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Abstract

We present a graph theoretical model for scheduling trains on a
single unidirectional track between two stations.

The set of departures of all possible train types at all possible
(discrete) points of time is turned into an undirected graph G by
joining two nodes if the corresponding departures are in conflict. This
graph G has no odd antiholes and no k-holes for any integer k ≥ 5.
In particular, any finite, node induced subgraph of G is perfect.

For any integer r ≥ 2 we construct minimal headways for r train
types so that the resulting graph G has 2r-antiholes and 4-holes at the
same time. Hence, G is neither a chordal graph nor the complement
of a chordal graph, in general. At the end we analyse the maximal
cliques in G.

1 Introduction

1.1 Motivation

In the project Trassenbörse a research group at the Zuse Institute Berlin is
developing together with economists and railway experts from the Technical
University Berlin and consultants a concept for the allocation of railway slots.

∗e-mail: lukac@zib.de. This work was funded by the Bundesministerium für Bildung
und Forschung (BMBF) as a part of the research project Trassenbörse, grant 19M2019.
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Each slot has a monetary value which depends on how close it comes to
the wishes of the train operating company that bids for the slot. We are
looking for timetables that maximise the sum of the monetary values of the
simultaneously realisable slots.

We formulated this problem as a multi commodity flow problem in a
time-expanded graph F with additional constraints like safety restrictions,
stopovers, and combinatorial bids (see [6]).

A core problem in a railway network is the small number of opportunities
to overtake a slower train. Many nodes in the above graph F are therefore
in conflict with each other due to safety restrictions on the tracks. A graph
theoretical understanding of the conflict graph derived from F is therefore
of special interest.

The conflict graph for a network decomposes more or less into conflicts
for single unidirectional tracks. There are other conflicts like bidirectional
traffic on a single track or the intersection of lines outside of stations. But,
they occur less often. In this paper we therefore consider the conflict graph
for a single unidirectional track.

1.2 Background on trains

We are given a unidirectional track s between two stations, say, A-town and
B-town. Any train enters the track at A-town and leaves the track at B-town.

A train type is a specific dynamic for running a specific train along the
track s. For example, there may be train types ICE1, ICE2, ICE3, RE1, and
RE2 for running an ICE (InterCityExpress) or an RE (RegionalExpress) with
different dynamics along the track s. We only consider a finite set Y of train
types. In what follows we consider a discrete time horizon, typically in steps
of one minute, which is modelled as the set of integers Z.

Consider two trains running behind each other along the track s. Denote
the train type of the first and the second train by y1 and y2, respectively.
Then, the safety restrictions on the whole track lead to the minimal headway
time H(y1, y2) that the second train has to obey when it enters the track s.
This means that all the safety conditions on the whole track are reduced to a
single check of the departure times of the two trains (see [4, section 5.3.3.]).
We remark that the headway time H(y1, y2) is not necessarily the technically
minimal headway time. It may be increased by some safety buffer time.

It is clear that a slow train in front of a fast train needs a more substantial
headway than a fast train in front of a slow train. Therefore, the headway
matrix H is not symmetric, in general.

The only property of the headway matrix that will be used in Sections 2,
3, and 4 is the validity of the triangle inequality. We shall call this property
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triangle-linearity. The triangle inequality is clearly satisfied for the techni-
cally minimal headways. But, the safety buffer times may pose problems.
Nevertheless, given a technically minimal headway matrix H and a posi-
tive integer m we can add an arbitrary safety buffer time b(y1, y2) to the
headway H(y1, y2) without violating the triangle inequality provided that
m ≤ b(y1, y2) ≤ 2m for any y1, y2 ∈ Y .

Our research project Trassenbörse has data sets for both the technically
minimal headways and the headways with additional safety buffer times.
They satisfy the triangle inequality.

2 The graph G

2.1 Definition and Notation

We shall only consider simple graphs without loops.

Definition An (n× n)-matrix H of positive integers is called triangle-linear
if

H(i, j) + H(j, k) ≥ H(i, k)

for any 1 ≤ i, j, k ≤ n.

These matrices are sometimes called distance matrices in the literature. It
is irrelevant for our graph theoretical argumentations whether the matrix H is
actually derived from some railway context or not. The index set {1, 2, . . . , n}
of the matrix H is denoted by Y and its elements are called train types even
if there is no relation with a railway context.

Any triangle-linear matrix H defines an undirected graph GH in the fol-
lowing way. The set V of nodes is the Cartesian product Y × Z. The set E
of edges is

{((y1, t1), (y2, t2)) ∈ V × V : (y1, t1) 6= (y2, t2) and

1 − H(y2, y1) ≤ t2 − t1 ≤ H(y1, y2) − 1}.

Two nodes that are adjacent are said to be in conflict.

Example The matrix
(

2 2

2 3

)

for train types y1 and y2 and the restriction of

Z to the time interval I = {1, 2, 3, 4, 5} lead to the graph GH as depicted in
Figure 1. Here, and in what follows, the second coordinate of GH , namely
the time-axis Z, is displayed horizontally. The first coordinate, namely the
set Y of train types, is displayed vertically.
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(y2, 1)

(y1, 1)

(y2, 5)

(y1, 5)

Figure 1: The graph defined by H =
(

2 2

2 3

)

and I = [1, 5].

In the train model interpretation, each node (y, t) stands for a train of
type y with departure time t. An edge ((y1, t1), (y2, t2)) corresponds to a
conflict due to a too short headway between a train of type y1 departing at
time t1 and a train of type y2 departing at time t2. The graph GH is the
conflict graph for all possible departures of all possible train types.

Also, the graph GH can be looked at as the conflict graph for the produc-
tion of items on a single machine. Then, H(i, j) is the minimal waiting time
for the production of an item of type j ∈ Y after the production of an item
of type i ∈ Y . The time to produce an item would be looked at as being
equal to zero.

In what follows, the complement of a graph will be denoted by an over-
line. We shall abbreviate GH by G if this does not lead to ambiguities. All
the subgraphs considered by us are node induced. For simplicity, the coor-
dinates of the train types are not always depicted correctly in the following
figures. Sometimes, nodes with different train types are depicted with the
same value on the vertical axis. This has no effect on the graph theoretical
argumentations, though.

A k-hole, k ≥ 4, is a connected graph with k nodes and k edges so
that each node is adjacent to exactly two other nodes. We remark that an
embedding of a k-hole into the plane is homeomorphic to a circle. A graph
that is the complement of a k-hole is called a k-antihole. A hole or antihole
is odd (even) if k is odd (even). Our main result is

Theorem 2.1 G has no k-holes for any integer k ≥ 5 and no odd antiholes.

The recent verification of the strong perfect graph conjecture (see [1, 2, 3]
for the concept of perfectness and the proof of the conjecture) implies that

Corollary 2.2 Any finite subgraph of G is perfect.

The proof of Theorem 2.1 is split into Lemma 3.1 and Lemma 3.3. Both
the Lemmas are based on two special subgraphs of Y ×Z, denoted by 31 and
32, which we introduce now.
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2.2 Types of subgraphs

Let M be a graph whose node set is Y × Z. The graph M is not necessarily
isomorphic to a graph GH . We define a pre-order on the node set of M by

(y1, t1) � (y2, t2)

if t1 ≤ t2. This pre-order is reflexive and transitive. It is not antisymmetric,
though, if Y has more than one element. We introduce another relation on
Y × Z that is defined by

(y1, t1) ≺ (y2, t2)

if t1 < t2.
We define an equivalence relation on the set of subgraphs of M . Two

subgraphs of M , say, N1 and N2, are equivalent if there exists a graph iso-
morphism from N1 to N2 that respects the pre-order �. The resulting equiv-
alence classes are called types. Two types will be especially important in
what follows.

A subgraph of M consisting of three nodes p1 � p2 � p3 is said to be of
type 31 if p1 and p3 are adjacent in M but p1 and p2 as well as p2 and p3 are
not adjacent in M , respectively.

A subgraph of M consisting of three nodes p1 � p2 � p3 is said to be of
type 32 if p1 and p3 are not adjacent in M but p1 and p2 as well as p2 and
p3 are adjacent in M , respectively.

Obviously, M has a subgraph of type 31 if and only if the complement M
of M has a subgraph of type 32.

Lemma 2.3 G has no subgraphs of type 31.

Proof Let H be a triangle-linear matrix. We assume that GH has a subgraph
of type 31 which is induced by the three nodes pi = (yi, ti) for i ∈ {1, 2, 3}
with t1 ≤ t2 ≤ t3. The two nodes p1 and p3 are adjacent in GH but p1 and
p2 as well as p2 and p3 are not adjacent, respectively. Then, by the definition
of a conflict,

t3 − t1 ≤ H(y1, y3) − 1,

t2 − t1 ≥ H(y1, y2), and

t3 − t2 ≥ H(y2, y3).

Summation of the second and the third inequality yields

t3 − t1 ≥ H(y1, y2) + H(y2, y3).

It follows that t3 − t1 ≥ H(y1, y3) because H is triangle-linear. This con-
tradicts the above inequality t3 − t1 ≤ H(y1, y3) − 1. Hence, GH has no
subgraphs of type 31. �
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Clearly, it follows for the complement G of G that

Corollary 2.4 G has no subgraphs of type 32.

Let Ck be a k-hole in the graph M and let p be a node in Ck. There are
two nodes in Ck adjacent to p, say, q1 and q2. We call p a right spike if q1 ≺ p
and q2 ≺ p. Similarly, we call p a left spike if p ≺ q1 and p ≺ q2.

A node of Ck that is neither a left spike nor a right spike has to be of
type 32. Corollary 2.4 implies

Lemma 2.5 Let Ck be a k-hole in G. Then, any node of Ck is either a left
spike or a right spike.

The nodes of Ck have a further property.

Lemma 2.6 Let Ck be a k-hole in G. Then, the nodes of Ck appear alter-
natingly along this circle as right spikes and left spikes.

Proof Obviously, two nodes of Ck of the same spike type (right or left)
cannot be adjacent. Hence, right spikes and left spikes appear alternatingly
along Ck. �

3 Holes and antiholes that do not exist in G

Lemma 3.1 G has no odd antiholes.

Proof A k-antihole in G gives rise to a k-hole Ck in G. The nodes along
Ck appear alternatingly as right spikes and left spikes. Hence, in Ck, the
number of left spikes is equal to the number of right spikes and therefore k
has to be even. �

We call a path with k consecutive, pairwise different nodes v1, v2, . . . , vk

a k-path and denote it by (v1, v2, . . . , vk). Of course, this notation is not
unique because the nodes along a path can be read forward and backward.

Lemma 3.2 Let M be a graph whose node set is Y × Z. Then, there are
only two types of 4-subpaths of M that have neither subgraphs of type 31 nor
of type 32. These two types, 41 and 42, are depicted in Figure 2.

Proof Let q1 � q2 � q3 � q4 be four nodes of M . There are 4!/2 ways to join
the four nodes by 3 edges in order to produce a 4-subpath. Ten out of these
twelve types do have a subgraph of type 31 or of type 32. The remaining two
types are depicted in Figure 2. �
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p1 p2 p3 p4 p1 p2 p3 p4

(a) Type 41 (b) Type 42

Figure 2: The only two types of 4-subpaths that have neither subgraphs of
type 31 nor of type 32.

p1 p2 p3 p1 p2 p3

q1
q2

(a) A subgraph of type 32 in Ck . (b) An edge (q1, q2) in Ck\(p1, p2, p3)
with q1 � p2 � q2.

Figure 3: Case that Ck has a subgraph of type 32.

We now have enough tools to prove

Lemma 3.3 G has no k-holes for any integer k ≥ 5.

Proof Let Ck be a k-hole in G for some integer k ≥ 5. We shall derive a
contradiction from this.

First, we assume that Ck has a subgraph of type 32 as shown in Figure
3(a). We remark that some of the nodes are depicted as if they had equal
first coordinates though this is not necessarily the case.

The path Ck\(p1, p2, p3) can be interpreted as the piecewise-linear image
of an interval. Hence, there exists by (a combinatorial version of) the mean
value theorem an edge e = (q1, q2) in Ck\(p1, p2, p3) so that q1 � p2 � q2 as
depicted in Figure 3(b). The three nodes q1, p2, and q2 are a subgraph of
type 31 unless p2 is adjacent to either q1 or to q2. Since subgraphs of type
31 do not appear in Ck by Lemma 2.3, we have either q1 = p1 or q2 = p3. In
what follows, we consider the case that q1 = p1. The other case is similar.

We have p2 � q2 by construction and we know that q2 and p3 are neither
equal nor adjacent because k ≥ 5. Hence, p2 � q2 � p3 or p3 � q2. In
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p1

q1

q2

p2 p4p3

Figure 4: An edge (q1, q2) in Ck\(p1, p3, p2, p4) that satisfies q1 � p2 � q2.

the first case, the three nodes p2, q2, and p3 were a subgraph of type 31. In
the second case, the three nodes q1, p3, and q2 were a subgraph of type 31.
But, subgraphs of type 31 do not exist. Hence, our assumption about the
existence of a subgraph of Ck of type 32 led us to a contradiction. Therefore,
Ck has no subgraphs of type 32 for any integer k ≥ 5.

In what follows, we can apply Lemma 3.2. Every 4-subpath of Ck is either
of type 41 or of type 42. If Ck has a 4-subpath of type 42 as depicted in Figure
2(b) then the next node, say, p5, along Ck that is adjacent to p3 has to lie to
the right of p4, i.e. p4 � p5, in order to avoid subgraphs of type 31. Then,
(p2, p3, p4, p5) is a 4-subpath of type 41. Hence, any Ck has a 4-subpath of
type 41 provided that k ≥ 5.

We fix a 4-subpath (p1, p3, p2, p4) of Ck of type 41. By the same argument
as above, there exists an edge e = (q1, q2) in Ck\(p1, p3, p2, p4) such that
q1 � p2 � q2 as depicted in Figure 4. The three nodes q1, p2, and p3 are a
subgraph of type 31 unless q2 = p4. But, for q2 = p4, we observe that the
three nodes q1, p3, and q2 are a subgraph of type 31 unless q1 = p1. But,
k ≥ 5 and therefore q1 6= p1. Hence, we derived a contradiction. Therefore,
G has no k-holes for any k ≥ 5. �

4 Holes and antiholes that do exist in G

We shall give examples for holes and antiholes of any possible cardinality.
These examples will be minimal with respect to the number of train types
involved. We show that G can have 2k-holes and 4-antiholes simultaneously
for any k ≥ 2. Hence, in general, G is neither a chordal graph nor the
complement of a chordal graph. Therefore, G is neither an interval graph
nor the complement of an interval graph, in general.
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4.1 4-holes and 4-antiholes

A 4-antihole already appears for a single train type y if H(y, y) ≥ 2. The four
nodes (y, 0), (y, 1), (y, H(y, y)+ 1), and (y, H(y, y) + 2) induce a 4-antihole.

On the other hand, it is easy to see that a 4-hole cannot exist if only a
single train type is used. Here is an example of a 4-hole based on two train
types. The matrix

H =

(

1 4
1 1

)

indexed by train types x and y is triangle-linear. A 4-hole is induced by the
nodes (x, 0), (x, 1), (y, 2), and (y, 3). A second example is given by the matrix
(

2 1

1 2

)

and the nodes (x, 0), (x, 1), (y, 0), and (y, 1). This matrix gives rise to
4-antiholes, too, as explained above.

4.2 Even antiholes

We shall prove in Theorem 4.2 that large antiholes require a lot of train
types.

Lemma 4.1 Let C2k be a 2k-hole in GH with k ≥ 3. Let p1 and p2 be two
nodes of C2k that have the same train type and that satisfy p1 ≺ p2. Then,
p1 is a left spike and p2 is a right spike in C2k.

Proof Let p1 and p2 be two nodes in C2k ⊂ G that have the same train
type, say, x, and that satisfy p1 ≺ p2. Then p1 = (x, t1) and p2 = (x, t2) with
t1 < t2.

If p1 is a right spike then the two nodes adjacent to p1, say, r and s, satisfy
r ≺ p1 and s ≺ p1 by definition. The two nodes r and s are adjacent to p1 in
G and therefore both the nodes are not adjacent to p1 in G. It follows from
the definition of the graph G that r and s are not adjacent to any (x, t) with
t ≥ t1. In particular, r and s are not adjacent to p2 in G. Hence, the two
nodes r and s are adjacent to p2 in G. This implies that the node set of C2k

is equal to {r, s, p1, p2} and therefore k = 2.
By a similar argumentation it follows that if p2 is a left spike then k = 2.

Therefore, the assumption k ≥ 3 implies that p1 is a left spike and p2 is a
right spike. �

Theorem 4.2 Let H be a triangle-linear (r×r)-matrix. For r = 1 or r = 2,
the only antiholes in GH are 4-antiholes. For r ≥ 3, the only antiholes are
2k-antiholes with 2 ≤ k ≤ r.
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Proof Let H be a triangle-linear (r×r)-matrix. We know by Lemma 3.1 that
the only antiholes in GH are even antiholes. Hence, it is sufficient to prove
that a 2k-antihole, k ≥ 3, can only appear in GH if k ≤ r. Equivalently, we
prove that a 2k-hole, k ≥ 3, can only appear in GH if k ≤ r.

Let C2k be a 2k-hole in GH for some integer k ≥ 3. Then, C2k has k left
spikes by Lemma 2.6 and these left spikes have pairwise different train types
by Lemma 4.1. Hence, k ≤ r. �

We complete the result of Theorem 4.2. There exist (r × r)-matrices H
that lead to 2r-antiholes in GH , indeed.

Lemma 4.3 Let r ≥ 3. The following (r × r)-matrix Hr leads to a graph
GHr

that has 2r-antiholes. The train types are denoted by z, y1, y2, . . . , yr−1.
The matrix Hr is defined by

Hr(z, z) = 1,

Hr(z, yi) = 3i,

Hr(yi, z) = 3(r − i), and

Hr(yi, yj) =











1 if j ≤ i
5 if j = i + 1
3(j − i) + 3 if j ≥ i + 2

where 1 ≤ i, j ≤ r − 1.

Proof We fix an integer r ≥ 3. First, we prove that the above matrix Hr is
triangle-linear. Then, we present a 2r-antihole in GHr

. We shall abbreviate
Hr by H.

We prove that the triangle inequality is satisfied strictly. There are 23

types of the strict triangle inequality

H(a, b) + H(b, c) > H(a, c)

for a, b, c ∈ {z, y1, . . . , yr−1} depending on whether the train type z or a yi

appears at some index. If a = b = z or b = c = z then the triangle inequality
is clearly satisfied. Here are the five remaining cases,

H(z, yj) + H(yj, z) > H(z, z),

H(z, yj) + H(yj, yk) > H(z, yk),

H(yi, yj) + H(yj, z) > H(yi, z),

H(yi, z) + H(z, yk) > H(yi, yk), and

H(yi, yj) + H(yj, yk) > H(yi, yk)
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z
y1

y1 y2

y2 y3

y3 y4

y4

z

Figure 5: A 10-hole in GH5
and the train types of its nodes.

for any 1 ≤ i, j, k ≤ r − 1.
The first inequality is true because the entries of H are positive and the

right hand side is equal to 1. For the second inequality we have

H(z, yj) + H(yj, yk) ≥ 3j + 3(k − j) + 1 > 3k = H(z, yk).

The third inequality can be deduced from the second inequality by using
H(yi, yj) = H(yr−j, yr−i) and H(z, yj) = H(yr−j, z) for any 1 ≤ i, j ≤ r − 1.

The fourth and the fifth inequality are true if i ≥ k because then the
right hand side is equal to 1. We consider the remaining case i ≤ k + 1. The
fourth inequality is true because

H(yi, z) + H(z, yk) = 3(r − i) + 3k > 3(k − i) + 3 ≥ H(yi, yk).

The fifth inequality is obviously true if either i = j or j = k. For the
remaining case i 6= j and j 6= k we have

H(yi, yj) + H(yj, yk) ≥ 3(j − i) + 2 + 3(k− j) + 2 > 3(k− j) + 3 ≥ H(yi, yk).

Hence, Hr is strictly triangle-linear.
We now present the announced 2r-antihole as a 2r-hole in GHr

because
it is easier to depict the 2r edges of a 2r-hole rather than the r(2r − 3)
edges of a 2r-antihole. The 2r-hole is the subgraph of GHr

induced by the
nodes (yi, 3i − 2) and (yi, 3i) for i = 1, 2, . . . , r − 1, and the nodes (z, 0) and
(z, 3r − 2).

This graph is depicted in Figure 5 in the case r = 5. For simplicity,
the coordinates of the train types z, y1, . . . , yr−1 are not depicted correctly
because all of them have the same value in the drawing. �

For completeness, we mention that the above matrix Hr leads to 4-holes in
GHr

. As an example, restrict the index set of the matrix Hr to the train

types z and y1. This leads to the matrix
(

1 3

3r−3 1

)

. A 4-hole is induced by

the four nodes (y1, 0), (z, 1), (y1, 2), and (z, 3).
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5 Maximal Cliques in G

A clique in G is a complete subgraph of G, i.e. any two nodes of the subgraph
are adjacent. A clique is called maximal if it is not included in some larger
clique in G. We shall analyse the maximal cliques in GH for a triangle-linear
matrix H. Rather than using y1 as the typical notation for an element of Y ,
we shall use letters like h, i, j, and k from now on. For mnemonic reasons
we have avoided this kind of notation in the previous sections in order to
visually distinguish between train types on the one side and the indices for
the holes and antiholes on the other side.

5.1 Further basic results about G

In Lemmas 5.1 to 5.5 we consider the graph GH for a triangle-linear matrix
H. Let i, j ∈ Y and t1, t2, t3, u1, u2 ∈ Z.

Lemma 5.1 If (i, t1) and (j, t2) are in conflict then (i, t1) is in conflict with
any node in {j} × [min(t1, t2), max(t1, t2)].

Proof Trivial. �

Lemma 5.2 (Convexity) Let t2 ≤ t3. If (i, t1) is in conflict with both of
(j, t2) and (j, t3) then (i, t1) is in conflict with any node in {j} × [t2, t3].

Proof Follows directly from Lemma 5.1. �

The set of nodes described in Lemma 5.2 can be visualised as a triangle. One
side is parallel to the Z-axis. If the third node, which is opposite to this side,
is in conflict with both the ends of this side then it is in conflict with any
node of this side.

Lemma 5.3 For any maximal clique C in G and any train type j ∈ Y we
have C ∩ ({j} × Z) = {j} × I for some (possibly empty) interval I.

Proof If C is a maximal clique in G then C ∩ ({j}×Z) has no holes because
of the convexity property. �

Lemma 5.4 (Cross-convexity) Let t1 ≤ t2 and u1 ≤ u2. Let (i, t1) and
(j, u2) be in conflict and let (i, t2) and (j, u1) be in conflict. Then, any node
in {i} × [t1, t2] is in conflict with any node in {j} × [u1, u2].
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Proof By the convexity property it is sufficient to prove that (i, t1) and
(j, u1) are in conflict and that (i, t2) and (j, u2) are in conflict.

We show that (i, t1) and (j, u1) are in conflict. The other conflict is proved
similarly. Without loss of generality we may assume that t1 ≤ u1. The node
(i, t1) is of course in conflict with (j, t1) and by assumption it is in conflict
with (j, u2), too. Since t1 ≤ u1 ≤ u2 we can apply the convexity property
and deduce that (i, t1) is in conflict with (j, u1). �

The set of nodes described in Lemma 5.4 can be visualised as a rectangle
with two sides, say, a and b, which are parallel to the Z-axis. Lemma 5.4
states that if both of the two diagonals of the rectangle are edges in G then
any node in a is adjacent to any node in b.

Lemma 5.5 Let t1 ≤ t2. The set of nodes in {j} × Z that are in conflict
with any node in {i} × [t1, t2] is given by

{j} × [t2 − H(j, i) + 1, t1 + H(i, j) − 1].

Proof Set a = t2 − H(j, i) + 1 and b = t1 + H(i, j) − 1. By definition, the
nodes in {j} × (−∞, a − 1] are not in conflict with (i, t2) and the nodes in
{j} × [b + 1,∞) are not in conflict with (i, t1).

It remains to prove that any node in {j} × [a, b] is in conflict with any
node in {i} × [t1, t2]. If a ≤ b then this follows from cross-convexity. The
remaining case a ≥ b + 1 is trivial because it implies that [a, b] is the empty
set. �

Remark The elements of the set {j}× [t2 −H(j, i) + 1, t1 + H(i, j)− 1] are
not necessarily pairwise in conflict.

Lemma 5.6 Let H be a triangle-linear matrix. Let C be a maximal clique in
GH . Then, C∩({j}×Z) contains at least mini,k∈Y (H(i, j)+H(j, k)−H(i, k))
elements for any j ∈ Y .

Proof We fix a maximal clique C in GH and we fix j ∈ Y . We denote
mini,k∈Y (H(i, j) + H(j, k) − H(i, k)) by aj. It follows from Lemma 5.3 that
C can be written as

C =
⋃

i∈I

{i} × [ti, ui]

for a subset I ⊂ Y and integers ti ≤ ui. The set I is not empty because C is
not empty.
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The set of nodes in {j}×Z that are in conflict with any node of C is equal
to C ∩ ({j} × Z) because C is a maximal clique. This observation implies
together with Lemma 5.5 that

C ∩ ({j} × Z) =
⋂

i∈I

{j} × [ui − H(j, i) + 1, ti + H(i, j) − 1]

= {j} × [max
i∈I

(ui − H(j, i) + 1), min
i∈I

(ti + H(i, j) − 1)]

= {j} × [uk − H(j, k) + 1, ti + H(i, j) − 1]

for some train types k, i ∈ I. Hence, the cardinality ej of the set C∩({j}×Z)
is given by ej = max(dj, 0) where

dj = 1 + (ti + H(i, j) − 1) − (uk − H(j, k) + 1).

By the definition of aj, we have

H(i, j) + H(j, k) ≥ H(i, k) + aj

and therefore
dj ≥ ti − uk + H(i, k) − 1 + aj.

The two elements (k, uk) and (i, ti) of C are in conflict. This implies
ti −uk ≥ 1−H(i, k) by definition. When we use this in the above inequality
we get dj ≥ aj. Hence, ej = max(dj, 0) ≥ aj as we claimed. �

5.2 Quadrangle-linear Matrices

Lemma 5.6 motivates the following definition.

Definition An (n × n)-matrix H of positive integers is called quadrangle-
linear if

H(i, j) + H(j, k) ≥ H(i, k) + H(j, j)

for any 1 ≤ i, j, k ≤ n.

Clearly, quadrangle-linear matrices are triangle-linear. We remark that a
matrix H is called weak Monge in the literature if the above inequality holds
for any 1 ≤ j ≤ i ≤ n and for any 1 ≤ j ≤ k ≤ n. The matrix Hr from
Lemma 4.3 is quadrangle-linear because the triangle-inequality is satisfied
strictly and all the diagonal elements of Hr are equal to 1.

Theorem 5.7 Let the matrix H be quadrangle-linear. Let C be a maximal
clique in GH . Then, C ∩ ({i} × Z) contains exactly H(i, i) elements for any
i ∈ Y .
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Proof The set C∩({i}×Z) contains at least H(i, i) elements by Lemma 5.6.
It cannot have more than H(i, i) elements because at most H(i, i) consecutive
nodes in {i} × Z can be pairwise in conflict. Hence, C ∩ ({i} × Z) contains
exactly H(i, i) elements. �

5.3 Characterisation of the maximal cliques in G

Theorem 5.7 implies that any maximal clique in GH can be written as
⋃

i∈Y

{i} × [ti, ti + H(i, i) − 1] (1)

for integers (ti)i∈Y if H is quadrangle-linear.
It is of special graph theoretical interest to identify all the maximal cliques

in GH . To do this, we have to answer the following question. Given a
quadrangle-linear matrix H: which integers (ti)i∈Y lead in formula (1) to
maximal cliques?

By cross-convexity, the intervals in (1) are pairwise in conflict if and only
if each left end of an interval is in conflict with each right end of an interval.
By the definition of a conflict, this is equivalent to

−H(j, i) + 1 ≤ (tj + H(j, j) − 1) − ti ≤ H(i, j) − 1

for any i, j ∈ Y . This is equivalent to

−H(j, i) − H(j, j) + 2 ≤ tj − ti ≤ H(i, j) − H(j, j). (2)

We shall formulate condition (2) in a slightly nicer way. After the interchange
of i and j and multiplication with (−1) we get

H(i, i) − H(j, i) ≤ tj − ti ≤ H(i, j) + H(i, i) − 2.

Since H(i, i) ≥ −H(j, j)+2 and −H(j, j) ≤ H(i, i)−2 we are able to combine
the above two conditions. The set described in (1) is a maximal clique if and
only if

H(i, i) − H(j, i) ≤ tj − ti ≤ H(i, j) − H(j, j) (3)

for any i, j ∈ Y . The condition (3) is equivalent to condition (2) but it
has the advantage that is symmetric in i and j. The case i = j is trivially
satisfied. The remaining

(

n

2

)

cases of condition (3) for any unordered pair

{i, j} ⊂ Y with i 6= j are linearly independent from each other, in general.
The Z-translations operate freely on the set of maximal cliques because

the definition of a conflict is invariant under time-translation. There are only
finitely many classes with respect to this operation. When we fix some ele-
ment i0 ∈ Y then each equivalence class contains exactly one representative
with ti0 = 0. We summarise our considerations.
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Lemma 5.8 Let H be a quadrangle-linear matrix. Up to Z-translations,
the maximal cliques in G are given by formula (1) where the integers (ti)i∈Y

satisfy condition (3) for any unordered pair {i, j} ⊂ Y with i 6= j after setting
ti0 = 0 for some fixed element i0 ∈ Y .

5.4 Are headways quadrangle-linear in reality?

The railway experts in our project have access to infrastructure data of the
German railway only in a very limited way. They have provided us with data
for the technically minimal headways for 45 tracks and 6 train types. This
amounts to 9720, namely 45 × 6 × 6 × 6, cases of the quadrangle-linearity
inequality on the tracks.

93.2% of these cases are satisfied by the data. For the remaining cases
we have

H(i, j) + H(j, k) ≥ H(i, k) + H(j, j) − ε

where ε = 20 sec. This is not far off quadrangle-linearity when we take into
account that the headways from our data sets range from 64 sec to 2531 sec.

After the addition of standard safety buffer times, the above inequality
holds for ε = 66 sec. After rounding up the data on full minutes, the above
inequality holds for ε = 2 min. We remark that the process of rounding up
does preserve triangle-linearity but does not necessarily preserve quadrangle-
linearity. The headways from our data sets do not satisfy all the cases of the
quadrangle-linearity inequality. But, they nearly do.

It seems that the addition of extra safety buffer times allows enough ad-
justment to make the headways quadrangle-linear. Furthermore, an analysis
of the technically minimal headways based on a more detailed information
about the infrastructure should shed some light on the 6.8% of constellations
that do not satisfy the quadrangle-linearity inequality.

Anyway, quadrangle-linear headways may be produced in the following
straightforward way. Denote the travel time of train type i by tti and define
the headway matrix by H(i, j) = max(tti − ttj, 0) + ε for some fixed integer
ε. These headways are quickly verified to be quadrangle-linear. They have
been used, e.g., in [5, section 3.4.7] with ε = 3 min.
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