, with f; being determined by the Dehn-Sommerville
equations for ¢ > % - 1.

Along the lines of the proof of the upper bound theorem for simplicial
spheres, Adin [1] and Stanley (cf. [16]) showed independently that a centrally
symmetric simplicial (d—1)-sphere with 2k vertices has at most as many i-faces
as a nearly neighborly centrally symmetric (d—1)-sphere with 2k vertices would
have, if such exists. Novik [38] extended this result to all odd-dimensional
centrally symmetric manifolds; see also [39].

The boundaries of regular polygons with 2k > 4 vertices and suspensions
thereof with 2k + 2 vertices provide examples of centrally symmetric 1- and
2-spheres for all possible numbers of vertices. Since centrally 1-neighborliness
is a trivial property, every centrally symmetric 2-sphere is nearly neighborly,
and, moreover, is realizable as the boundary complex of a centrally symmetric
3-polytope; see Mani [32].

Griinbaum observed [11, p. 116] that the centrally symmetric 4-polytope
G3.440 = conv{ztey,...,es, 1} C R* on 2-4 + 2 vertices is simplicial and
nearly neighborly, but that there are no nearly neighborly centrally symmet-
ric 4-polytopes with n > 12 = 2 -4 + 4 vertices. In fact, McMullen and
Shephard [35] proved that centrally symmetric d-polytopes with n > 2d + 4
vertices are at most centrally L%J—neighborly. Hence, there are no nearly
neighborly centrally symmetric d-polytopes with n > 2d + 4 vertices for all
d > 4. According to Pfeifle [40, Ch. 10] also nearly neighborly centrally sym-
metric d-dimensional fans on 2d + 4 rays do not exist for all even d > 4 and
all odd d > 11. Schneider [42] gave an asymptotic lower bound for the maxi-
mal possible | = I(d, s) for which there are centrally I-neighborly d-polytopes
with 2(d + s) vertices. However, Burton [9] showed that, for fixed dimension
d > 4, centrally symmetric d-polytopes with sufficiently many vertices cannot
be centrally 2-neighborly.

In contrast to the situation for centrally symmetric polytopes, Griinbaum
constructed nearly neighborly centrally symmetric 3-spheres with 12 and 14
vertices; see [10], [12], and [13].

Centrally Symmetric Upper Bound Conjecture (Griinbaum [13])
There are nearly neighborly centrally symmetric (d — 1)-spheres with n ver-
tices for all d > 2 and even n = 2k > 2d.

Since being centrally ng-neighborly is preserved under suspension and since
4] = |4 for all even d, it suffices to construct odd-dimensional nearly
neighborly centrally symmetric (d — 1)-spheres for all even numbers n > 2d
of vertices in order to verify Griinbaum’s centrally symmetric upper bound

conjecture.



Griinbaum’s conjecture is trivial for 1- and 2-spheres, but also holds for 3-
and 4-spheres.

Theorem 1 (Jockusch [16]) There is an infinite family J5, k > 4, of
nearly neighborly centrally symmetric 3-spheres with 2k wvertices. Moreover,
the suspensions SO« Js5. form a family of nearly neighborly centrally symmetric
4-spheres with 2k + 2 vertices for k > 4.

Jockusch constructs the series J5 by induction. He starts with the bound-
ary complex Jg’ = 0% of the 4-dimensional crosspolytope with 8 vertices. For
the induction step he chooses a 3-ball By, with image BQIk under the central
symmetry I such that their intersection Ba, N B2, does not contain any facet
of JQP}C. He then removes the balls Bg, and Bék from JQ?;C and sews in two
new balls (2k + 1) * 9By, and (2k + 2) * 9B3, to obtain the 3-sphere Jgi .
The way Jockusch chooses the balls Bgy (the balls Bgy and Bék contain all
the vertices of J5, but have no interiour edges, respectively), he ensures that
Js 4o Temains centrally symmetric and nearly neighborly in every step.

Theorem 2 (McMullen and Shephard [35]) For even d, let the polytope
HQdd+2 = conv(Ag U —Ay) be the joint convex hull of a regular d-simplex
Ay (with center 0) and its image —Ag under the map I : x — —x. Then
H gd 1o 18 nearly neighborly and has the group Say1 X Za as its vertex-transitive
geometric automorphism group.

Griinbaum [11, p. 116] has shown that there is only one combinatorial
type of a nearly neighborly centrally symmetric 4-polytope with 10 vertices,
ie., G3.,., and H3, , are combinatorially isomorphic (in fact, for all even d
Gg,d+2 := conv{tey,...,+eq, £1} is combinatorially isomorphic to H§d+2).

d+1
2(d+1)+2

ever, conv((Ag U —Ag) U {Feqs1}) C R is a nearly neighborly centrally
symmetric (d + 1)-dimensional polytope on 2d + 4 vertices with boundary
dconv((AgU—Ag) U{xeq1}) =S« HS .

If d is even, then, on the combinatorial level, the sphere 0H gd 4o can be
obtained from the boundary complex 8C’dA of the crosspolytope C’dA with 2d
vertices by Jockusch’s construction: We start with 8CdA and compose a sim-
plicial ball Byy as follows. Let the (d — 1)-simplex 1---d belong to Bsg and
also all d-simplices 1---kf - k:]I -++d, where for j =1,..., % the numbers
1 <k < ... < kj <d are replaced by their images under the involution
I=(1d+1)(2 d+2)---(d 2d). This collection of simplices Bsy forms indeed
a ball (with boundary consisting of all (d—2)-faces 1---k{ ...5... k(ld_Q)/Q ced
with vertex s € {1,...,d}, s # k;, deleted). Moreover, Bay and B3, have the
desired property that

In odd dimensions d 4+ 1 the polytope H is not simplicial. How-

e every i-face, 0 < i < L%J — 2, of 8CdA is contained in the boundaries of
the two balls,



e but no ([ 4] — 1)-face of 9CS occurs as an interior face of the two balls.

If we remove the balls Bsy and Béd from aCdA and sew in the new balls
(2d + 1) x OBaq and (2d + 2) * OBL,, then the resulting sphere is centrally
symmetric and nearly neighborly. In fact, it is isomorphic to 0 H 2dd to

Besides the odd-dimensional polytopal spheres 0H gd 4o, Bjorner, Paffen-
holz, Sjostrand, and Ziegler [6] have recently constructed asymtotically many
even-dimensional non-polytopal nearly neighborly centrally symmetric (d—1)-
spheres with 2d + 2 vertices that are Bier spheres.

Let us summarize the unsatisfactory present situation that we have for
centrally symmetric polytopes and spheres:

Stanley [49] (and Novik [37]) proved a lower bound theorem for cen-
trally symmetric polytopes, but not for centrally symmetric spheres.

Grinbaum’s centrally symmetric upper bound conjecture [13] might
well hold for spheres (but is wrong for polytopes).

There are nearly meighborly centrally symmetric d-polytopes with
2d+2 vertices (McMullen and Shephard [35]) and nearly neighborly
centrally symmetric 3-spheres with n = 2k > 8 wvertices (Jockusch
[16]), but not much is known beyond these examples.

According to Burton [9], centrally symmetric d-polytopes with suf-
ficiently many vertices cannot be centrally 2-neighborly.

In view of the result of Burton, presently not even a good guess for an upper
bound conjecture for centrally symmetric polytopes is available. Moreover, we
severly lack constructions that yield centrally symmetric polytopes or spheres
with many faces.

2 Enumeration Results for Nearly Neighborly Spheres

One approach to obtain nearly neighborly centrally symmetric spheres, at least
on few vertices, is by computer enumeration. In [7], combinatorial 3-manifolds
are enumerated up to 10 vertices.

Theorem 3 [7] There are exactly two non-isomorphic nearly neighborly cen-
trally symmetric 3-spheres with n = 10 vertices, the Griimbaum sphere G, and
the Jockusch sphere J3.

With the present enumeration techniques, an enumeration of all nearly
neighborly centrally symmetric 3-spheres with 12 vertices is already far out
of reach. However, results for larger numbers of vertices can be achieved by
restricting the enumeration to more symmetric triangulations.

In [27] we enumerated combinatorial 3-manifolds with a vertex-transitive
automorphism group on up to 15 vertices and found, besides C% and the



Griinbaum sphere G3,, two vertex-transitive nearly neighborly centrally sym-
metric 3-spheres with 12 vertices and one with 14 vertices. Apart from one
example with 12-vertices, these spheres have a transitive cyclic automorphism
group. It therefore seemed promising to search for nearly neighborly centrally
symmetric spheres with a vertex-transitive cyclic (or dihedral) group action on
more vertices and in higher dimensions d.

The standard dihedral and cyclic group action on the set {1,...,2k}, with
generators ag,, = (123...2k) and bop = (1 2k)(2 2k—1)...(k k+1) of Dg =
(agk, bag) and Zaoy, = (agk), respectively, bring along a large number of small or-
bits of (d+1)-sets. However, many of these orbits can be neglected if we are in-
terested in centrally symmetric triangulations only:
We delete all orbits containing facets I for which F N F! # (), with respect
to the involution I = (12---2k)¥ = (1 k+1)--- (k 2k), in a preprocessing step
before starting the enumeration program MANIFOLD_VT [29]. Every nearly
neighborly centrally symmetric example that we find we label with a unique
symbol fmngi/ “Y denoting the z-th isomorphism type of a nearly neighborly
centrally symmetric d-sphere listed for the dihedral/cyclic group action on
n = 2k vertices. For fixed d and n = 2k, we first process the dihedral and
then the cyclic action. The described search was carried out in [27, Ch. 4] for
3-spheres with up to 16 vertices and has since then be extended to 22 vertices.

Table 1: Nearly neighborly centrally symmetric spheres with cyclic symmetry.

d\n 6 8 10 12 14 16 18 20 22
2 1 0 0 0 0 0 0 0 0
3 1 1 1 1 5 10 9 12
4 - 1 0 0 ? ? ? ?
5 - - 1 2 3 ? ? ?
6 - - - 1 0 ? ? ?
7 - - - - 1 12 ? ?

Theorem 4 There are nearly neighborly centrally symmetric 3-spheres with
a vertex-transitive cyclic group action on n = 2k vertices for 4 < k < 11.
Moreover, there are nearly neighborly centrally symmetric d-spheres with a
vertez-transitive cyclic group action on n = 2k wvertices for (d,n) = (5,14),
(5,16), (7,18), but none for (d,n) = (4,12), (4,14), (6,16). (Table 1 gives the
respective numbers of spheres found by enumeration.)

If d = 2, then the boundaries of the tetrahedron, the octahedron, and the
icosahedron are the only vertex-transitive triangulations of the 2-sphere S2: By
Euler’s formula, fo— f1+ f2 = 2, and double counting, 2 f; = 3 f2, it follows that
every triangulated 2-sphere with n vertices has f-vector f = (n,3n—6,2n—4).
If the triangulation is vertex-transitive, then every vertex has the same number,



say ¢, of neighbors and is contained in exactly ¢ triangles. Double counting
yields 2f1 = nq, or, equivalently, (6 — ¢)n = 12. The last equation has three
non-negative solutions (n,q) = (4,3), (6,4), and (12,5). The only possible
examples corresponding to these values are the boundaries of the tetrahedron,
octahedron, and icosahedron. In particular, it follows that the boundary of the
octahedron is the only centrally symmetric 2-sphere with a vertex-transitive
cyclic group action.

Centrally Symmetric Cyclic Upper Bound Conjecture For all odd di-
mensions d —1 > 1 and even n = 2k > 2d, there is a nearly neighborly
centrally symmetric (d — 1)-sphere with a vertez-transitive cyclic group action
on n vertices.

The conjecture is trivial for d—1 = 1 and clearly implies Griinbaum’s upper
bound conjecture for centrally symmetric spheres in odd, but also in even
dimensions. (The latter follows by suspending the respective odd-dimensional
examples.)

Conjecture 5 If d is even, then the boundary complex of the d-dimensional
crosspolytope on n = 2d wvertices is the only nearly neighborly centrally sym-
metric d-sphere with a vertex-transitive cyclic group action.

In Table 2, we list some of the spheres that we found by enumeration. The
complete list of spheres is available online at [28]. If a sphere is centrally I-
neighborly, i.e., if it has the (I—1)-skeleton of the corresponding cross-polytope,
then we display the entry f; in italics (the entry n = fj of the f-vector is listed
separately in Column 2 of the table). In Column 5 we list the respective orbit
generators together with the corresponding orbit sizes as subscripts.

For some of the examples their full combinatorial automorphism group is
larger than the dihedral or cyclic symmetry, indicated by the superscript di or
cy in Table 2. However, only few of the examples admit a dihedral symmetry.



Table 2: Nearly neighborly centrally symmetric spheres with dihedral/cyclic group action.

n f-vector Type List of orbits Remarks
6 (12,8) 2 6% 1236 1354 oCe,
[27, 261"]
8 (24,32,16) 3.8¢ 12345 12475 8C4A3, %19;
[277 '81 ]

10 (40,60,30) 3 104 123419 124519 12581 [27, 310%?)
12 (60,96,48) 3,125 123415 124612 1261115 1351012 CS3,, 127, %121]
14 (84,140,70) 3,145y 123414 124514 1251014 1261014 1261214 [27, 3141]
16 (112,192,96) 3.165Y 123416 124616 126816 1281516 1351416 13101316 CS3s, [31, 316 5]

3.165Y 123416 124816 126816 1261516 135716 1381016 [31, *16 %)

3.16%Y 123416 124816 1281516 1351216 1351416 1371416 [31, 16 1]

3,165 123416 1241516 135716 1361016 1371416 13101316 [31, 16 ¢3)

3,165 123716 123816 1261516 1281516 135716 13101316 [31, 2168°
18 (144,252,126) 3,185 123415 124515 125615 1261215 128125 1281515 1591318

3.185Y 123415 124815 1281215 12121718 1371415 1471115 1471415

5 185Y 123415 124915 1251315 1251715 1291515 12131515 1471245

3.18%Y 123415 124915 1261315 1261715 1291615 12131615 1471218

5 18¢Y 123415 1241415 1261415 1261715 1381315 1471115 1471415

3.18¢5Y 123415 1241518 1251518 1251718 1371418 1471415 14111518

3.18%Y 123515 123615 124915 1261415 1291415 135815 1491515

3.18%Y 123518 123618 1241415 126915 1291415 135815 13813 1g

3 18¢Y 123615 123715 124715 124815 1251215 1281215 1471115

3.18%Y 123615 123718 1251718 1271218 12121715 136915 1391415




Table 2: Nearly neighborly centrally symmetric spheres (continued).

n f-vector Type List of orbits Remarks
20 (180,320,160) 3.,205Y [28]
- an2O ;y
22 (220,396,198) 3,225V [28]
—on22%Y
nn _12
10 (40,80,80,32) 4,108 1234510 1235910 1245819 135795 aCs,
[27, *10%°)
12 (60,160,240, ba124 123456 12 12346 1112 12356 1024 aCs,
192,64) 124691112 12569104 [27, °123%%)
14 (84,280,490, 5,144 12345614 12346728 123471214 12367 1228 [27, °141°)
420,140) 124571028 1247101314 12561011 14
5,148 123456 14 12346 1295 123471214 12356 1125 (27, °147]
124671028 1247101314 12561011 14
16 (112,448,864, 5a165Y 123456 16 123467 16 12347816 123481316
768,256) 1234131516 123781216 1238121316 12312131516

5 cy
nn 16 2

5 cy
nnl65

12312141516 124681116 1246111516 1248111316
12411131516 1267111216 1268111316 13581014 16
123456 16 12346716 12347816 1234813 16
1234131516 123781216 1238121316 12312131516
12312141516 12468 1516 1248131516 1267111246
1268111316 1268111516 12811131516 1358121416
123456 16 12346716 12347816 12348 13 16
1234131516 123781216 1238121516 1238131516
12312141516 124671316 1246111316 1246111516
124781316 12411131516 1267111216 1357101246
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Table 2: Nearly neighborly centrally symmetric spheres (continued).

n f-vector Type List of orbits Remarks
14 (84,280,560, 6,144 1234567 14 1234571314 123467 1228 aCH,
672,448,128) 123567 1114 12357111314 12367111214 [27, 1437
12457101314 12467101214 1357911132
16 (112,448,1120, Ta16% 12345678 16 1234568 1516 1234578 1435 1234678 13 30 acs
1792,1792, 123468 1315 16 123478131415 123568121532 1235781214 3,
1024,256) 123678 1213 16 124578111416 1246811131516 1247811131416
18 (144,672,2016, Ta18%Y [28]
3780,4200, — 185y
2520,630)
Ta18% 12345678 15 1234568936 1234569 16 15 1234589 16 36
12346789 15 1234679 143 123467 141736 123469 1417 18
1234789 1436 123478 141536 123489141515 1235689 13 36
123569 131636 123589131636 1236781314 15 123689 1314 36
124578 121515 124579121536 124589151615 1246791217 36
1247912141515 1247912141715 12569121316 15
T.184 12345678 15 1234568936 1234569 16 15 1234589 16 36

12346789 18 1234679 1436 123467141736 123469141718
1234789 1436 123478 141536 123489 141518 1235689 16 36
123568 131636 123678 131418 123689 131436 123689 13 16 36
124578 121518 124589121536 124589151618 124679 1217 36
1247912141518 1247912141718 1256912131618




3 A Transitive Series of Nearly Neighborly Spheres

In this section, we prove the centrally symmetric cyclic upper bound conjecture
for d = 3 for all numbers n = 4m > 8 of vertices.

Theorem 6 There is an infinite series of nearly neighborly centrally sym-
metric 3-spheres CS3,, with a transitive cyclic group action on 4m wvertices
for m > 2.

Proof. Let the permutation g = (1,2,...,4m) be the generator of the stan-
dard transitive cyclic group action on the vertex set {1,2,...,4m}. We define
a series of 3-dimensional simplicial complexes CS3,, in terms of the orbit gener-
ators of Table 3: Let every orbit generator ijkl 4,,, with the orbit-size as index,
contribute an orbit of 4m tetrahedral facets ijkl, (i + 1)(j + 1)(k+ 1)(I + 1),
ooy (i +4m)(j +4m)(k +4m) (Il + 4m) to the simplicial complex CS3,,, where
the vertex-labels are to be taken modulo 4m.

Table 3: The series CS3,,,.

Sphere List of Orbits
CSE 12345  1247%

CS3, 123415 12491, 1291142 1358 12
CS3s 123416 1241116 121113 46 1358 16
121315 16 1371016

CS3n 12344 124(2m + 3) am 12(2m + 3)(2m + 5) am 1358 4m
12(2m + 5)(2m + 7) am 13710 4m

.1.2(4m —3)(4m — 1) 4m 13(2m — 1)(2m + 2) 4m

By construction, CS3,, is invariant under the standard vertex-transive cyclic
symmetry, in particular, it is invariant under the involution I :=
(1,2,...,4m)*™ = (1,2m +1)(2,2m +2) ... (2m, 4m). No (non-empty) face of
CS3,, is fixed under I, which easily can be verified by inspecting the defining
orbits of CS3,,. Hence, CS3,, is a centrally symmetric 3-dimensional simplicial
complex.

In the following, we will prove that CS3,, is a 3-sphere by showing that
CS3, is a 3-manifold of Heegaard genus one with a Heegaard diagram that has
one crossing (cf. [25], [44, Sec. 63]). Moreover, we will see that CS3,, is nearly
neighborly.

In order to verify that CS3,, is a 3-manifold, we need to show that the
link of every of its vertices is a triangulated 2-sphere. Since CS3,, is vertex-
transitive, it suffices to analyze the link of vertex 1. The vertex-links of ver-
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tex 1 in the complexes CS3, CS3,, S35, and CS3, are depicted in the Fig-
ures 1, 2, 3, and 4, respectively. The complex CS3,, consists of 2m — 2 orbits
that contribute four triangles each to the link of vertex 1. The orbits can
be grouped into four different types: The basic orbits 1234 4, (contributing
white triangles) and 124(2m + 3) 4, (contributing shaded triangles) in the
columns 2 and 3 of Table 3 and the two series of orbits in the columns 4 and
5 of Table 3 (contributing triangles with vertical and horizontal stripes, re-
spectively). The striped triangles form four different regions I-1V of 2m — 4
triangles each, half of them vertically and half of them horizontally striped,
respectively. Topologically, each of the four regions is a disc, but displays a
different kind of “cristallographic growth” when we increase m. For example,
region II consists of the m — 2 vertically striped triangles 2(2m + 3)(2m + 5),
2(2m+5)(2m+7), ..., 2(4m—3)(4m—1) and of the m — 2 horizontally striped
triangles 4(2m + 3)(2m +5),42m+5)(2m+7), ..., 4(4m—-3)(d4m—1). It is
easy to check that the four regions I-IV together with the four white triangles
and the four shaded triangles form a 2-sphere. Hence, CS3,, is a 3-manifold.

Figure 1: The link of vertex 1 in CS3.

Figure 2: The link of vertex 1 in CS3,.
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Figure 4: The link of vertex 1 in CS3,.



The triangulated 3-manifold CS3,, contains as a 2-dimensional subcomplex
a vertex-transitive 2-torus T%,, with orbit generators 123 4,,, and 13(2m+2) gy,
We will show that this triangulated 2-torus TZ,, splits CS3,, into two parts,
T3 and (T} ,)9, each of which is a triangulated solid 3-torus and is mapped
onto the other side by the glide reflection g = (1,2, ...,4m) of the 2-torus T%,.
The 2-torus T¢ is depicted in Figure 5 with the orbits 123g and 136g forming

2 4 6 8 2
1 3 5 7 1
6 8 2 4 6

Figure 5: The 2-torus T¢.

the upper eight and the lower eight triangles, respectively. In Figures 6, 7,
and 8, the tori T¢, T%, and T form the respective base grids. In Figure 6,
we glue “on top” of the upper eight triangles of T¢ every second tetrahedron
of the orbit 1234g, i.e., the tetrahedra 1234, 3456, 5678, and 1278, as well as
“on top” of the lower eight triangles of T¢ every second tetrahedron of the
orbit 1247g, i.e., the tetrahedra 1247, 1346, 3568, and 2578. From the figure
we see that every “top” triangular face of one of the upper four tetrahedra
appears also as a “top” triangular face of one of the lower four tetrahedra.
Hence, the tetrahedra of the upper half fit together with the tetrahedra of the
lower half to form a solid 3-torus 7§ whose boundary is, as the “back side”,
the torus 7Z. In general, we also glue “on top” of the upper 4m triangles
of T}, every second tetrahedron of the basic orbit 1234 4,,,. “On top” of the
lower 4m triangles of T,,, however, we first glue every second tetrahedron of
the basic orbit 124(2m + 3) 4,,, and then every second tetrahedron of the orbits
alternatingly from the columns 5 and 4 of Table 3. Upon completion, the “top”
triangles of the upper part fit together with the “top” triangles of the lower
part to form a solid 3-torus T . Since T} contains every second tetrahedron
of the orbits of CS3,,, its image (T3, )7 under the cyclic shift g = (1,2,...,4m)
has as its facets precisely the remaining tetrahedra of CS3,, and, hence, is again
a solid 3-torus. Thus we have established that CSj,, has a Heegaard splitting
of genus one into the two solid tori Tj,, and (T3 ,)9.

The Heegaard diagram of CS3,, consists of the middle torus T2, together
with a meridian circle ¢ of T, and a meridian ¢’ of (T3,,)?. As meridian of T},
we take ¢ := (2m+1)(2m+3),..., (4m—3)(4dm—1), (4dm—1)(4m), (4m)(2m+1)
on TZ,. Tts image ¢ := ¢9 = (2m + 2)(2m + 4),...,(4m — 2)(4m), (4m)1,
1(2m + 2) under the glide reflection g is a meridian of (7},,)? and intersects c
in the one crossing point 4m. Since a 3-manifold M is a 3-sphere if it has a
genus one Heegaard diagram with one crossing point, we are done.
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Figure 6: The solid 3-torus 7.

2 4 6 8 10 12 2
8 10 12 2 4 6 8
Figure 7: The solid 3-torus T},.
2 4 6 8 10 12 14 16 2
1 3 5 7 9 11 13 15 1
DD D e e L
/ N~/ N\N—7 \—7 \—7 \—7 \_—7 \—7
7 N/ 1N/ _—13\7 15/ 17 3N/ 5N/ 7
10 12 14 16 2 4 6 8 10

Figure 8: The solid 3-torus T'f.

It remains to show that the centrally symmetric 3-sphere CS3, is nearly
neighborly. Since the f-vector (fo, f1, f2, f3) of a 3-manifold is already deter-
mined by the number of vertices fo and the number of facets f3 via Euler’s
formula fo — f1 + fo — f3 = 0 and the Dehn-Sommerville equation fy = 2f3, it
follows directly from the number and sizes of the defining orbits that CS'3,, has
f-vector (4m, 8m? —4m, 16m?—16m, 8m? —8m). Since 8m? —4m = (4;”) —2m,
the centrally symmetric 3-sphere CS3,, has the 1-skeleton of the corresponding
cross-polytope C£. on 4m vertices and, therefore, is nearly neighborly.

O

Corollary 7 The nearly neighborly centrally symmetric 3-spheres CS 3, are
not obtainable by Jockusch’s construction for m > 3.
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Proof. The 3-balls By in Jockusch’s construction are choosen such that
they contain all vertices of J55, but not the star of any edge of J5. In particu-
lar, the boundary 2-spheres 0Bsy, are stacked spheres and occur as the link of
the vertices 2k + 1 in J3}, 4o- On the contrary, the vertex-links in the spheres
CS 3., are not stacked. O

Although the proof of correctness for the examples of Theorem 6 is rather
straight forward, it is, in general, not at all obvious how we can find or construct
series of vertex-transitive triangulations of spheres or of other manifolds. In
the case of the series CS§,, the generating orbits were discovered by examining
the examples of Table 2, but all attempts failed so far to extend the series to
or to find alternative series on 4m + 2 vertices for m > 2.

Most surprising, however, is that we presently know of merely five basic
infinite series of vertex-transitive triangulations of spheres:

e the boundary complexes of even-dimensional cyclic polytopes Cq(n),

e the boundary complexes of bicyclic 4-polytopes BiC(p, g; n) of Smilansky
[45] for appropriate parameters p, ¢, and n (cf. also [8] and [43]),

e the boundary complexes of cross-polytopes CdA,

e the boundary complexes of the McMullen-Shephard polytopes H £, 4o for
even d,

e and the spheres CS3  for m > 3.

In addition, the multiple join product (S¢)*" and the wreath product 9A, ¢ 59
of Joswig and Lutz [17] provide two constructions to obtain derived series of
vertex-transitive spheres for every vertex-transitive simplicial sphere S?. This
way, it is even possible to get series of vertex-transitive non-PL spheres [17].

The boundaries of tricyclic or multicyclic polytopes might yield further
series of vertex-transitive spheres, but it is seemingly a difficult problem to de-
termine for which parameters these polytopes are simplicial. (Three examples
of simplicial tricyclic 6-polytopes were identified in [27, Ch. 2].)

Various series of vertex-transitive triangulations of surfaces can be found in
the literature; see, for example, [2], [15], [24], and [41].

In higher dimensions, however, we know, apart from the above vertex-tran-
sitive spheres, of only one additional three-parameter family M(n) of vertex-
transitive triangulations due to Kiihnel and Lassmann [24]. The combinatorial
manifolds MZ(n) onn > 297k (k+3)—1 vertices for k = 1,...,d—1 are k-sphere
bundles over the (d—k)-dimensional torus and are invariant under the standard
vertex-transitive action of the dihedral group D,,. In particular, M{(n) is a
vertex-transitive triangulation of the d-dimensional torus with n > 24+1 — 1
vertices, and, as an additional case, M¢(d + 2) is the boundary of the (d + 1)-
simplex; see also [20], [22], and [23].
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4 Products of Spheres

The following inequalities hold for centrally symmetric combinatorial 2- and
4-manifolds M with Euler characteristic x(M).

Theorem 8 (Kiihnel [21]) Let M be a centrally symmetric surface with
n = 2k wvertices. Then

Lk -1
son -2 e 7). (1)
with equality if and only if M contains the 1-skeleton of the k-dimensional
crosspolytope C’kA, i.e., if M is centrally 2-neighborly.

Theorem 9 (Sparla [46, 4.8], [47]) Let M be a centrally symmetric combina-
torial 4-manifold with n = 2k vertices. Then

oon -2 < (1Y), )

with equality if and only if M contains the 2-skeleton of the k-dimensional
crosspolytope 8C,€A, i.e., if M is centrally 3-neighborly.

There are essentially two ways to make use of these bounds. For fixed
number n = 2k of vertices they give restrictions on the Euler characteristic
X(M) of a centrally symmetric combinatorial 2- respectively 4-manifold M
with n vertices. On the other hand, they provide lower bounds on the number
of vertices n of a centrally symmetric combinatorial 2- respectively 4-manifold
M with given Euler characteristic x(M).

Sparla conjectured a generalization of these bounds to centrally symmetric
combinatorial 2r-manifolds.

Conjecture 10 (Sparla [46, 4.11], [47]) Let M be a centrally symmetric com-
binatorial 2r-manifold with n = 2k wvertices. Then

o () on 2 < e (%(’“ ). 3)

r—+1 r+1

with equality if and only if M contains the r-skeleton of the k-dimensional
crosspolytope 8CkA, i.e., if M is centrally (r + 1)-neighborly.

Sparla’s conjecture is known to hold for » = 1 and r = 2 (see above) as well
as in the following cases (cf. [39] and [46, 4.12]):

e n =4r + 2, where we trivially have M = 9C%,., ,,

x(M) <2 if r is even,

*nzdr+4 and { WM)>2 it ris odd,

e n>6r+3 (Novik [39]).
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For the sphere products S™x S" we have (—1)"(x(S" xS™) — 2) = 2, since
X(S"xS™) = 4 if r is even and x(S"xS") = 0 if r is odd. In particular,
for n = 4r + 4, ie., for k = 2r 4+ 2, the inequality (3) becomes equality,
2(%«?11) = 4T+1(%(T2_ﬁ1)) (see [46, p. 70]). Therefore, Sparla’s conjecture, if
true, would imply that centrally symmetric combinatorial triangulations of
the sphere products S”xS”™ with 4r 4+ 4 vertices must contain the r-skeleton of

0CH

Conjecture 11 (Sparla [47]) There are centrally (r + 1)-neighborly trian-
gulations of the sphere products S™ xS™ on 4r + 4 vertices.

A centrally 2-neighborly triangulation of the 2-torus with 8 vertices is well
known (cf. [27, 281%]). Centrally 3-neighborly triangulations of the product
S? x 8% were first found by Sparla [46] and by Lassmann and Sparla [26]:
There are precisely three centrally 3-neighborly triangulations of 2 x S? with
12 vertices that have a vertex-transitive cyclic group action.

Our search for nearly neighborly centrally symmetric spheres with the pro-
gram MANIFOLD_VT also produced centrally symmetric triangulations of
d-dimensional products of spheres with n = 2d + 4 vertices, denoted by the
symbols ingi/ Y. In fact, we completely enumerated all such manifolds with
a vertex-transitive cyclic or dihedral group action for the parameters listed in
Table 4. For 8-manifolds with 20 vertices, an enumeration was only possible
for the dihedral group action.

Theorem 12 For the products of spheres

Stx S, 82x8', S§3x8', S§txS8', S§°xSl, S§O6xSl, STxS!,
S2x 8% 53xS2, 5% x S2,

S3x 83, §4x 83, S§°x83,

S4x 64

there are centrally symmetric (combinatorial) triangulations with a vertex-
transitive dihedral group action on n = 2d 4+ 4 wvertices. However, there is
no sphere product S*x S% with a vertez-transitive cyclic group action on 16
vertices and no sphere product S°xS? with a vertez-transitive dihedral group
action on 20 vertices.

Proof. The examples of Theorem 12 are listed in Table 4. We used the pro-
gram BISTELLAR [30] to verify that in each case the link of vertex 1 and there-
fore, by vertex-transitivity, all vertex-links are combinatorial spheres. Hence,
the examples are combinatorial manifolds. The homology of the manifolds was
computed with the program HOMOLOGY by Heckenbach [14] and, in each
case, is that of a product of spheres.

The topological types of the examples S¢~!1xS! were determined in [24], and
Sparla [46] showed that the examples 4127, 4125 and 412¢ are triangula-
tions of $2xS2. All remaining examples are simply connected, since they are at
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least centrally 3-neighborly. Each d-dimensional example occurs as a subcom-
plex of the (d + 1)-dimensional boundary sphere 8C’dA+2 of the crosspolytope
CdAH. According to Kreck [19] every simply connected d-dimensional sub-
manifold of the sphere S%*! with the homology of S¥~"x S", 1 < r < d/2,
is homeomorphic to S9~" x S”. Therefore, all the examples of Table 4 are
products of spheres. O

Conjecture 13 There is a centrally (|2] + 1)-neighborly (combinatorial)

triangulation of every product of spheres STe1x SL2) with a vertez-transitive
dihedral group action on n = 2d + 4 vertices.

19



0¢

Table 4: Centrally symmetric products of spheres with n=2d+4 vertices and cyclic group action.

n  Manifold f-vector Type List of orbits Remarks
8 S'xs! (24,16) 28t 1235 136 [24, M7 (8)],
[27 2815]
10 S%xs! (40,60,30) 310§ 123520 124510 [52],
[24, M3(10)],
[27, 3103
12 S3xst (60,120,120,48) 1128 12346 24 1235624 [24, M3(12)],
[27, *121?]
5% x 52 (60,160,180,72) 1129 1234512 1235612 12361112 1256912 12691112 1358 1012 [46, M),
[27, *1211]
1125¥ 1234512 1235612 12361112 12561012 12691112 13581012 [46, M = Ms),
[47],
[27 412 124]
112¢ 1234515 12351024 12361012 1245912 13581012 [46, M),
[27, 1123%]
14 S*x st (84,210,280, 514§ 123457 25 12346728 123567 14 [24, M3 (14))
210,70) [27, °14 5]
5% % 52 (84,280,490, 514§ 123467 25 123461298 123567 14 12357 119 (27, °143]
420,140) 124571314 1246101228
16 S5x St (112,336,560, 5164 1234568 30 123457835 1234678 35 [24, ME(16)]

560,336,96)




1¢

Table 4: Centrally symmetric products of spheres (continued).

n  f-vector  Type List of orbits Remarks
53 % §3 (112,448,1120, 5165Y 1234567 16 123457816 123458 1516 12347813 16
1568,1120,320) 12347131416 12348131516 123413141516 123568 1516
123678 1216 12368121316 12368131516 123781213 16
124578 1116 12457111416 12458111415 124781113 16
124711131416 124811131516 126811131516 135710121416
516§ 1234567 16 123457830 123458 1416 12347813 32
1235671216 12356121532 123578 1232 123581215 16
12378121316 12458 111416 12467111316 12468 111332
124711131432 135710121416
18 S5x st (144,504,1008, T18% 1234567936 1234568935 1234578936 12346789 15 [24, M{ (18)]
1260,1008,
504,126)
S5 % §2 (144,672,1764, 7184 12345689 36 1234568 1636 1234578936 1234579 15 36
2772,2688, 1234678915 1234679 1736 123468 141636 1235679 17 15
1512,378) 123579131536 123579131736 1245791517 15 12468121416 36
51 % 83 (144,672,2016, 7184 1234579 1536 1234579 1736 1234679 1436 1234679 17 36
3780,4200, 123467 1417 36 1234689 1436 1234689 1636 123479 1415 36
2520,630) 1235679 1336 123567917 15 1235689 1336 1235689 16 36
123569 16 1736 12357891336 123589151636 123679 13 14 36
123689 13 1436 123789131518 124589151618
20 S7xS! (180,720,1680, 8209 12345678 1040 12345679 1040 12345689 1040 12345789 10 40 [24, ME(20)]

2520,2520,1680,
720,160)




Table 4: Centrally symmetric products of spheres (continued).

4é

f-vector  Type List of orbits Remarks

S5 % §3 (180,960,3360, 8204 12345689 1040 12345689 17 40 1234568101940 1234569 10 18 49
7560,10920,9840, 1234578910 40 1234578 101649 1234579 1018 49
5040,1120) 1234571016 1840 1234678 101949 1234679 10 15 40

123467 10151940 123469101518 40 123469 1517 18 40
12347910151840 1235679101840 1235689 1417 40

123568 14171940 123569 14171849 123578 1016 19 49
1236791015180 1245791016 1840 1245791316 1840
12458101316 1740 124679131518 40 1246910131518 40
1247810131516 40 124781013151940 1247810151619 49

S x 54 (180,960,3360, 8204 12345678920 123456791040 1234567 101820 1234569 1017 40
8064,12600,12000, 1234578916 49 1234578 161940 1234579 1016 40
6300,1400) 1234571016190 1234591016 1720 12346789 1590

12346791018 49 1234679 151840 1234691017 18 40
1234789151649 1234791016 1849 1235679 10 14 40
1235671014 18 59 1235689 10 1449 123568 1014 17 40
12356 1014171940 12356101418 194 1235789 1416 20
123578 14161949 1235791014 1640 1235710141619 40
123589101416 490 1235891016 1740 12358 1014161920
1236791014 18 49 123679 14151849 1236810141517 40
123691014 15 18 99, 12378914 151620 124579101316 49
124571013161920 124591013161720 1246710131518 29
124689 13151720 12468 1013151740 12469101517 18 49
1246913151718 40 1247910131518, 13579121416 182

................ 820
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