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Abstract

Under high load, the automated dispatching of service vehicles for the German Au-
tomobile Association (ADAC) must reoptimize a dispatch for 100–150 vehicles and
400 requests in about ten seconds to near optimality. In the presence of service
contractors, this can be achieved by the column generation algorithm ZIBDIP. In
metropolitan areas, however, service contractors cannot be dispatched automati-
cally because they may decline. The problem: a model without contractors yields
larger optimality gaps within ten seconds. One way out are simplified reoptimiza-
tion models. These compute a short-term dispatch containing only some of the
requests: unknown future requests will influence future service anyway. The simpler
the models the better the gaps, but also the larger the model error. What is more
significant: reoptimization gap or reoptimization model error? We answer this ques-
tion in simulations on real-world ADAC data: only the new models ShadowPrice
and ZIBDIPdummy can keep up with ZIBDIP.
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1 Issues and Motivation

Currently, the German Automobile Association (ADAC) evaluates an auto-
mated dispatching system for service vehicles (units) and service contractors
(contractors) on the basis of exact cost-reoptimization. This means that a cur-
rent dispatch is maintained, which contains all known yet unserved requests
and which is near optimal on the basis of the current data; whenever a unit
becomes idle its next request is read from the current dispatch; at each event
(new request, finished service, etc.) the dispatch is updated by a reoptimiza-
tion run.

A feasible current dispatch for all known requests and available service vehicles
is a partition of the requests into tours for units and contractors such that
each request is in exactly one tour and each unit drives exactly one tour
(maybe directly to its home position) so that the cost function is minimized.
Cost contributions come from driving costs for units, fixed service costs per
requests for contractors, and a strictly convex lateness cost for the violation
of soft time windows at each request (currently quadratic). The latter cost
structure is chosen so as to avoid large individual waiting times for customers.

It is not a-priori clear that such a rigorous reoptimization yields the best, or
even a good, long-term cost (the online issue of the dispatching problem).
Indeed, at times in the literature it is claimed that exact reoptimization (i.e.,
with small optimality gap) does not pay in practice because of the unknown
future requests [1, p. 5]. In the case of this particular application, however,
the results of exact reoptimization are satisfying [2], in concordance with [3,
Sec. 8.4].

Although the reoptimization problem, which is modeled as a set partitioning
problem for tours, has an astronomical number of variables, it can be solved
by a dynamic column generation procedure. An effective method to obtain
provably good solutions in ten seconds (the real-time aspect of the dispatching
problem) is dynamic pricing control, which is the main feature of our ZIBDIP
algorithm (a thorough description of the algorithm and computational results
can be found in [4]).
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As it turns out, the fixed costs for service by contractors bound the dual
values of requests. Thus, contractors substantially contribute to the success of
ZIBDIP. The contractor, however, may in practice decline to serve suggested
requests, in which case this request has to be manually reentered into the
system, with the additional constraint that it must not be assigned to this
contractor again. This is a time consuming process. In metropolitan areas,
contractors decline so often that the ADAC decided to remove contractors
from the model.

In simulations on ADAC production data (three days in December 2002 with
high load) without contractors, we encountered significant reoptimization gaps.
For 2002/12/13, e.g., Fig. 1 shows the gap of the reoptimization result to the
respective lower bound coming from the optimal solution of the LP relaxation
(this lower bound was computed a-posteriori for each reoptimization). The re-
optimization still works well in most cases, but under high load the solutions
– delivered after ten seconds – exhibit optimality gaps around 3% on average
but up to 10% in peak load situations.
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Fig. 1. Optimality gap over time of ZIBDIP (the load ratio is the number of requests
per unit in a reoptimization problem).

One way to overcome this problem is to consider simplified reoptimization
models that stem from the following considerations: In principle, for each unit
we only have to determine the next request to work on. The complete dispatch
is computed only to pick up future synergies by considering more than one
request per unit. Synergies that are implemented only very far in the future will
be disturbed by new requests anyway; therefore, an exact pre-calculation of
the best decisions in, say, two hours may not really be necessary; consequently,
one can try to cover only a subset of requests in a reoptimization step.

The issue of this experimental work is: should one stick to the complete model
and accept occasional substantial reoptimization gaps, or is it better to sim-
plify the reoptimization model so as to eliminate the reoptimization gap?
This question is answered on the basis of simulation studies, performed on the
aforementioned ADAC production data: we first compare the original ZIBDIP
reoptimization to several methods to select subsets of requests that have to
be covered by any solution of the reoptimization run. Then ZIBDIP competes
with two simple online heuristics for the ZIBDIP model in order to estimate
how even larger reoptimization gaps harm in the long run.
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2 Simplified Models

We developed and evaluated the following strategies for the selection of re-
quests to be covered in a reoptimization run. In the sequel, we describe the
original and each simplified model in more detail.

We will use R and U to denote the set of requests and units, respectively. In
all our models, there is a binary selection variable xT for each feasible tour
T . Such a tour is given by a unit u and a sequence of requests to be served
by u in the given order. We call the set of all feasible tours T and the set of
all feasible tours for unit u is written as Tu.

We denote by cT the cost coefficient of tour T . This is a weighted sum of strictly
convex lateness costs, linear drive costs, and strictly convex overtime costs.
Lateness costs in the reoptimization are incurred whenever a request is served
after a waiting time of more than 15min. The true target for the waiting time
is higher. The 15 min deadline in the reoptimization problem was derived from
the following consideration: the true waiting time for a request should lead to
the same lateness costs as the fixed contractor costs for serving that request.
This is motivated by the wish that requests that can not be served inside the
true time window by a unit should be served by a contractor in order to reach
the true target time. The exact formula including the numerical values of the
coefficients of the cost function can not be disclosed here.

Let (avT ) be the incidence matrix of requests and tours.

2.1 The Original Model ZIBDIP

The original reoptimization problem solved by ZIBDIP without contractors
reads as follows.

min
∑

T∈T
cT xT s.t.

∑

T∈T
avT xT = 1 ∀v ∈ R (partitioning requests)

∑

T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

In contrast to the following simplifications this model guarantees that, after
every reoptimization, each request is assigned to exactly one unit because of
the set partitioning constraint. Every unit has to drive exactly one tour, where
the direct move to its home position is also a feasible tour, the drive-home tour.
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2.2 The Simplified Model 4-ZIBDIP

Select those requests that are among the four closest to some unit. This can be
generalized to k-ZIBDIP. In the following, k-close requests are requests that
are among the k closest to some unit, denoted by Rk ⊆ R. In formulae, we
obtain the following model:

min
∑

T∈T
cT xT s.t.

∑

T∈T
avT xT = 1 ∀v ∈ Rk (partitioning k-close requests)

∑

T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

2.3 The Simplified Model PTC (Prescribed Total Cover)

Relax the set partitioning condition to set packing, and require that a request
set of cardinality twice the number of units is covered by tours of units. This
leads to the following model, where nT is the number of requests in tour T :

min
∑

T∈T
cT xT s.t.

∑

T∈T
avT xT ≤ 1 ∀v ∈ R (packing requests)

∑

T∈T
nT xT ≥ 2|U | (cardinality)

∑

T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

Note that if we replace the cardinality constraint by

∑

T∈T
nT xT ≥ min{2|U |, |R|}

the PTC model is equivalent to the original ZIBDIP model if there are at
most two requests per unit on average.
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2.4 The Simplified Model ShadowPrice

Solve the LP relaxation of ZIBDIP. To find an integral solution, relax the set
partitioning condition to set packing and change the cost of each tour to its
reduced cost from the hopefully near optimal LP solution. In the following, the
new cost coefficient c̃T of a tour T is the reduced cost of T w. r. t. the best LP
solution that can be found in time. Because the LP solution algorithm works
by dynamic column generation, this solution is an optimal solution to the last
RLP that could be solved in time. The resulting model reads as follows:

min
∑

T∈T
c̃T xT s.t.

∑

T∈T
avT xT ≤ 1 ∀v ∈ R (packing requests)

∑

T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

In this model, requests are assigned to units only if their LP dual prices
together with the drive-home cost of a unit pay enough to weigh out the primal
costs of their service. This requires that the LP relaxation can be solved fast,
since the LP is not simplified at all.

This model is motivated by the fact that not only the column generation
process is slowed down by the absence of contractors but also the IP-solution
process. This can be explained as follows: In the presence of contractors, for
each request there is an elementary column covering exactly that request. That
way, each set packing solution using cheap tours through suitable requests can
be augmented to a feasible set partitioning solution by adding such elementary
columns, each at the fixed cost of the corresponding contractor. When there are
no contractors, such elementary columns may become much more expensive
than the price for a contractor, and for this reason they may even be overseen
in the column generation process. From the remaining columns it may be
difficult to augment a set of nice tours to a feasible set partitioning solution
at reasonable costs. Relaxing the set partitioning condition to set packing on
the model-level by-passes this problem completely and may lead to a faster
IP-solution process.

2.5 The Simplified Model ZIBDIPdummy

Introduce a dummy contractor. This contractor can be assigned arbitrarily
many requests at the same time at no extra cost, i.e., in reality, these requests
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are unassigned for the moment. In order to enforce a cost for the assignment
to the dummy contractor, its arrival time at any request is a fixed time, the
dummy contractor delay. In our case, 135min were chosen. In the following,
dv is the dummy contractor delay, i.e., the lateness cost for 135 min additional
delay at v (on top of the current age of v). By using decision variables yv to
indicate whether request v should be served by the dummy contractor, we
obtain the following model:

min
∑

T∈T
cT xT +

∑

v∈requests

dvyv s.t.

∑

T∈T
avT xT +

∑

v∈R

yv = 1 ∀v ∈ R (partitioning requests)

∑

T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T
yv ∈ {0, 1} ∀v ∈ R

This model implies that, in an optimal solution, for any request in a tour
of a unit, service will start after at most 135 minutes after reoptimization;
otherwise, the request would have been assigned to the dummy contractor.

We remark that all simplified models, including ZIBDIPdummy, can be aug-
mented to accommodate real contractors as soon as this might be reasonable
again. (The re-introduction of real contractors requires, however, that accep-
tance or decline of real contractors can be predicted, in other words: reliable
contracts are signed.)

3 Simplified Reoptimization Algorithms

We furthermore evaluated two heuristics for the original model, which were
used in the reoptimization process as replacements for ZIBDIP. One should
mention that in each reoptimization with either model, the solutions of the
previous reoptimization are reused as start solutions – a simple but essential
technique to stabilize the dispatching process in case of occasional suboptimal
reoptimization.

3.1 The Simplified Algorithm BestInsert

A new dispatch is obtained by taking the dispatch of the previous reopti-
mization, removing all requests that have been served in the meantime, and
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inserting new requests at minimal additional cost w. r. t. to the original ZIB-
DIP-model.

3.2 The Simplified Algorithm 2-Exchange

A first tentative dispatch is computed by BestInsert. This dispatch is then
improved by successively exchanging two requests between distinct time slots
in the dispatch if this decreases the cost. It has to be noted that the compli-
cated cost function for tours leads to quite some computational effort for the
calculation of the 2-Exchange solutions.

4 Computational Results

The simulation data stems from three days of production at ADAC in De-
cember 2002; instance sizes are given in Table 1. Depending on the instance,
between 1700 and 2100 reoptimization runs were triggered.

instance requests units requests per unit

2002/12/07 2123 125 16.98

2002/12/13 2537 146 17.38

2002/12/14 1731 131 13.21
Table 1
Sizes of high load instances used for simulation.

The software ran on a standard Linux PC equipped with 2.4 GHz Pentium 4
CPU, 4 GB RAM, distribution SuSE 9.0 using kernel 2.4.21-202-smp. It was
compiled with gcc 3.3.1 and used the LP/ MIP solver CPLEX 8.0. Each re-
optimization run was interrupted after 10 seconds run-time.

4.1 Simplified Models

Since all our simplified models by design do not guarantee service for all re-
quests under low load, we evaluated them in the following way: If the load
ratio was less or equal to 2.0, reoptimization was performed using the original
ZIBDIP model. If the load ratio exceeded 2.0 we employed the respective sim-
plified model (this is natural since these models were designed for high load
situations).
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First of all, we checked whether the simplified models can reduce the optimal-
ity gaps of the reoptimization solutions that could be computed in 10 s (see
Fig. 2). It can be seen that all models reduce the gap significantly, i.e., the
corresponding optimization problems are easier to solve in 10 s.
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(a) ZIBDIP
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(b) 4-ZIBDIP
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(c) PTC
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(d) ZIBDIPdummy

Fig. 2. Optimality gaps and load ratios for simplified models and ZIBDIP. The
optimality gap of ShadowPrice is inevitably infinite, since the lower bound the LP
provides w. r. t. the modified cost (which is the reduced cost) is zero.

We think that some single large optimality gaps for 4-ZIBDIP and PTC stem
from switching back to ZIBDIP if the load ratio drops temporarily below 2.0.
The switches are particularly “unsmooth” for these two models, since ZIBDIP
has to run essentially without a feasible start solution. This discontinuity in
operation is certainly a drawback of 4-ZIBDIP and PTC.

Next, we investigated the cost over time w. r. t. the reoptimization cost func-
tion, designed in cooperation with ADAC.
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Fig. 3. Comparison of ZIBDIP and simplified models w. r. t. the nonlinear cost
function used by ADAC.

The results: only ShadowPrice and ZIBDIPdummy are competitive against ZIB-
DIP, although ShadowPrice seems to degrade in performance in the largest
instance (b). In two out of three instances, ShadowPrice and ZIBDIPdummy

have even slightly lower long-term cost than ZIBDIP, though by a small mar-
gin. In the largest instance with the most difficult reoptimization problems,
however, the original ZIBDIP is superior. On average, however, the results are
in favor of ZIBDIPdummy.
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Fig. 4. ZIBDIP vs. simplified models: L1-norm of lateness time.

Since the reoptimization cost function of ADAC is quite a complicated mixture
of lateness, drive, and overtime costs, we decided to investigate two standard
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Fig. 5. ZIBDIP vs. simplified models: L2-norm of lateness time.

measures on the so-called lateness time vectors (see Fig. 4 and 5). The lateness
time of a request is its waiting time portion that exceeds the allowed waiting
time, fixed by ADAC. We calculated the L1 norms and the L2 norms of the
lateness time vectors (one entry for each request). The former norms measure
the average waiting time, the latter norms penalize in particular large individ-
ual lateness times, which is desirable from a fairness point of view. One should
mention that these two criteria are also of vital interest in the evaluation of the
long-term behavior of online-algorithms. The ADAC reoptimization objective
was chosen to contain more aspects since reoptimization of L1 and L2 norms
alone, resp., did not lead to satisfactory overall results.

It is apparent, that w. r. t. these lateness time measures, ZIBDIPdummy is never
worse than second best; moreover, it performs best in four out of six evalu-
ations. ShadowPrice shows the worst L1 norms, although the L2 norms are
good. We have no explanation for this.

The good L1 norms of PTC are due to the fact that, obviously, individual
requests are postponed in favor of new requests that can be served faster.
This can be seen very clearly in the L2 norm diagrams, in which PTC performs
worst. Uncontrolled deferment of requests is a very undesired property of an
online algorithm. Therefore, PTC can not be recommended for tasks in which
fairness is an issue. In our application, fairness certainly is an issue, whence
the ADAC cost function contains a strictly convex waiting time penalty.

The answer to our main question is that the model error of most of our high-
load models leads to worse long-term behavior than the computational error
that ZIBDIP produces (Fig. 3). Therefore, model simplifications have to be
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treated with great care. In our case, ZIBDIPdummy delivers the overall slightly
best solution. One needs to be careful, though: a substantially smaller con-
tractor delay of 45 min would lead to a tiny reoptimization gap; it, however,
would at the same time produce unacceptable long-term costs because too
many requests stay unassigned for too long. (This was, by the way, observed
when we were looking for a good dummy contractor delay. Thus, ZIBDIPdummy

involves some parameter tuning that the original ZIBDIP does not.)

4.2 Simplified Reoptimization Algorithms

The results so far could lead us to the conclusion to keep the original model
but to use simplified reoptimization algorithms, since it seems that the opti-
mality gap does not harm too much. After all, the implementation of a dy-
namic column generation procedure means a substantially larger effort, which
is important especially in the industrial context.
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Fig. 6. Comparison of ZIBDIP and the heuristics w. r. t. the nonlinear cost function
used by ADAC.

Since we hear quite frequently such arguments in order to promote the use of
heuristics rather than exact mathematical programming methods, we followed
also this line in our simulation experiments and found out the following: Larger
computational errors in the reoptimization can increase the long-term costs
even more significantly than the model errors above.

This is most incisively shown by the bad performance of BestInsert (Fig. 6,
7, and 8). Even 2-Exchange can not catch up with ZIBDIP and ZIBDIPdummy

in the heavier instances. In the largest instance (b), 2-Exchange ends up at a
long-term cost of 20 % above ZIBDIP and ZIBDIPdummy. Especially striking
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Fig. 7. ZIBDIP vs. heuristics: L1-norm of lateness time.
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Fig. 8. ZIBDIP vs. heuristics: L2-norm of lateness time.

is the fact that, in the largest instance, the cost of 2-Exchange is constantly
increasing over time relative to ZIBDIP. That means: the reoptimization errors
accumulate.

In particular: in our application it is certainly not true, that deliberately stick-
ing to the suboptimal solutions of heuristics like BestInsert in order to leave
space for future requests can yield superior long-term behavior (compare [1,
p. 5]). We are not saying that reoptimization is the best possible policy, maybe
not even in our application. We claim: if anything is wrong with the reopti-
mization policy then this defect is not cured by using suboptimal solutions to
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the reoptimization problems.

The good overall performance of ZIBDIPdummy may stem not only from clos-
ing the optimality gap in the reoptimization process; it seems, moreover, that
the special model of ZIBDIPdummy makes perfectly sense in the dynamic en-
vironment: since requests that are assigned to the dummy contractor would
otherwise be served quite far in the future, with a high probability their po-
sition in the dispatch will change anyway. These considerations led us to the
conclusion to install ZIBDIPdummy as the default reoptimization model in the
automatic dispatching software for ADAC.

5 Significance

The production software for automated dispatching of ADAC service vehicles
is delivered by Intergraph Public Saftety (IPS), based on the ZIBDIP algo-
rithm. In the view of the results presented in this work, ADAC has filed a
change request for the production software: ZIBDIPdummy is now the standard
reoptimization model because it has proven to be more robust against sudden
load increase.

The key learning is that rigorous reoptimization on the basis of mathematical
programming – though myopic w. r. t. unknown future requests – yields the
best results in this particular application. Whether or not statistic informa-
tion about future requests can be fruitfully integrated into the reoptimization
framework, is work in progress, as is the investigation of randomized online-
algorithms.
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