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Abstract

We focus on the role of anisotropic elasticity in the simulation of
the load distribution in a human mandible due to a lateral bite on
the leftmost premolar. Based on experimental evidence, we adopt
“local” orthotropy of the elastic properties of the bone tissue. Since
the trajectories of anisotropic elasticity are not accessible from Com-
puter Tomographic (CT) data, they will be reconstructed from (i)
the organ’s geometry and (ii) from coherent structures which can be
recognized from the spatial distribution of the CT values.

A sensitivity analysis comprising various 3D FE simulations re-
veals the relevance of elastic anisotropy for the load carrying behav-
ior of a human mandible: Comparison of the load distributions in
isotropic and anisotropic simulations indicates that anisotropy seems
to “spare” the mandible from loading. Moreover, a maximum degree
of anisotropy leads to kind of an load minimization of the mandible,
expressed by a minimum of different norms of local strain, evaluated
throughout the organ. Thus, we may suggest that anisotropy is not
only relevant, but also in some sense “optimal”.

1 Introduction

During lifetime, the human mandible is subjected to severe changes, see Fig-
ure 1. Due to the loss of the chewing capability, the mechanical stimulus
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necessary for the self-regulation of the bony structure vanishes. The shape
of the mandibular corpus flattens, while the mandibular angle increases. Be-
cause of the interdependence of the inner structure of bone and its functional
loading, a refined understanding of the structural behaviour of the jaw is of
immediate medical interest.

Three dimensional simulation of the human mandible by means of finite
element method started in the early nineties of the last century. Among the
pioneers were Korioth et al. [10] and Hart et al. [6]. Both already included
material anisotropy into their simulation concept. In the meantime, a rich
body of literature is available. As an example of a recent study of anisotropic
simulation, we refer to O’Mahony et al. [12].

The work presented in this article is part of an interdisciplinary research
project concerning the human mandible with the long-term goal to estab-
lish bony organ simulation as a powerful tool for craniofacial or orthodontic
therapy. For results, see Kober et al. [9] for instance.
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Figure 1: Human mandible at old age and at adulthood (in the background).



2 The Simulation Concept

2.1 Material Law and Finite Element Approximation

Up to a strain limit of 0.3 %, the material behaviour of bone can be described
by linear elasticity. In most physiological standard situations, this value is
not exceeded. Therefore, in the governing equation of structural mechanics

dive = 0, (1)

we apply for the stress tensor o := (0;;) and the strain tensor ¢ = (g;;) =
(Vu+ (Vu)?)/2 a generalized Hooke’s law which can be written in standard
index notation as

Oij = Cijki€hl, (2)

completed by boundary values. u denotes the displacement vector.
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Figure 2: Sketch of a cross section through the mandible with trajectories
of elasticity.



Motivated by experimental evidence, e.g. Ashman et al. [1], we consider
orthotropic symmetry for the bony tissue. The mechanical properties of
orthotropic materials are different in three perpendicular directions. For the
mandible, we construct radial, tangential, and axial trajectories, defining the
principal orthotropic material directions at each location within the organ,
from the irregular organ geometry, see also Figure 2.

In the orthotropic case the relation between stress and strain tensor can be
written in the following form

011 €11

099 €22

033 - C €33 (3)
012 2e12

013 2e13

023 2e93

with the symmetric matrix of elastic coefficients

Ca Cyp Co 0 0 0
0 0 0 Cu O 0
5

0 0 0 0 Cs5 O
0 0 0 0 0 Ces

The relationship (compare [13]) between the coefficients C;;, the Young mod-
uli £;, the Poisson numbers v;; and the shear moduli G5, i, j = 1,2,3, is given
by

Cnn = Ei(l1 - (E3/Ey)va)D
Co = Ey(1— (E3/E)v)D
Cs3 = E3(1— (Ey/E)viy)D
Cia = Cg = (Eyvip + Esvi3v93) D



Ci3 = C31 = E3(viaves +113)D
Cys = Cso = (E3/E))(E1ve3 + Eoviorn3)D

C‘144 = G23
055 = G13
066 = Gl?
vij = vji(Ei/Ey)

D' = 1—2(Es/E\)viavasiis — vis(Es/Ey) — V3s(E3/ Es) — viy(E2 [ Ey)

For the numerical calculations, we have to transform the components of the
orthotropic elasticity tensors from the local coordinate system defined by
the trajectories to the organ’s global coordinate system. Thereby, we have
to consider 21 non-zero components instead of nine (independent) non-zero
components defined on the local base:

Cl 1 012 CY13 CV14 015 016
012 022 CY23 CV24 025 026
013 023 C133 034 035 036
014 024 034 044 045 046
015 025 C135 035 055 056
C'16 C(26 C136 C'46 C'56 C(66

The system of partial differential equations (1) is approximately solved by the
adaptive finite element code KASKADE [17, 3, 2, 4]. We used linear elements
based on a tetrahedral mesh of the mandible and refrained at the moment
from the application of adaptive grid refinement. But, from former studies
on the isotropic mandible ([5],[9]) and the high resolution (about 181.000
tetrahedra) of the initial mesh, we may expect that our anisotropic results
are qualitatively correct. More accurate calculations using adaptive mesh
refinement will follow in the near future.

The field of stiffness tensors C contains the entire information about tissue
anisotropy and organ inhomogeneity. The latter is in some sense “directly”
accessible via the information about (optical) density inherent to the data
from Computer Tomography (CT). This is not the case for the trajectories
of elasticity, which we will estimate from an alternative concept, given in the
following subsection. In the next but one subsection, we describe a scenario
for testing the influence of the anisotropy. Since we focus on the impact of the
tissue anisotropy on the simulation results rather than on the impact of the
organ’s inhomogeneity, we keep the orthotropic elastic componets constant



over the mandible, differentiating only between cortical and spongy bone, see
Table 1. An average ratio of stiffness values of cortical and cancellous bone
is about 10:1. Therefore, we set the Young’s and shear moduli of the spongy
bone to a tenth of the coefficients cited in Table 1.

E; E, Es V12 V13 Va3 G2 Gis Gos
10.8 | 13.3 | 19.4 | 0.309 | 0.381 | 0.249 | 3.81 | 4.12 | 4.63
GPa | GPa | GPa GPa | GPa | GPa

Table 1: Elastic coefficients for cortical human jaw bone (Ashman et al.,
1987). The 1-direction is radial, the 2-direction is circumferential, and the
3-direction is axial.

2.2 Estimated Trajectories of Orthotropic Elasticity

The collagen molecules are probable to induce a certain morphology in the
bone ultrastructure (Hellmich and Ulm [8]) and beyond. On the other hand,
they induce the bone tissues’ anisotropy (Lees et al. [11], Hellmich and Ulm
[7]). Therefore, we here start the estimation of the trajectories of orthotropic
elasticity throughout the organ from (i) the organ’s geometry and (ii) from
coherent structures which can be recognized in a volumetric profile of the
distribution of the CT or Hounsfield values, see Figure 3. In a four-step
procedure (which is only roughly sketched in the following), we construct
unit vector fields for the trajectories of elasticity.

Step 1: derivation of an individual inner skeleton of the mandible

For this purpose, we orientated ourselves basically on the patient’s individ-
ual anatomy, given by the alveolar ridge, the coronoid processes, and the
condyles, see Figure 1. The volumetric profile of the (optical) tissue density
depicted in Figure 3 is based on highly transparent modified volume render-
ing of the CT-data. The condyles are skipped in the visualization because of
their reduced Hounsfield values. The (white) “lines of the skeleton” follow
mainly the “lines” of elevated Hounsfield numbers (red color in Figure 3).
Additionally, we put a line in the middle of the mandibular ramus, in order
to represent a “band” of reduced density.

In our rather rough skeleton representation, we neglect a very special for-
mation around the symphyseal line at the chin, where the mandible did
coalesce during development, or kind of “reinforcements” at the mandibu-
lar notch. Further, we refrained from the reconstruction of the complicated
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dental anatomy. For a more refined discussion, see Kober et al. [9].

Figure 3: Highly transparent visualization of the inner structure of the cor-
tical shell of a human mandible together with its “inner skeleton”.

Step 2: extension of the skeleton to (nearly) continuous three dimensional
vector field

Principally, this extension consists in a nearest-neighbour-interpolation of
the skeleton to the whole mandible. Due to the bifurcation at the mandibu-
lar ramus, we have to introduce a special interpolation procedure. From a
topological point of view, we cannot “comb” the mandible. In the critical
bifurcation regions, we seek for the points with minimal distance at the three
branches of the skeleton. Now, we claim that every point “insulates” a hemi-
spherical region. The points not insulated by another point are admitted to
a linear interpolation. By this, we forbid that the skeleton’s orientation at
the posterior part of the ramus has some influence on the vector field at its
anterior part and vice versa.

Step 3: construction of the radial trajectories

For this purpose, we modified a surface mesh of the mandible. We removed
those parts of the surface mesh whose surface normals deviate from the sug-
gested radial trajectories, see Figure 2.

These are mainly the alveolus and the exits of the mandibular canals. For the
construction of the radial trajectories, the surface normals of the remaining
surface mesh were projected into the mandible by a nearest point search.

Step 4: construction of the circumferential and the axial trajectories
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Figure 4: Correction at the condyle (a) and trajectories of elasticity (b c, d;
red: axial, yellow: circumferential, blue: radial).

The circumferential trajectories are mainly based on the cross product of the
radial trajectories and the “skeleton vectors” of the Step 2. At the top of the
condyles and the coronoid processes, and at the mandibular notch, the angle
between these vectors becomes very small, see the red marks in Figure 4a,
4b. There, we added a perpendicular correction whose cross product with
the radial trajectories allows a (nearly) continuous calculation of the circum-
ferential trajectories, see Figure 4a. The cross product of the circumferential
and the radial trajectories produced the axial trajectories. Finally, all three
vector fields are scaled to unit vectors. For the result, see Figure 4b, 4c, 4d.

2.3 Scenario for testing the influence of tissue anisotropy
on the organ’s load bearing behavior

As in Miiller-Hannemann et al. [14], we introduced an index of anisotropy
«a varying from isotropic material with a low Young modulus over fully



anisotropic behaviour again to isotropic material but with a high Young
modulus, see Table 2. We evaluated the cases with o = 0, 0.25, 0.5, 0.75,
1.0, 1.25, 1.5, 1.75, 2.0. We tested a lateral bite on the most left premolar. In
this load case, the tooth was pressed by the forces of the masticatory muscles
against some very hard obstacle. The “biting tooth” was fixed. The condyles
were embedded into simplified joint capsules where they were freely mobile.
For details, see Kober et al. [9].

Because of its beginning atrophy of the alveolar ridge, we chose the mandible
of the female Visible Human as simulation example [15].

a=10 O<ax<l a=1 l<a<?2 o=

isotr. increas. anisotr. | anisotr. decreasing anisotr. isotr.
El (a) E1 El El El + (a — 1)(E3 — El) E3
EQ(OZ) Eq FE + a(E2 — El) FEy E5 + (a — 1)(E3 — EQ) E3
E3 (Oé) Eq FEy + Ot(Eg — El) E3 E3 E3
vij(a) Vs vs + a(vij — vs) Vij vij + (o = 1) (vn, — v45) v,
Gi2(a) | Gs | Gs+ a(Gia2 — Gy) G2 G2+ (a—1)(Gy, — G12) | Gy,
G13(Oé) Gy G, + a(G13 — Gs) G13 Gi3 + (a — 1)(Gh — G13) G
Ga(a) | Gs | Gs+ a(Gas — Gy) Gaz | Goz+ (a—1)(Gp —Ga3) | Gh

Table 2: Index of anisotropy according to Miiller-Hannemann et al. [14].
vy = max(vj),Gs = E1/2(1 + vy), vy, = min(v;;), G, = E5/2(1 + 1), 1 <
,J <3

3 The Simulation Results

Because of its significance in bone remodeling, we first discuss the results
concerning the volumetric strain € which is the divergence of the strain tensor
€ij, see Figure 5a, db, 5c. We observe reduced strain for the anisotropic case
(Figure 5b) as well compared to the “soft” mandible in Figure 5a as to the
“hard” mandible in Figure 5c. In particular, this effect can be stated at the
balancing (right hand) side, but also at both coronoid processes. We may
suggest that anisotropy protects the mandible from elevated strain und also
endorses unsymmetric loading.

The next question is a quantitative comparison of the results. We look at
cortical and spongious bone separately. Because of its special significance,



we differ also between compression and (positive) strain:

Ecortical,+ = ma'x(gcortical: 0)7 Ecortical,— = min(ecorticala 0) (4)
Espong,+ — max(gspong: 0)7 Espong,— = min(gsponga 0) (5)

For a first attempt, we compared the Lg-norms which are maxima of the
absolute values of the variables. By elevating the index of anisotropy a, we
were stepwise “hardening” the mandible. Spontaneously, one would expect
monotonously decreasing strain response. This is true for the spongy vari-
ables €spong, 1> Espong,—> and Ecortical,+, see Figure 6a. But for the Ly-norm of
the compressive strain €.o,ticq1,— in cortical bone, we have a minimum for the
fully anisotropic case indicating that this case is the most “sparing” one con-
cerning compression. Therefore, we extended our analysis to the Ls-norms
which are a measure over the whole mandible:

||880Ttical|| = \//(5cortical)de (6)

For the results for ecortical, Ecortical,+, and Ecorticar,— See Figure 6b. Again,
the fully anisotropic cases provide the minima. The results for the spongy
bone are reported in Figure 6¢. There, no remarkable minima occur for the
anisotropic case.

4 Conclusion

The reported test cases suggest qualitative relevance of material anisotropy
concerning the simulation of human biting. Especially for volumetric strain,
reduced values could be observed, see Figure ba, bb, 5c. Further, the asym-
metry of the load case was endorsed in the case of anisotropic simulation.
Qualitatively, one may reason that anisotropy “spares” the jaw bone from
loading.

Quantitatively, we achieved even some kind of optimality for the anisotropic
case in the sense of minimization of different strain norms. In spite of severe
simplifications within our simulation concept, we could reproduce some kind
of “mechanical optimality of the mandible”. This fact underlines the neces-
sity of anisotropic simulation for the human mandible, the relevance of our
estimation of trajectories of orthotropic elasticity.
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Figure 5: Volumetric strain e: Figure 6: Norms of ¢:

a: a=0, isotropic, low Young mod. a: Lo-norm of .ot 4, Ecort,—s Espong,—
b: a=1, fully anisotropic b: Lo-norm of €cort; Ecort,+, Ecort,—

c: a=2, isotropic, high Young mod.  c¢: Lo-norm of €,pong, Espong,+» Espong,—
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