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Abstract

Structural mechanics simulation of bony organs is of general med-
ical and biomechanical interest, because of the interdependence of the
inner architecture of bone and its functional loading already stated by
Wolff in 1892.

This work is part of a detailed research project concerning the hu-
man mandible. By adaptive finite element techniques, stress/strain
profiles occurring in the bony structure under biting were simulated.
Estimates of the discretisation errors, local grid refinement, and multi-
level techniques guarantee the reliability and efficiency of the method.

In general, our simulation requires a representation of the organ’s
geometry, an appropriate material description, and the load case due
to teeth, muscle, or joint forces. In this paper, we want to focus on
the influence of the masticatory system. Our goal is to capture the
physiological situation as far as possible. By means of visualization
techniques developed by the group, we are able to extract individual
muscle fibres from computed tomography data. By a special algo-
rithm, the fibres are expanded to fanlike (esp. for the musculus tem-
poralis) coherent vector fields similar to the anatomical reality. The
activity of the fibres can be adapted according to compartmentalisa-
tion of the muscles as measured by electromyological experiments. A
refined sensitivity analysis proved remarkable impact of the presented
approach on the simulation results.
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1 Introduction

Severe changes of the human mandible during lifetime, see Figure 1, stim-
ulated a lot of medical and biomechanical research in this field. Three di-
mensional simulation of the human mandible by finite element methods had
its beginning in the early nineties of the last century. Among the pioneers
were Korioth [19] and Hart [11]. In the meantime, a rich body of literature
is available. We refer to [25] for a review on mandibular biomechanics.
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Figure 1: Mandible at adulthood (a) and at senium (b).

The work presented in this article is part of an interdisciplinary project con-
cerning this bony organ. It ranges from numerical mathematics over biome-
chanical modelling to medical application.

The correlation of the inner architecture of bone and its functional loading
was already stated by Wolff in 1892 [27]. Our objective is to demonstrate
this interdependence for the human mandible. By adaptive finite element
techniques, stress/strain profiles occurring at human biting were simulated.
Additionally, by a combination of computer graphics modules [17], a three
dimensional volumetric visualization of bone mineral density could be given,
see Figure 2. For a more detailed introduction to this approach, see [15].

In general, our simulation requires a representation of the organ’s geometry,
an appropriate material description, and a realisation of the load case due to
teeth, muscles, or joint forces. This paper is focused on individual modelling
the masticatory system and its influence on the simulation results. The
masticatory system comprises the masseter muscles, the two temporals, the
medial, and the lateral pterygoids. Furthermore, the authors studied the
impact of the underlying numerical concept of adaptive finite elements on
the significance of the simulation results.



Figure 2: Three dimensional visualization of the inner structure of the cor-
tical shell of the mandible [17].

The paper is organized as follows. Within the first paragraph of the next
section, a short outline of the prerequisites of the simulation is given. The
subsequent paragraph is dedicated to a description of the numerical back-
ground. The section is completed by a description of the modelling of the
masticatory muscles. In Section 3, we give a general depiction of some simula-
tion results and report a detailed sensitivity analysis with respect to adaptive
grid refinement and the choice of the muscular “lines of action” representing
the directions of muscle activity. Based on these results, a conclusion will be
drawn in Section 4 combined with a short discussion. Finally, the article is
closed by an outlook to future and ongoing activities within our project, and
an acknowledgement.



2 Materials and Methods

2.1 Short outline of the prerequisites of the simulation

As mentioned above, the prerequisites of the simulation consist of an ac-
ceptable representation of the organ’s geometry, an appropriate material de-
scription, and a realisation of the load case due to teeth, muscles, or joint
forces.

Because of its beginning atrophy of the alveolar ridge, the disposability of
multimodal data sets including CT—data (CT: computer tomography), MRT—
data (MRT: magnetic resonance tomography), and anatomical photographs,
we chose the mandible of the female Visible Human as simulation example

3].

Figure 3: Geometry representation.

The reconstruction of the individual craniofacial anatomy, see Figure 3, was
performed by a superposition of the CT-data and the anatomical photographs
[16]. The skull, the cortical shell of the mandible, its inside spongy bone,
the teeth, the masticatory system (musc. masseter, temporales, pterygoidei
mediales, pterygoidei laterales), and two simplified temporo mandibular joint
capsules are separated geometric entities. For further steps as finite element



mesh generation, we refer to [9].

In spite of the ability of anisotropic simulation of the jaw bone, see [13], we
refrained from those techniques in this setting. So, we chose an isotropic
material law and assumed piecewise homogeneity for all involved materials
(cortical and cancellous bone separated). According to [9], we set an average
Young modulus E = 13.3 GPa for cortical, E = 1.33 GPa for spongy bone,
and E = 16.0 GPa for the teeth. The Poisson ratio is assumed to be 0.224
for both constituents of bone and for the teeth.
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Figure 4: Dental anatomy and its realisation within our project.

Our main focus was an analysis of stress/strain profiles of the mandibular
ramus. Therefore, we neglected the complicated dental anatomy, especially
the periodontal ligament between bony tissue and teeth, see Figure 4 (left),
and the so-called lamina dura which is a thin cortical hull around the peri-
odontal ligament. For the sake of similarity with the cortical lamina dura,
within our model, the teeth were embedded into an alveole consisting also of
cortical bone, see Figure 4 (right).

The condyles were embedded into simplified temporo mandibular joint cap-
sules where they are freely mobile. The capsules’ bonding to the skull was
modeled by rigid attachment, see Figure 5. According to [15], we chose E =
20 MPa for the temporo mandibular joint capsules. The Poisson ratio was
set to v = 0.3.

As already mentioned in Section 1, the four respectively eight common mas-



Figure 5. Realisation of the temporo mandibular joint: the condyles were
freely mobile in a simplified joint capsule.

ticatory muscles were included in the simulation. These are the masseter
muscles, the temporals, the medial, and lateral pterygoids, see Figure 6.
Concerning the muscles we have to define the following features as necessary
input of the simulation:

e appropriate muscular force values,
e more or less correct muscle attachments, and

e the directions of muscles’ activity, the so-called lines of action.

Traditionally, see [23], muscular force values are related to their cross sec-
tional area. Instead, we refer to data based on electromyographic measure-
ments, see [22]. For the muscle attachments, we refer to the results of — in the
case of soft tissue still tedious — segmentation of the CT data and subsequent
surface reconstruction. Finally, the reconstruction of highly resolved vector
fields of individual lines of action is subject of this article, see the procedure
described in Subsection 2.3. It was performed by means of a volumetric vi-
sualization of the muscle’s inner structure based on CT- or MRT-data. Its
impact on stress/strain profiles of the mandible is studied in Section 3.

In [18], a method is described to estimate the individual line of action of a
muscle from serial images of parallel muscle cross sections obtained in vivo



Figure 6: The masticatory system consisting of the masseter muscles, the
temporals, the medial, and the lateral pterygoids [10].

by means of CT or MRI scanning. By this method, the “central line” of the
external shape of the muscle is going to be reconstructed. So, the result is
individual but not related to the muscle’s inner structure.

Another approach for individual, but in vitro, reconstruction of muscle at-
tachments and lines of action combined with subsequent finite element simu-
lation was presented by Pleschberger [21]. During sequential dissection of the
mandible, he marked the muscles by thin wires and took X-ray-images of
the preparation with the wires from two orthogonal directions. So, he could
identify special lines of action according to the wires.

Korioth et al. [19] referred for the muscular lines of action they applied
within their simulations to the work of Baron and Debussy [4]. Based on an
analysis of five cadaver heads, Baron and Debussy defined an ensemble of 12
fascicles on each side: four “vectors” for the fascicles of the masseter muscle,
three for the temporal, three for the medial pterygoid, and two for the lateral
pterygoid. Of course, this approach is very sophisticated but not individual.

2.2 Numerical background: adaptive finite elements

To study our human mandible, we consider the three—dimensional Navier—
Lamé equations of linear elasticity



—2pdive(u)—Agraddive = f inQ (1)
(Atr(e(u))] +2pe(u))-n = g only (2)
B-u = d onlp (3)

where u = (uy,u9, u3)” denotes the displacement vector and e(u) := (Vu +
(Vu)T)/2 is the strain tensor. We assume that the computational domain
Q) C IR® is a bounded Lipschitz domain with polygonal boundary I'. Neu-
mann and Dirichlet boundary conditions are givenon 'y CT"and ) # I'p C
I', respectively. The physical values A and p are the Lamé constants which
are related to Young’s modulus F and Poisson’s number v by

_ ) 4 = Ev
F=oa+y ™ BEDEE R

We impose the following regularity assumptions:
f €A, B e [L=(Tp)*, de [H(Q), and g € [Ty

Then, we seek for a weak solution u € [H'(Q)]? such that B-u =d on I'p
and forallv e V:={v e [H}(Q)]?: B-v=0o0nTp},

/Qe('v):([e(u)d:c:/gf-vdw+/rlvg-vds. (4)

Here, € is the isotropic material tensor. Defining the Voigt representation
y(uw) : [H(2)]? — [L*(2)]° of the linear Green strain tensor

Y(u) = (€11(u), en(u), e33(w), 2e12(u), 2613(w), 2623(u))”



and using the relation

o11 1-v v v 0 0 0
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for the components of the stress tensor, we obtain

€(v) : Ce(u) =" (v)C(u).

For reasonable boundary conditions, the well-known Lax-Milgram Lemma
and Korn’s inequality yield the existence and uniqueness of a weak solution
u in (4).

The weak formulation (4) is the starting point for our finite element method.
Let 0, be a permissible triangulation of € into tetrahedra and let S; be the
standard finite element space of piecewise linear continuous vector functions.
The finite element solution wy, € S} has then to satisfy B - w, = dj, on T'p,
where d, is the projection of d onto S}, and for all v, € S} with B -v, =0
on I'p

/Qe(vh):Ce(uh)dwz/Qf-'vhda:-l—/FNg-vhds. (5)

After computing the discrete displacement vector u; by the preconditioned
cg-method [12], we derive a posteriori error estimation from a hierarchical
decomposition, compare [7, 6]. Let S7? = S} & Z? with Z} being the finite di-
mensional space of piecewise quadratic functions that are necessary to enrich
the space S} to the standard finite element space S7 of continuous piecewise
quadratic functions. Note the degrees of freedom represented by the basis
functions of Z} are located in the midpoints of the edges of the triangulation
Q. An approximation e, € Z? of the finite element error uw — uy can be

€11
€22
€33
€12
€13
€23



computed from
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B.e, = w, onlp (7)

for all ¢, € Z? with B - ¢, = 0 on I'p. Here, wj, € Z7 denotes the Z2—part
of the projection of d onto S7. A simplified version of this error estimator
is obtained replacing the bilinear form on the left-hand side by its block—
diagonal approximation over Z7. Let

(¢1’ I ¢3N) = (nlela ez, ez, e, ... ,77N63)

be the nodal basis of the space Z2, where N is the number of edges of 2, and
n; is the scalar piecewise quadratic function of edge-node m;, i.e., n;(m;) =1
and 7;(z) = 0 for all other nodes z in the triangulation €2j,. For the discrete
error vector, we have

3N
€p = E €h,i ¢i
i=1

and thus the coefficient of the global stiffness matrix A = (ay;) in (6) are
defined as

akl:/ﬂe(qbk):([e(qbl)dm, k,l=1,...,3N.

Its block—diagonal approximation reads

(an 12 Q13 0 0 0 0 0 0
ag1 Q92 QG923 0 0 0 0 0 0
asg; Qg2 Qa3s 0 0 0 0 0 0
0 0 0 Q44 Q45 Q46 0 0 0
~ 0 0 0 Q54 Q55 (Ajze 0 0 0
A=1 0 0 0 as aes ass 0 0 0
o 0 0 0 0 0 --- agN—23N—2 G3N—23N—1 O(3N—23N
o 0 o0 0 0 © A3N-13N-2 O3N-13N-1 O3N—1,3N
\ o o0 0 0 0 0 --- asnsv2 G3N3N-1  G3N3N
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Replacing A by A reduces the global computation of e), to the computation
of N small 3 x 3 linear systems which can be solved independently to get an
approximation e,. This leads to a very efficient algorithm for computing a
posteriori error estimators (see also [7, 6, 20]). The values

o = ( /Q €6 : € e(e) da:) "

can now serve as local error estimators and can be used to steer an adaptive
refinement of the mesh. In Figure 7 we show the effect of three steps of
adaptive refinement.

Ay, 0%
] LA
4,

Figure 7: Adaptive grid refinement: a: finite element mesh of the mandible
(level 3, about 740.000 tet.), b: view into the finite element mesh near the
biting tooth.

The numerical algorithms described in this subsection are implemented in
the code KASKADE [2, 8] which we used to get all the simulation results.

2.3 Highly resolved modelling of individual muscle
activity

There is considerable variation in the arrangement of the fibres of certain
muscles with reference to the tendons to which they are attached. In some
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muscles the fibres are parallel and run directly from their origin to their
insertion. For those muscles parallel vectors might be a good approximation
of its traction. For more details, see for instance [10].

In the contrary, the masticatory muscles are composed of fibres showing
rather heterogeneous activity [5, 26]. Therefore, their functionality cannot
be captured by groups of parallel vectors in only one direction.

On the other, hand the muscles are coherent structures with inhomogeneous,
but continuous fibre orientation, see the photograph of the anatomical prepa-
ration in Figure 13. You find a detailed discussion in [23].

Motivated by this observation, we want to deduce three dimensional inho-
mogeneous vector fields representing the individual lines of action of the
masticatory muscles. The procedure consists of six steps and is exemplarily
described for the temporal muscle. It can be realized in the same way for
other muscles, see the examples at the end of this subsection.

Step 1: Especially for CT data of reduced quality, segmentation of soft mus-
cular tissue is tedious and imprecise. Therefore, the first step consists
in image processing of the CT data. By special filtering techniques,
the bony contours were returned as dark lines enlaced by white edges
of high grey value, see Figure 8. For muscular tissue, the situation is
changed. But, nevertheless, the contour of the temporal muscle can be
recognized in the filtered data set.
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Figure 9: Visualization of the inner structure of the temporal muscle.

Step 2: By the preprocessing within the last step, improved segmentation
of the muscles and their attachments is possible. For the result of the
subsequent surface reconstruction, we refer to Figure 3.

Figure 10: Visualization of the masticatory muscles by modified volume
rendering.

Step 3: Having once succeeded in the segmentation of the muscles, we can
apply the techniques described in [17], see also Figure 2. By this, a
qualitative profile of the inner structure of the considered muscle can
be given, see Figure 9. These methods are very hardware intensive.
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About two millions of little faces have to be rendered. A less extensive
representation can be given by modified volume rendering, see Figure
10. Now, all masticatory muscles can be rendered simultaneously.

Figure 11: “guiding lines” related to the individual directions of tendons
and fibres.

Step 4: In the profile of the inner structure of the last step, it is possible to
select “guiding lines” related to tendons and fibres, see Figure 11. For
further processing the guiding lines are normalized.

In the case of data based on magnetic resonance imaging (MRI), the
tendons up to the basic course of the fibres can be visualized, see [14].
The in principle better soft tissue representation by MRI is rigorous.
But in our actual example, the applicability of this method also to
CT-data of standard quality is demonstrated.

Step 5: In this step, the lines of action starting from arbitrary points within
the muscle attachment are calculated as linear combinations of the
guiding lines.

We claim that a guiding line fl “insulates” a point P from another
guiding line f, if line f, lies in the rear hemisphere orthogonal to the
connecting line between P and the starting point of line f;. Only
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the not insulated guiding lines are admitted to an interpolation with
weights inversely proportional the nth power of the distance to P with
an positive integer n. By this, we avoid that the fibres at the muscle’s
posterior portion influence the lines of action at the anterior one and
vice versa.

Pj, \\ rear hemisphere orthogonal to
’ N .the connecting line of P and P,

'|
1

|
|
|
I

Figure 12: The guiding line starting at P; “insulates” the guiding lines start-
ing at P; and Py because the angles ¢;, ¢y are greater than 90°. Accordingly,
the guiding line starting at P, is not insulated.

In detail, let us con51der the points Py, ..., P, as the starting points of
the guiding lines fl, . fn P may be an arbitrary point inherent to
the muscle attachment. The appropriate line of action fp at P will be
defined as a weighted linear combination of the guiding lines fl,. . fn

n
fr=) wia f;
i=1
where
a) w; = 0, if the line f; at P; is insulated from f; by another line f;
This means that the angle ¢ between the connecting line PP; and the

connecting line P;P; is greater than 90, see also Figure 12. Otherwise

b) The value g, is set proportional to || fp — f;||” with an positive integer
n. The sum over all a;w; is normalized to 1.

Short comment on the choice of the exponent n: with increasing n,
the weights of the near guiding lines are also increasing. We aim at
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a continuous vector field. By visual inspection and comparison with
the anatomical preparations, n = 3 proved to be a good choice. See
Subsection 3.2 for a sensitivity analysis with respect to this exponent.

¢) Finally, the vector f; is scaled to a unit vector.

Step 6: This step is dedigated to the assignment of values of force density
to the unit vectors fp obtained in Step 5. The physical unit is N/m?.
The easiest way is a homogeneous force density, for instance referring
to a force value found by experimental evidence divided by the area
of the muscle attachment. A more physiological approach is compart-
mentalisation based on the results of electromyographic measurements
as [22] or anatomical literature, see for instance the detailed discussion
in [23]. By this, an inhomogeneous force density is obtained.

Figure 13: Juxtaposition of the calculated lines of action of the temporal
muscle and a real preparation (preparation: Anatomische Anstalt, Univ. of
Munich, photograph: C. Kober).

For first results and a comparison with a real preparation, see the Figure 13.
Within the finite element analysis of the mandible, these muscular lines of
action serve as Cauchy boundary conditions at their insertion. Therefore,
the curvature of the fibres within the muscle itself has not to be taken into
account. For a first attempt of the group involving also the muscular tissue
itself, see [14]. There, the inherent curvature of the lines of action has been
taken into account. See also Section 4.

16



We want to add some comments concerning our ansatz of insulated points in
Step 5. With a view to the right picture of Figure 13, a muscle consists of
a large but finite number of fibres and tendons. The fibres are not infinitely
small, but they show finite radial dimensions. Together, they form a coherent
organ, namely the muscle, in the contrary to a continuous force field, a
radiation field for instance. Our guiding lines are chosen as representative in
the sense that the neighbouring fibres — and only those — are very similar. By
this, it may be justified to compute the other fibres by weighted interpolation.
An alternative ansatz might be looking at the guiding lines as sources of forces
with an exponentially decreasing influence sphere. This would correspond
to the “radiation field philosophy”. In our opinion this approach is not
physiological.

Figure 14: Visualization of the masseter (a) and of the lateral pterygoid
muscle (b).

Comparable processing for the other masticatory muscles, as the masseter
muscle or the lateral ptergygoid, has already been performed or is in progress,
see Figures 14a and b.

3 Results

3.1 Simulation results

As an example, we simulate a lateral bite on the leftmost premolar. Our
interest is focused on the mandibular ramus. The biting tooth assumed as
nearly not deformable is pressed by muscle forces towards a very hard object
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to be crunched. Therefore, within this stage of our project, we keep this
tooth fixed. The other teeth are freely mobile.

This setting can be compared with an orthogonal bite on a very hard metallic
pencil. This choice was motivated by the demand of an asymmetric and, at
the same time, extreme test case.

masseter | temporalis pteryg. pteryg.

medialis | lateralis
force, biting side [N] 91 81 43 0
force, balancing side [N] 60 68 29 0

area of muscle attachment
biting side [m?] | 1.1305e-3 | 4.4949e-4 | 3.2430e-4 | 7.4849e-5

area of muscle attachment
balancing side [m?] | 1.1245e-3 | 4.0823e-4 | 3.2610e-4 | 8.8882e-5

force density,

biting side [N/m?] | 8.0495e+4 | 1.8020e+5 | 1.3259+5 0
force density,
balancing side [Nm?] | 5.3357e+4 | 1.6657e+5 | 8.8930e+4 0

Table 1: Muscular forces according to [22].

As reported in the previous sections, the four respectively eight common
masticatory muscles were included in the simulation. For muscular force
density, we refer to the data given in [22] based on electromyographic mea-
surements divided by the area of the respective muscle attachment, see Table
1. We applied inhomogeneous vector fields of lines of action as derived in
Subsection 2.3. But, for want of appropriate input data, we refrained from
compartmentalisation.

Because of its significance in bone adaptation, we discuss the simulation
results with respect to the volumetric strain € being the trace of the strain
tensor €;;. Figure 15 shows the result of the numerical computation.

The impact of the posterior portion of the temporal muscle is illustrated
in Figure 16, see also [15]. The photography of an anatomical preparation
shows the formation of the fibres of this muscles. We juxtaposed the simula-
tion results (volumetric strain, von Mises equivalent stress) and two different
representations of the density profile which are modified volume rendering
and the methods described in [17]. As discussed in [15], the marked small
spot of reduced density within the incisura corresponds to elevated compres-
sion, see the profile of volumetric strain, resp. elevated von Mises equivalent
stress. Inter alia, this agreement motivated our actual study.
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Figure 15: Simulation result: volumetric strain due to a bite on the leftmost
premolar.

3.2 Sensitivity analysis

In this context, we performed two approaches of sensitivity analysis. First,
we analysed the impact of adaptive grid refinement at the mandibular ramus.
Second, we tested the volumetric strain profile with respect to the realisation
of the temporal muscle.

In a first sensitivity analysis, we performed simulations with the fully refined
setting as given in Subsection 3.1. The number of tetrahedra was more than
quadrupled from level 0 to level 2. Most notably, adaptive grid refinement
occured at the temporo mandibular joint capsules and in the neighbourhood
of the biting tooth. Within this work, we focus on the mandibular ramus
(esp. at the working side) and compare the volumetric strain profiles from
level 0, level 1, and level 2, see Figure 17. In this context, visual inspection
does not reveal any qualitative changes, neither at the working nor at the
balancing side. Next, we analyse the quantitative changes between the levels.
For a local comparison, we transferred the results of a level 1 computation
for instance to a level 0 grid and calculated the difference. At the rami, this
difference for the level 0 and the level 1 simulation is about 10~5. This value
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Simulation

volumetric strain

density profile

Figure 16: Impact of the posterior portion of the temporal muscle (prepa-
ration: Anatomische Anstalt, Univ. of Munich, photograph: C. Kober).

is exceeded at the chin, near the biting tooth. Compared to an order of
magnitude of 10™* of the strain itself, we decided to proceed to higher levels.
In the lower right picture of Figure 17, the difference between a computation
of volumetric strain at level 1 and at level 2 is shown. This difference profile
exhibits high values at the mandibular condyles where we also can state high
rate of adaptive grid refinement. In the contrary, at the both rami, its order
of magnitude is less than 107%. The order of magnitude of the unmodified
strain results is 107%. So, one might estimate that the relative error due to
finite element discretisation at the mandibular rami has order of magnitude
10~2 which is very small compared to other sources of imprecision inherent
to our simulation. Thus we can rely on the accuracy of the level 1 results for
all further considerations in this paper.

Next, we consider the variances of the strain profile due to different realisation
of the temporal muscle. For some examples, see Figure 18. Based on the
level 2 results, we tested the following settings:

1: Homogeneous muscular traction over the whole muscle:
a) aligned to the anterior portion of the temporal muscle,
b) parallel to the coronoid process, see also Figure 18,
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Figure 17: Sensitivity analysis with respect to adaptive grid refinement:
working side (volumetric strain).

c) aligned to the posterior portion of the temporal muscle.

2: Two guiding lines:
We chose the first guiding line according to the anterior portion of the
temporal muscle,
the second one according to its posterior portion.
The interpolation is done by the nearest neighbour method, in which
the fibre closest to a point is the line of action in that point. See also
Figure 18.

3: Guiding lines according to Step 4 of Subsection 2.3, see also Figure 11,
but interpolation performed by the nearest neighbour method.

4: Guiding lines vectors according to Step 4 of Subsection 2.3, see Figure
11, interpolation as descibed in Step 5 with different choice of the
parameter n:
a)yn=1
b) n=2
c) n = 3, see also Figure 18.

By comparison with the real preparations, the case “n = 3” proved
best to fit with reality.
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Figure 18: Sensitivity analysis with respect to different realisation of the
temporal muscle: working side (volumetric strain).

As expected, the cases of Setting 1 showed decisive qualitative differences
compared to the simulation results based on the fully refined input data
described in the preceding subsection. The case of Setting 1b is displayed in
the top left picture of Figure 18. The direction of traction was set parallel
to the coronoid process. As expected, this test case did not exhibit the little
spot of compression discussed already in the last section, see Figure 16.

The results of the other settings did not reveal such striking differences. The
volumetric strain related to Setting 2 is depicted top right in Figure 18. The
realisation of the temporal is based on two guiding lines, the first one aligned
to the strong anterior portion of the muscle, the other aligned to its posterior
portion. The full fanlike reconstruction, Setting 4c, can be seen bottom left
in Figure 18. The calculated difference between the strain profile due to this
full fanlike reconstruction and the one due to Setting 2 is given in Figure 18,
bottom right. Its order of magnitude is about 107°, while the unmodified
strain results have an order of magnitude of 10~%. So we have to realize a
relative error of about 10%.

Inter alia, the positive values (yellow colour) of the difference profile at the
neck of the condyle indicate that the strain values of the fully refined re-
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construction (Setting 4c) are higher than those due to Setting 2. So, the
Setting 4c is more similar to the density profile depicted in Figure 2 and
therefore in some sense more physiological.

The results within Setting 4 differ about 1%. The choice for n = 3 as the best
case was done by a comparison of the reconstructed vector fields with the
arrangement of the fibres of some anatomical preparations, see for instance
Figure 13.

4 Conclusion and outlook

We presented a new approach of muscular modelling in the context of adap-
tive finite element simulation involving the individual fine structure of the
muscles.

Using adaptive grid refinement the numerical method provided reliable re-
sults. The difference of about 1% between the results of level 2 calculations
and corresponding level 1 calculations ensured that the discretisation error
is less than the errors caused by the modelling.

The simulation results showed qualitative impact of the physiological mod-
elling of muscular forces, see the comparison depicted in Figure 16 and the
respective sensitivity analysis in the preceding subsection. This sensitivity
analysis revealed a difference of about 10% between the results of a real-
isation of the temporal muscle based on two guiding lines and the fanlike
reconstruction which is the particular subject of this article. In the contrary
to standard engineering simulation, a variance of this order of magnitude is
not exorbitant compared to other sources of imprecision.

An appropriate algorithm for the assignment of more or less individual force
density values to special “compartments” of the muscles, see Step 6 of our
modeling procedure in Subsection 2.3, is subject of ongoing work. First tests
showed reliable results.

A sensitivity analysis with respect to the muscle attachment of the masseter
muscle revealed best agreement with the density profile of Figure 2 for that
muscle attachment which corresponds best to reality given by the CT-data.
This result may be interpreted as further tessera for our approach stated at
the beginning, see Section 1 or [15].

As mentioned in Subsection 2.3, the muscular lines of action serve within the
framework of the mandible simulation as Cauchy boundary conditions mainly
at their insertion. Therefore, the course of the fibres and tendons inside the
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muscle is not relevant. In [14], an extension of the presented ansatz is given
towards an anisotropic reconstruction of the muscular tissue, see Figure 19.

Figure 19: Anisotropic reconstruction of a human temporal muscle, see [14].
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