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Abstract 1

Due to the increase in accessibility and robustness of sequencing technology, single cell RNA-seq (scRNA- 2

seq) data has become abundant. The technology has made significant contributions to discovering novel 3

phenotypes and heterogeneities of cells. Recently, there has been a push for using single– or multiple 4

scRNA-seq snapshots to infer the underlying gene regulatory networks (GRNs) steering the cells’ biological 5

functions. To date, this aspiration remains unrealised. 6

In this paper, we took a bottom-up approach and curated a stochastic two gene interaction model cap- 7

turing the dynamics of a complete system of genes, mRNAs, and proteins. In the model, the regulation was 8

placed upstream from the mRNA on the gene level. We then inferred the underlying regulatory interactions 9

from only the observation of the mRNA population through time. 10

We could detect signatures of the regulation by combining information of the mean, covariance, and 11

the skewness of the mRNA counts through time. We also saw that reordering the observations using 12

pseudo-time did not conserve the covariance and skewness of the true time course. The underlying GRN 13

could be captured consistently when we fitted the moments up to degree three; however, this required a 14

computationally expensive non-linear least squares minimisation solver. 15

There are still major numerical challenges to overcome for inference of GRNs from scRNA-seq data. These 16

challenges entail finding informative summary statistics of the data which capture the critical regulatory 17

information. Furthermore, the statistics have to evolve linearly or piece-wise linearly through time to achieve 18

computational feasibility and scalability. 19

Keywords: Markov chains, Chemical Master Equation, single cell, RNA sequencing, Time course snapshots, 20

Moment equations. 21

1 Introduction 22

There is growing interest to understand the degree to which cell to cell variation in a population contributes to 23

biological processes such as stem cell differentiation and disease progression (1; 2; 3; 4; 5; 6). This heterogeneity 24

of phenotypes is created by various regulatory mechanisms occurring within the cell where the products of 25

gene expression modulate the life-cycle of proteins (e.g, transcription, post-processing, translation, transport, 26

degradation etc.). The emergence of single cell RNA sequencing technology (scRNA-seq), the extraction of 27

the transcriptome of individual cells, has helped immensely in detecting and delineating heterogeneities in 28

cells (4; 7; 8; 9; 10; 11; 12). Furthermore, with advances in machine learning and mRNA metabolic tagging, 29

scRNA-seq has given new insights into cellular development and disease pathogenesis (7; 10; 11; 12; 13; 14). 30

1



In light of these advances, the development of inferring the underlying gene regulatory network (GRN)–which 31

drives cellular decisions–is lagging behind (15). That is in practice, using scRNA-seq data, we can confidently 32

answer how many cellular phenotypes there are and identify their defining transcriptomic signatures, however, 33

the mechanism by which the transcriptome maintains its phenotype or transitions between phenotypes, is 34

dubious (4; 8). 35

Cellular function is dependent on the cell’s transcriptomic signature, where the proteins translated from the 36

mRNA form signalling pathways; which perform cellular function and then in a feedback loop; regulate the 37

mRNA transcription to then translate proteins (1; 16; 17). The process of a gene affecting the expression of 38

another gene is referred to as gene regulation, and the collection of all gene regulatory interactions (e.g. in a cell) 39

forms a gene regulatory network (GRN) (8; 12; 16; 18; 19; 20; 21). Unlike protein-protein interactions, where 40

educts are converted into products, gene regulation interactions are more illusive. A gene regulates another gene 41

through its downstream protein complexes, which affect the rate of transcription of the gene being regulated. 42

That is, gene regulation physically occurs on the DNA level. In particular, “gene A regulates gene B” means 43

that gene A either up-regulates (promotes) or down-regulates (inhibits) the rate of transcription of gene B. The 44

fact that scRNA-seq only captures mRNA, while gene regulation interactions take place up or down-stream 45

from the mRNA, constitutes a major hurdle for inferring GRNs from scRNA-seq data (22; 23). 46

Recently, a trend has emerged to use multiple temporal scRNA-seq snapshots to capture the underlying 47

GRNs of cells (8; 12; 15; 24; 25; 26; 27). Current GRN inference methods using temporal snapshot data include 48

Mutual information (MI) methods (25; 28) and SINCERITIES (26). MI methods infer non-directed edges 49

representing the amount of information shared between the genes (28; 29). SINCERITIES infers directed edges 50

between each two genes by using the temporal change in gene distribution and partial correlation analysis (26). 51

In some instances, for example, in the absence of temporal snapshot data, the data are reordered along a 52

theoretical trajectory representing a dynamical process experienced by cells, a technique referred to as pseudo- 53

time ordering (augmentation) (13; 14; 30; 31). Algorithms such as SCODE use pseudo-time ordered scRNA-seq 54

data to infer a GRN by using a system of ordinary differential equations representing the change in gene 55

expression through the pseudo-time trajectory (32). The rapid increase in the number of GRN inference 56

methods has motivated the development of comprehensive comparative frameworks. A recent paper proposed 57

the BEELINE framework to evaluate the performance of twelve GRN inference methods (15). The authors of 58

the paper concluded that most algorithms struggled to predict the ground truth GRNs and speculated that the 59

low performance was due to the insufficient resolution in the scRNA-seq data. 60

Rather than proposing another method, the focus of this paper is to dissect and identify some key stumbling 61

blocks for inferring GRNs from scRNA-seq data. There are two key components to a GRN inference method, 62

the first is the statistic, the second is the minimisation problem. The statistic is a function of the data which is 63

intended to contain the information of the regulation. The minimisation problem is what finds the GRN among 64

the space of all possible GRNs which matches the statistics of the data best. In this paper, we take a bottom-up 65

approach and highlight key challenges in these two core components even in the most ideal scenario. 66

In our bottom-up approach, we begin by establishing three simple GRNs. We model the GRNs as Markov- 67

jump processes according to the standard model and place the regulation up-stream from the mRNA (17; 33). 68

The three models are a no-interaction GRN, a mono-interaction GRN, and lastly a double-interaction GRN. 69

The models were chosen to have nested information, that is, each former model is fully contained as subset 70

of the next model. We generate synthetic scRNA-seq data using these models. Prior to inference, we wish 71

to understand the effect which transformations, such as statistics and pseudo-timing, have on the raw data. 72

Hence, we investigate the changes in the central moments (i.e. mean, covariance, and skewness) of the data with 73

the change in models. Furthermore, we juxtapose the central moments, of the raw data and the pseudo-time 74

augmentation, to understand possible loss of information between the two. Then we infer the GRNs of the data 75

from the three models using the MI method, SINCERITIES, the linear moment based method, and the non- 76

linear moment based method. We finish by demonstrating the computational limits of the linear least squares 77

and non-linear least squares methods–the core minimisation methods used in GRN inference–with respect to 78

the handling of large time interval lengths between snapshot data. 79
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Inferring GRNs from scRNA-seq data is still an open problem, and through the use of simple examples, we 80

shed light on some core biological and computational issues in the current inference methods. We demonstrate 81

that these obstacles can be overcome on a small scale, however, generalising to a whole transcriptome will 82

require further research. 83

2 Results 84

2.1 Stochastic Two Gene Interaction Models 85
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Figure 1: The three GRN models of interest comprising two Genes A and B and their corresponding mRNA and

proteins. From top to bottom, model schematics for: No-I: No interaction model in which none of the genes are affected

by the protein product of the other genes . Mono-I: Mono-directional interaction in which the switching off of Gene A

is actively up regulated by the protein product of Gene B but the regulation of Gene B is independent of gene A and

it’s downstream products. Bi-I: Bi-directional interaction in which the protein product of each gene upregulates the

switching off of the other gene. Only the scRNA-Seq data (grey shaded part of the models) will be used in the GRN

inference methods.

To investigate the role of moments in unravelling regulatory reactions from scRNA-seq data, we constructed 86

three simple two-gene GRN models (see Methods 4.1, 4.5). Our first GRN model was a simple no interaction 87

(No-I) two gene model, where each gene, Gene A and Gene B, can be in one of two discrete states, on or 88

basal (off state), and can switch between these states via a constant propensity. The gene is then transcribed 89

into mRNA at a constant rate depending on the state of the gene. The transcribed mRNA then undergoes 90

translation and the respective protein is synthesised (Fig. 1 Top). The mRNA and proteins undergo degradation 91

proportional to their respective populations. In the No-I model, the downstream products associated to their 92

respective gene are not correlated across genes. Our second GRN model was a mono-directional interaction 93

(Mono-I) model, that is, it had the same reactions as the No-I model with the exception of an interaction 94

where Protein B actively upregulates the switching off of Gene A (Fig. 1 Middle). In this scenario, Gene A 95
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and its downstream products are affected by the regulation of Gene B, however, Gene B is not affected by any 96

downstream products of Gene A. Lastly, our third GRN model was the bi-directional interaction (Bi-I) model, 97

where protein A upregulates the switching off of Gene B and vice versa, protein B upregulates the switching off 98

of Gene A (Fig. 1 Bottom). In the Bi-I model, all products in the system are correlated. 99

2.1.1 Covariance and Skewness can aid in Detecting Regulatory Pathways 100

The three models were simulated using the Stochastic Simulation Algorithm (SSA) (see Methods 4.6). Only 101

the mRNA expression counts from the simulations were extracted for regulatory inference, to mimic scRNA-seq 102

data. 103

In the No-I model, we observed that both the time course of the mean expression of both mRNAs (A and 104

B) increased identically until the time horizon (Fig. 2 a, Sup. Fig. A a). Due to there being no interactions 105

across genes, as expected, the samples at any fixed time point exhibited near zero covariance between the 106

mRNA expression counts (Fig. 2 a,e). In the Mono-I model, we observed that at early time points the mRNAs’ 107

mean expression increased similarly, then, the mean expression of mRNA A started to plateau while the mean 108

expression of mRNA B continued to rise, and had a similar time course as the mRNA B in the No-I model 109

(Fig. 2 b, Sup. Fig. A b). We observed in the time course, that the mRNAs had a negative covariance between 110

them (Fig. 2 b,e). Lastly, in the Bi-I model, we observed that the mean expression time course of the mRNAs 111

increased identically–like in the No-I model. The expression distribution was found to also have a negative 112

covariance structure, however, upon inspecting the distribution of a snapshot at T = 60 sec, we saw that the 113

distribution was very symmetric and was shaped like a waning crescent (Fig. 2 c-e). 114

To understand the origin of the crescent shape, we compared the time course of the skewness of mRNA A 115

and mRNA B in the three GRN models. We found that in both the Bi-I and No-I model, the mRNA A was 116

positively skewed and followed the identical time course. Furthermore, in the Bi-I model, mRNA B was also 117

skewed similarly to mRNA A. That is, all downregulated mRNAs in the models exhibited similar skewness 118

(Fig. 2 f, Sup. Fig. A c-d). 119

In summary, comparing only the mean time course of the three GRN models, we could not distinguish the 120

underlying regulatory reactions between the No-I and Bi-I model. Similarly, the covariance could distinguish 121

that Mono-I and Bi-I had some ‘negative’ interaction occurring, relative to the No-I model. However, the 122

direction of the interactions was unclear. When we compared the skewness of the mRNAs, we could see that 123

in the Mono-I interaction, mRNA A was being affected, and a similar effect was also acting on both mRNA A 124

and B in the Bi-I model. Hence, the regulatory information was not in one statistic, but rather distributed over 125

at least three statistics: the mean, the covariance, and the skewness. 126

2.1.2 Pseudo-time augmented snapshots do not recapitulate the skewness in the original data 127

When multiple snapshots are unavailable, pseudo-time based augmentations of the data are used to infer the 128

underlying GRNs. To study if the pseudo-time augmentation preserves the moments, we removed all the 129

true time labels within each of the three GRN model’s data, and augmented the expression counts with a 130

diffusion map based pseudo-time (see Section 4.9). In the time course of the central moments of the pseudo- 131

time augmented data, we observed that both the No-I and Bi-I model’s mean expression of the mRNAs had 132

a similar trend, like in the true time course (Fig. 2 g-i, Sup. Fig. A e). With respect to the covariance, we 133

found that pseudo-time augmented data had negative covariance in the Mono-I and Bi-I models. Surprisingly, 134

we also found a positive covariance in the No-I model time augmented data (Sup. Fig. A f-g). The most drastic 135

differences were seen in the skewness, where for all three models, the pseudo-time augmented data showed 136

predominantly negative skewness, sharply contrasting against positive skewness seen in the original data. 137

In summary, pseudo-time augmented data can capture trends in the first two central moments, however, it 138

could underestimate the skewness, hindering accurate GRN inference. 139

4



b.
Mono-Directional 
Interaction Model

mRNA A expression

c.
Bi-Directional 

Interaction Model

mRNA A expression

a.
No Interaction 

Model

mRNA A expression

m
RN

A 
B 

ex
pr

es
si

on

T = 60T = 60T = 60

mRNA A expression mRNA A expressionmRNA A expression

m
RN

A 
B 

ex
pr

es
si

on

i.g.

Pseudo Time:
0 10.5observed cell expression pseudo time mean expression trajectory

mean expression time course of data

h.

M
ea

n

C
ov

ar
ia

nc
e

Sk
ew

ne
ss

Time (sec) Time (sec) Time (sec)

No-I Mono-I Bi-I mRNA A mRNA B Joint

f.d. e.

Figure 2: Snapshot Gene expression data at time T = 60 showing 1000 sample mRNA population counts. Top row

figures are for a. No-I model, b. Mono-I model, and c. Bi-I model. Arrow represent the vector field composed of the

derivative of the first order moment and orange line is the mean expression time course from an initial expression value

(mRNA A, mRNA B)=(0, 0) to a similar steady state value of around (40, 40) for the three model. Bottom row figures

are the same gene expression data reordered through Pseudo-time trajectory d. No-I model, e. Mono-I model, and f.

Bi-I model.

2.1.3 No- and Mono-directional interactions are harder to infer than Bi-directional interactions 140

Four inference methods were applied to infer GRNs from the synthetic scRNAseq data of the three interaction 141

models: the linear moment based method (Linear MBI, see Methods 4.3), the nonlinear moment based method 142
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Figure 3: Comparison of GRN obtained from four network inference methods for the three models No-I, Mono-I, and

Bi-I. The mRNA are shown as the nodes of the graphs (filled circles). The edges represent the regulatory relationships

between the two mRNa. An edge looping over the same mRNA indicate self-regulation. Some algorithm infers non-

directed edges: a. MI method (first row); and some algorithm infers directed edges: b. SINCERTIES, c. Linear MBI,

and d. Nonlinear MBI. Non-directed edges indicate the presence of an undetermined regulatory relationship. An edge

with an arrow end (→) toward an mRNA indicates the upregulation of the associated gene, whereas an edge with a flat

end (a) toward an mRNA indicates the downregulation of the associated gene.

(Nonlinear MBI, see Methods 4.4), the Mutual Information (MI) method (see Methods 4.10), and the SIN- 143

CERITIES method (see Methods 4.11). We repeated the inference 400 times, each time generating from new 144

synthetic data. 145

The MI method inferred non zero MI scores for all three models (see Method 4.10). We observed a more than 146

five fold increase in the mean edge score for the Bi-I model with respect to the No-I model, and furthermore, 147

the mean edge score for the Mono-I model was found in between (Supp. Fig. B a). A one-way ANOVA analysis 148

showed that the differences in the means of the edge scores of the three models were statistically significant (an 149

F-value of 49418 and a p-value of strictly less than 0.001). Furthermore, a pairwise comparison with Tukey HSD 150

(with a p-value of 0.001) also showed a significant difference between each two models. Using the mean MI-score 151

of the No-I model as the minimum score edge cutoff, we concluded that the MI based approach was effective in 152

detecting that the three models had a different magnitude of interactions between the genes (Fig. 3 a). 153

In SINCERITIES, interaction strength score is estimated by regularised regression of a system of distribu- 154

tional distances, while the sign of interaction (activation vs. repression) is determined by the sign of the partial 155

correlation coefficient (see Method 4.10). In the No-I data, the SINCERITIES method inferred all possible acti- 156

vations between and within genes with a weak consistency in interaction scores (Fig. 3 b Left, Supp. Fig. B b). 157

The interaction scores for the Mono-I model gave a clearer result, where a true positive self-activation of mRNA 158

A and mRNA B were observed, however, the repression of mRNA A by mRNA B was missing. Instead, SIN- 159

CERITIES inferred a false positive interaction of mRNA A activated by mRNA B (Fig. 3 b Middle). The 160

inference of the Bi-I model was done correctly by SINCERITIES with high interaction scores (Fig. 3 b Right, 161

Supp. Fig. B c). 162

We also investigated the ODE based inference using SCODE (32), which uses pseudo-time augmented data. 163

However, we were not able to derive a sensible meaning of the parameters inferred by SCODE (Data not shown). 164

The reason for this could be that SCODE was designed for inferring hundreds of genes and it was not possible 165

to scale down the method to our simple two gene model. 166

The moment based inference (MBI) methods used the time course of up to degree three moments to infer 167

their GRNs (see Methods 4.3-4.4). Given we knew a priori that the information was in the first three moments, 168
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to avoid over fitting, we used 15 times fewer snapshots in the moment based inference methods than in MI and 169

SINCERITIES. 170

We saw that the Linear MBI performed slightly worse than SINCERITIES in inferring the underlying GRNs 171

of the three models (Fig. 3 c). In particular, the Linear MBI method predicted a false positive activation between 172

mRNA B and mRNA A in the Bi-I Model. Looking at individual GRNs inferred in the 400 replicates, we found 173

that the Linear MBI method at best inferred the correct GRN 2.5 % of the time (Supp. Fig. C b). 174

Lastly, the Nonlinear MBI method performed the best out of the four methods. It predicted all true positive 175

interactions and no false positive interactions (Fig. 3 d). Furthermore, looking to the individual GRNs in the 176

replicates, we found that it correctly predicted the No-I model 54 % of the time, the Mono-I model 78 % of the 177

time, and the Bi-I model 95 % of the time (Supp. Fig. C c). 178

In summary, in the four inference methods that we compared, the Bi-I model was the easiest to capture 179

(Fig. 2 c). We suspect that this results from the strong double correlation signal present in the data, which 180

results from the nonlinear interaction between gene A and gene B. The fact that the Mono-I model only had 181

one interaction was detected by all methods, however, the directionality and regulatory mechanism could not be 182

correctly detected. Lastly, the No-I model showed that not all methods are specific enough to correctly detect 183

no interaction. 184

2.1.4 GRN inference is sensitive to starting populations 185
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Figure 4: Illustration of GRNs obtained for the Mono-I model from mRNA counts simulations with different initial

count configurations for (mRNA A, mRNA B): (0, 0), (70, 0), (0, 70), and (70, 70). Top row: 1000 sample mRNA

population counts at time T = 60, the vector field indicating the direction of change in the model, i.e., derivatives of

the first moments at a given point in the plane, and the orange line is the mean expression trajectory in the data. The

three rows a., b., and c. show the inferred GRNs aligned with the corresponding to each initial conditions in the top

row (refer to Fig. 3 for the meaning of the graphs).

The under-performance of the inference methods on the Mono-I model data was surprising. To investigate 186

if the direction from which the target state is approached could influence the inference of the correct regulatory 187

direction and mechanism, we simulated the Mono-I model with different starting population counts of (mRNA 188

A, mRNA B): (70, 0), (0, 70) and (70, 70) (Fig. 4 Top). 189

Firstly, we found that all methods struggled in accurately capturing the right GRN, each method failing at 190

different starting points. SINCERITIES was able to detect that there was only one interaction in all scenarios, 191

however, it only captured the right GRN for starting population (70, 0). That is, when the starting population 192

had an abundance of mRNA A, it could detect that A was being repressed (Fig. 4 a). Interestingly, SINCERI- 193
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TIES predicted the right GRN in all the replicates for the case (70, 0) (Supp. Fig. C a) The Linear MBI method 194

did not predict the right GRN for any of the starting populations. At best, for population (70, 70), Linear 195

MBI predicted the right GRN 26 % of the time (Supp. Fig. C b). Surprisingly, in non-symmetric starting 196

population cases, it did not capture some of the self-regulation edges (Fig. 4 b). Lastly, the Nonlinear MBI also 197

under-performed when we started with an abundance of mRNA B. Looking into the replicates, we found that it 198

predicted the right GRN 20 % of the time in the (0, 70) case and 40 % of the time in the (70, 70) case (Fig. 4 c, 199

Supp. Fig. C c). 200

In summary, we saw that the direction from which we approach the target state influences the outcome of 201

the inference of current methods, and this “directional bias” needs to be considered. 202

2.2 Linear MBI methods are sensitive to interval lengths between snapshots 203

The linear least-squares method is well established and can be used to solve high-dimensional inference prob- 204

lems. To harness its scalability for inferring GRNs using moments (Linear MBI), good approximations of the 205

derivatives of the moments’ time courses are essential (see cartoon in Fig. 5 a). However, due to snapshot 206

intervals generally being large in sequencing, good derivative approximations are seldom possible. We investi- 207

gated the effect of interval lengths between snapshots on the accuracy of the inference by constructing a simple 208

stochastic damped oscillator model (see Methods 4.8, Fig. 5 b-c). Snapshots of different time interval lengths 209

were taken and their underlying network was inferred using the Linear MBI method and the Nonlinear MBI 210

method. 211

2.3 The Linear MBI method struggles even at small snapshot intervals. 212

We observed that the residual sum of squares of the Linear MBI method increased with order O(h0.4) with 213

respect to interval length h between snapshots (Fig. 5 d-e). Upon inspecting the inferred reactions, we found 214

that for time interval of h = 0.05 sec, the Linear MBI method inferred the five true reactions and a further five 215

false positive reactions (Fig. 5 h). For the subsequent interval lengths, we found that the Linear MBI method 216

continued inferring five to six false positive reactions and the number of true positive reactions was decreasing. 217

The mean time course of the SSA simulations with the inferred parameters showed that the Linear MBI method 218

performed poorly in fitting data, even for the smallest interval length of h = 0.05 sec (Supp. Fig. D). In this 219

case, 124 snapshots (1116 moments) were used to infer 13 reactions and surprisingly, we did not observe a close 220

reconstruction to the real data. This suggests that the errors made in estimating the derivative could not be 221

remedied by the large amount of snapshot data. 222

2.3.1 Nonlinear MBI method circumvents the derivative estimation step at the cost of a signif- 223

icant increase in computational time 224

The Nonlinear MBI method circumvents the derivative estimation by minimising the distance of the inferred 225

model to the data. This results in a non-linear least squares problem, which does not need the time-course 226

derivative of the moments. In comparison to the Linear MBI method, for time intervals less than h = 0.6 sec, 227

we found that the Nonlinear MBI method had at least one order of magnitude lower residual sum of squares 228

in all moments (Fig. 5 d-e). Furthermore, we found that the residual sum of squares did not increase linearly 229

for small time interval lengths, showing a near flat trend between residual and interval length. Looking at the 230

inferred reaction network, we observed that the Nonlinear MBI method captured all of the true reactions, and 231

only inferred one false positive reaction for time intervals less than h = 0.6 sec (Fig. 5 h). Interestingly, we 232

observed that for intervals larger than h = 0.8 sec, the Nonlinear MBI method starts to perform as poorly as 233

the Linear MBI method. Upon closer inspection, we found that h = 0.8 sec is roughly where the first peak in 234

the time course of population A occurs (Fig. 5 b-c). Comparing the AIC scores of the two approaches, we saw 235

that the Nonlinear MBI’s minimum AIC score was at least two orders of magnitude smaller than that of the 236
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Figure 5: Illustration of the performance of Linear MBI and Nonlinear MBI methods for the stochastic damped oscillator

model. a. Estimation of time-course derivatives by computing a C-Spline Derivative from a C-Spline interpolation of

the time-course of the snapshot data points, b. time-course of first order moments and c. second order moments. Pink

dashed line indicates the highest time intervals between snapshots producing optimal results (also indicated in d., e.,

and f.). Second row shows the log of sum residuals of SSA produced by the inferred network parameters in the a. first,

b. second, and c. third order moments as a function of the time-interval between snapshot data (the parameters found

with the Linear MBI was used as initial condition in the Nonlinear MBI for the time intervals bellow 0.8 sec delimited

with the pink dashed line. For time intervals above 0.8 sec, this methods was not computationally feasible thus the

we used the parameters inferred from Nonlinear MBI with the time interval 0.4 sec as initial condition for Nonlinear

MBI). g. The computational time of Linear MBI vs. Nonlinear MBI. h. The parameters inferred with Linear MBI and

Nonlinear MBI as compared with the original network.

Linear MBI (Fig. 5 f). Even though the Nonlinear MBI method performed better, it must be noted that it took 237

on average nearly 2000 times longer to compute than the Linear MBI method (Fig. 5 g). 238

In summary, the simple stochastic damped oscillator model highlighted the major challenges of using mo- 239

ments based methods for inference. In particular, we observed that the log of the residual scaled sublinearly 240

with the interval length for the Linear MBI method. In order to achieve a similar accuracy as the Nonlinear 241

MBI method at interval length h = 0.05 sec, the interval length of the data for the Linear MBI would have to 242

be smaller than 10−3 sec. Furthermore, we saw that the snapshot interval has to be small enough to observe 243

the turning points of the system for accurate inference. 244
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3 Discussion 245

Due to the increase in accessibility and robustness of sequencing technology, single cell RNA-seq data is becom- 246

ing more abundant. The technology has made significant contributions to discovering novel phenotypes and 247

heterogeneities of cells. Recently, there has been a push for using single- or multiple scRNA-seq snapshots to 248

infer the underlying gene regulatory networks steering the cells’ biological functions. To date, this aspiration 249

remains unrealised: a recent review by Pratapa et al. (15), who benchmarked twelve publicly available methods, 250

demonstrated a high heterogeneity and overall under-performance of most current GRN inference methods. 251

Even though we are convinced that their conclusions are true, we disagree with their interpretation. 252

There were clear indications from visual inspection alone of the simulated snapshots, that the regulatory 253

information was captured in the first, second and third order moments of the cells’ expression distribution. That 254

is, we could see the downregulation of the genes resulting in a negative covariance structure in their mRNA 255

expression distribution, as expected (25; 34; 35). However, surprisingly, the negative covariance structure was 256

not shaped like a Gaussian, but rather was shaped like a waning crescent. We believe this is a consequence of 257

having the regulation reactions placed down/up-stream of the mRNA, and not directly at the mRNAs. The 258

shape is induced through the inhibition acting on the gene, in turn, altering the rate production of the mRNA. 259

As only the production rate is altered and the degradation rate is the same, a shift in the skewness emerges. 260

The moments are simply monomial functions based summary statistics of the data. All current GRN 261

inference methods transform the data into their respective summary statistics to derive their results (12; 15; 21; 262

26; 28; 32). Different summary statistics highlight different characteristics of the data, hence, the interpretability 263

of different summary statistics might present a bigger dilemma and choosing the wrong statistics might lead to 264

erroneous or misleading results. In light of our observations on the importance of up to third order moments on 265

reconstructing regulatory interactions, we can speculate the source of the difficulties in the current approaches. 266

For example, we know that ODE based methods, like SCODE (32), use means as their summary statistics. 267

Means are a strong summary statistic when it comes to detecting reactions which conserve some measurable 268

quantity, e.g. population, probability, etc. They have been very useful in reconstructing metabolic and protein 269

cascading networks capturing educt–product reactions (36; 37). These assumptions are not coherent with the 270

fact that regulation happens up/down stream from the mRNA. We suggest that ODEs are not suitable for 271

inferring GRNs from scRNA data. A similar line of argument follow for inferring GRNs from pseudo-time 272

augmented scRNA-seq data. Pseudo-time augmentation is a powerful tool for unravelling cell development, 273

however, to date, the methods were not developed with the thought of preserving regulatory structures in the 274

data. Hence, there is scope for new pseudo-time augmentation methods which can conserve certain summary 275

statistics which capture the regulatory information. 276

Another aspect to summary statistics is the shape of their time course . For example, Linear Moment Based 277

Inference (Linear MBI) uses the derivative of the time course of the moments as their summary statistics. Since 278

we know that the derivatives of moments evolve linearly through time , fitting the derivatives reduces to solving 279

the well established linear least-squares problem. A similar construction is also used in the SINCERITIES 280

method, where instead of moments, their summary statistics are Kolmogorov-Smirnov distributional distances. 281

These methods can handle inferring large GRNs harnessing the scalability of the linear least-squares problem 282

they are based on. 283

We demonstrated that moments are good summary statistics for inferring underlying GRNs from data. 284

However, the fact that moments evolve through time non-linearly requires the use of nonlinear least squares 285

solvers, which currently are not optimised for inferring GRNs. New numerical schemes to solve high dimensional 286

non-linear least squares problems would aid strongly in furthering the field of inferring GRNs. 287

To recapitulate, there is no effective method to date for inferring GRN networks from scRNA-seq data. It has 288

become apparent that, in choosing summary statistics, we need to find a good trade-off between the compression 289

of the data and the loss of regulatory information. Collating our insights, we propose two constraints which 290

are significant in designing new GRN inference methods for scRNA-seq data: firstly, the proposed summary 291

statistics must capture the information from moments up to order three of the data, secondly, the summary 292
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statistic should evolve linearly in time, or at worst, near linear in between snapshots. The former aspect is for 293

capturing the correct regulatory dynamics and the later is for computational feasibility and scalability. 294
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4 Method 295

4.1 Jump Markov Process 296

To derive an expression of the moments, we begin by modeling the interactions within a system of Ns species as a 297

stochastic process representing the number of species undergoing Nr reactions. This process is well described as 298

a jump Markov process known as Kurtz process which describes the population count configuration Z(t) ∈ NNs
0 299

of the species at time t as 300

Z(t) = Z(t0) +

Nr∑
j=1

P
(∫ t

t0

θjfj(Z(s)) ds

)
vj , (4.1)

where P is an inhomogeneous Poisson process. t0 is initial time, θjfj is the propensity function representing 301

the rate at which the j-th reaction fires. And vj ∈ NNs
0 is the stoichiometry vector representing the change in 302

species count through the j-th reaction. 303

It was shown (34) that Equation 4.1 leads to the well known Chemical Master Equation, which represents 304

the time evolution of the probability distribution p of the species count configuration Z(t) as follows 305

∂p(Z(t) = z)

∂t
=

Nr∑
j=1

θjfj(z − vj)p(Z(t) = z − vj) − θjfj(z)p(Z(t) = z), z ∈ NNs
0 (4.2)

4.2 GRN inference by means of parameter inference 306

Then from Equation 4.2, it can be shown (38) that for any monomial function φ, the derivatives of the expec- 307

tation of φ(Z(t)) is given by 308

dE[φ(Z(t))]

dt
=

Nr∑
j=1

E
[(
φ(Z(t) + vj) − φ(Z(t))

)
θjfj(Z(t))

]
. (4.3)

Using Equation 4.3, we can write down the raw moments, m(t), of the process, Z(t), as a linear system of 309

ODEs. 310

ṁ(t) = A(θ)m(t). (4.4)

A is known as the design matrix and is a linear matrix in θ = (θj)j=0,...,Nr
, the propensities coefficients, and 311

depends on the stoichiometry (vj)j=0,...,Nr
we allow the GRN to undergo. 312

Using Equation 4.4, we can infer a causal relationship between interacting species by finding the parameter θ 313

that best represents the data. The challenging aspect is that Equation 4.4 implies that when reactions involving 314

two or more products are added, A is infinite dimensional. This means that truncation lead to instability, 315

since the higher-order moments act as a damping for the lower order moments. In the next sections we present 316

inference methods that are designed that circumvent this issue. 317

4.3 Linear Moment Based Inference (MBI) 318

Linear Moment Based Inference (Linear MBI) refers to a group of GRN inference methods that borrows the tool 319

of Sparse Identification of Nonlinear Dynamics (SINDY)(24; 39). This method provides a powerful framework 320

to infer parameters from large data because it approximates the system in Equation 4.4 with a linear system of 321

ODE. 322

Let m̂ be the vector containing the moments up to order l and m̄ containing up to order l − 1 (which is 323

the set of moments that can be written as a function of all the moments in m̂ and the propensity coefficients θ 324

following Equation 4.4). We then have a closed system by reformulating Equation 4.4 as follows 325

dm̄

dt
= Â(θ)m̂, (4.5)

where Â is a rectangular matrix with dimension (dim m̄, dim m̂). 326
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Now we can use numerical methods such as spline derivatives or finite difference to find an approximation 327

b the moment derivatives from the data 328

dm̄

dt
≈ dm̄data

dt
≈ b, (4.6)

where m̂data is the moments data up to order l. This reduces the problem (Section 4.2) to a non-negative linear 329

least square problem. 330

θ̂ = argminθ�0

∥∥∥b− Â(θ)m̂data

∥∥∥2
2

(4.7)

In the simulations for the Linear MBI method we used the reactionet lasso (24) which solves Equation 4.7 by 331

implementing an L1 norm regularization on the parameter θ. reactionet lasso, thus, prioritizes the inference 332

small number of parameters, i.e., sparsely connected network. Sparsely connected networks reflect the minimal 333

set of reactions that are involved in the network (39) and it has been suggested that robust networks are 334

parsimonious (40). 335

4.4 Nonlinear Moment Based Inference (MBI) 336

We deal with truncation problem of Equation 4.4 by introducing the interpolations of the higher-order moments 337

from the data source function into a truncated system. We refer to this method as Nonlinear Moment based 338

inference (Nonlinear MBI) 339

Let m̂ be the vector containing moments up to order l. We then approximate Equation 4.4 with 340

dm̂(t)

dt
= Ā(θ)m̂(t) + B(θ)u(t), (4.8)

where Ā(θ) is a square matrix of dimensions (dim m̄, dim m̄) linear in the parameter θ, truncation of the 341

matrix A for the moments m̄. B is a rectangular matrix of dimensions (dim m̄, dim u(t)). And u(t) is the 342

vector interpolation of the moments of order l + 1. 343

The central limit theorem states that for a large number of measurements, the errors in the data follows 344

are normally distributed. Thus, the parameter θ̂ that best represent the data can be obtained via maximum 345

likelihood estimation. In this case, θ̂ can be obtained by minimising the negative log likelihood function 346

‖m̂(t)− m̂data(t)‖22 (4.9)

where m̂data is the moments data. 347

The problem of finding the parameter θ̂ characterizing the GRN network (Section 4.2) is then reduced to a 348

non-linear least square minimization problem 349

θ̂ = argminθ�0 ‖m̂(t)− m̂data(t)‖22 (4.10)

where m̂ is the moments data up to order l. 350

We implemented the Nonlinear MBI method with python using Scipy (41). Numerical approximated the 351

moments model m̂(t) were generated as solution of Equation 4.8 by solving the ODE between every two time- 352

point data. For higher accuracy, we computed the splines of order l + 1 moments (u(t)) by specifying their 353

derivatives (requiring the order l + 2 moments according to Equation 4.4) into the spline algorithm at the 354

end-points of the time series. We then used a standard least square minimization routine to compute a solution 355

of Equation 4.10. In the case of large difference between the magnitude of order l and order l + 1 moments, 356

the residuals of the order l moments were multiplied by a constant weight to avoid their underestimation. All 357

codes are available upon request. 358
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4.5 Two Gene Interaction Model Reaction Scheme 359

To illustrate our method, we consider three simple models of two-gene interaction (Fig. 1). Each models considers 360

three class of variables: the Genes and their corresponding mRNA and Protein. We distinguish the mRNA and 361

protein by appending the alphabet label of their respective origin gene. The first model considers no interaction 362

between the two genes (No-Interaction model or No-I), the second model considers a single regulation pattern 363

(Mono-Directional interaction model or Mono-I), and the third model includes a reciprocal regulation pattern 364

(Bi-Directional interaction model or Bi-I). Additionally, we omitted the presence of technical errors, such as 365

drop-outs, to the synthetic data, since technical- and technological challenges are beyond the scope of this work. 366

For biological data, these technical errors can be dealt with a pre-processing of data using other algorithms such 367

as MAST, scDoc (42; 43). 368

The three models No-I, Mono-I, Bi-I, share the same backbone. At any time, a gene has a binary state space 369

{ on, off}, mRNA and Proteins are described by their counts so they have a positive integer state space. In a 370

two-gene interaction model for Gene A and Gene B, the species that are involve in the reactions are Gene A, 371

Gene B, protein A, protein B, mRNA A, and mRNA B. 372

Table 1 and 2 describes each components of the No-I model for Gene A and Gene B, respectively. The Mono-I 373

interaction model contains all reactions in Table 1 and 2, with the exception that reaction (1a) is modified to 374

involves one of the protein product, here Protein B, which actively upregulates the switching off of Gene A in 375

the reaction 376

Gene A on + Protein B −→ Gene A off, 377

with corresponding propensity σ1[Protein B][Gene A on], where σ1 = 0.01875, and stoichiometry vector (-1, 0, 378

0, -1, 0, 0). 379

The Bi-I interaction model also contains all reactions in Mono-I model, with the exception that reaction 380

(1b) is also modified to include the upregulation of the switching off of Gene B by Gen A, i.e., reaction (1b) is 381

replaced with 382

Gene B on + Protein A −→ Gene B off, 383

with corresponding propensity σ1[Protein A][Gene B on], where σ1 = 0.01875, and stoichiometry vector (0, -1, 384

-1, 0, 0, 0) 385

All propensitey coefficients where chosen so that the three models reach the same steady state toward the 386

time horizon. 387

Table 1: Components of two-gene No-Interaction model of Gene A. The positions in the stoichiometry vector

corresponds to (Gene A, Gene B, protein A, protein B, mRNA A, mRNA B)

# Reactions Coefficients Propensities Stoichiometry Description

1a Gene A on−→ Gene A off σ1 = 0.125 σ1 [Gene A on] (−1, 0, 0, 0, 0, 0) Inactivation

2a Gene A off −→ Gene A on σ2 = 0.5 σ2 [Gene A off ] (1, 0, 0, 0, 0, 0) Activation

3a Gene A on−→ Gene A on+ mRNA A ρ1 = 4.75 ρ1 [Gene A on] (0, 0, 0, 0, 1, 0) Transcription

4a Gene A off −→ Gene A off+ mRNA A ρ2 = 1.0 ρ2 [Gene A off ] (0, 0, 0, 0, 1, 0) Transcription

5a mRNA A −→ mRNA A + Protein A θ = 5.0 θ [mRNA A] (0, 0, 1, 0, 0, 0) Translation

6a Protein A −→ ∅ κ = 0.1 θ [Protein] (0, 0,−1, 0, 0, 0) Degradation

7a mRNA A −→ ∅ δ = 0.1 θ [mRNA A] (0, 0, 0, 0,−1, 0) Degradation
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Table 2: Components of two-gene No-Interaction model of Gene B. The positions in the stoichiometry vector

corresponds to (Gene A, Gene B, protein A, protein B, mRNA A, mRNA B)

# Reactions Coefficients Propensities Stoichiometry Description

1b Gene B on−→ Gene B off σ1 = 0.125 σ1 [Gene B on] (0,−1, 0, 0, 0, 0) Inactivation

2b Gene B off −→ Gene B on σ2 = 0.5 σ2 [Gene B off ] (0, 1, 0, 0, 0, 0) Activation

3b Gene B on−→ Gene B on+ mRNA B ρ1 = 4.75 ρ1 [Gene B on] (0, 0, 0, 0, 0, 1) Transcription

4b Gene B off −→ Gene B off+ mRNA B ρ2 = 1.0 ρ2 [Gene B off ] (0, 0, 0, 0, 0, 1) Transcription

5b mRNA B −→ mRNA B + Protein B θ = 5.0 θ [mRNA B] (0, 0, 0, 1, 0, 0) Translation

6b Protein B −→ ∅ κ = 0.1 θ [Protein] (0, 0, 0,−1, 0, 0) Degradation

7b mRNA B −→ ∅ δ = 0.1 θ [mRNA B] (0, 0, 0, 0, 0,−1) Degradation

4.6 Synthetic scRNA-seq data 388

For each of the two-gene interaction models: No-I, Mono-I, and Bi-I (see Section 4.5), species count of (Gene 389

A, Gene B, Protein A, Protein B, mRNA A, mRNA B) were generated using stochastic simulation algorithm 390

(SSA) (44). Initial population configuration was set to (0, 0, 0, 0) and the initial simulation time set to 0. All 391

trajectories of populations counts in the simulations were sampled at each time intervals of 0.5 sec and up to 392

a time horizon of 60 sec. We generated a total of 100000 time series trajectories of species counts. Only the 393

mRNA time series, which reflects scRNA.seq data, were retained for GRNs inference. 394

The moments of the scRNA-seq data are required in GRNs inference methods . The moment model we used 395

in the inference contains up to order three moments, which depend on moments up to order four Equation 4.4, 396

thus we collected moments data for up to order four moments. 397

In the inference methods, we used the whole dataset for the MI (28) and SINCIRETIES (26) methods. For 398

the MBI methods (Linear MBI, section 4.3, and Nonlinear MBI, section 4.4), we removed the first 30 data 399

points for a more accurate representation of the moments and reduced the dataset by 15 times. 400

4.7 Two mRNA Reaction Library for GRNs inference 401

We infer GRNs from synthetic scRNA-seq data representing temporal snapshot of mRNA counts extracted from 402

each two-gene interaction model described in Section 4.5. Since we only have information from mRNA counts, 403

we are not aiming to reconstruct the two-gene interaction models. Instead, we aim to capture the regulatory 404

relationships between the genes from interaction between mRNAs. 405

We set up the Linear MBI and NonLinear MBI methods to infer GRNs from the network depicted in Table 3. 406

Reactions 6 and 8 represent the up-regulation of A by B and the vis-versa, while reactions 9 and 10 represent 407

the down regulation of A by B and vis-versa. To draw the GRNs from the inferred parameter, we computed 408

the adjacency matrix defining the regulatory (reg) rules as 409(
Auto-reg of mRNA A B reg A

A reg B Auto-reg of mRNA B

)
=

(
θ̄5 − θ̄3 θ̄6 − θ̄9
θ̄8 − θ̄10 θ̄7 − θ̄4

)
, (4.11)

where θ̄i are the propensity coefficients Table 3 averaged over 400 batch inferences, in each of which the snapshot 410

dataset of moments were generated from 10000 subsampled mRNA count time series (see Section 4.6). 411

The diagonals of the adjacency matrix (Equation 4.11) represent the net rate of firing of the reactions 412

self-production vs. death for mRNA A and mRNA B, whereas the remaining entries represent up-regulation 413

vs down-regulation for mRNA A and mRNA B. Thus, the sign of each entry determines the direction of the 414

regulation, whether it is a net self-production/death or a net up/down-regulation. We only considered the 415

reactions that were firing at least 10 times within the time-window. 416
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Table 3: Reaction Library for Two mRNA species Interaction. For simplicity we refere to mRNA A as A and

mRNA B as B.

# Reactions Propensity Stoichiometry Description

1 ∅ −→ A θ1 (1, 0) birth of A

2 ∅ −→ B θ2 (0, 1) birth of B

3 A −→ ∅ θ3A (−1, 0) death of A

4 B −→ ∅ θ4B (0,−1) death of B

5 A −→ A+A θ5A (1, 0) self production of A

6 B −→ A+B θ6B (1, 0) production of A by B

7 B −→ B +B θ7B (0, 1) self production of B

8 A −→ A+B θ8A (0, 1) production of B by A

9 A+B −→ B θ9AB (−1, 0) annihilation of A from encounter with B

10 A+B −→ A θ10AB (0,−1) annihilation of B from encounter with A

4.8 Evaluation of MBI model Accuracy 417

We investigated the accuracy of the MBI methods by using the Stochastic Damped Oscillator model (Table 4). 418

Using stochastic simulation algorithm (SSA), we generated synthetic population counts starting from an initial 419

population count of (30, 20). The simulation were performed from an initial time of 0.0510 and a final time of 420

25.001 by taking sample population count at every 0.05 time intervals. The moments data were computed from 421

10000 SSA time series. For the purpose of this analysis, we only used the moments data up to time 6.4510 in 422

the network inference method. 423

To investigate the effect of the time interval between data sampling, we inferred reaction networks from 424

MBI methods for each dataset sub-sampled with the corresponding time interval separations. We then used 425

the inferred parameters network to generate 1000 sample SSA trajectories from which we computed the new 426

moments time series along the same time-interval as original dataset. We then computed the errors of the first 427

order moments, second order moments at all time-interval rather than just on the sub-sampled time-intervals. 428

This allows us to observe how well the approaches estimates the unseen data in between the fitted data (see 429

Fig 5). 430

We compare the network inferred from the Linear MBI and the Nonlinear MBI by using the Akaike Infor- 431

mation Criterion (AIC). The AIC is used to rank inference models by considering a trade-off between goodness 432

of fit and over-fitting (45), it is given in the formula 433

AICc = 2k − ln(L), (4.12)

where k in the number of inferred parameters and L is the likelihood function 434

To account for the small number of snapshot data points fitted in MBI methods, we used the AICc which 435

corrects the original AIC formula for small sample size (46). 436

AICc = AIC +
2k2 + 2k

N − k − 1
, (4.13)

where N is the number of snapshot data points used in the inference method. 437

The case of MBI method, AIC follows is given by as follows 438

AICc = 2k + ‖m̂(t)− m̂data(t)‖22 +
2k2 + 2k

N − k − 1
, (4.14)
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Table 4: Stochastic Damped Oscillator Reaction Library

# Reactions Coefficients Stoichiometry Description

1 ∅ −→ A θ1 = 4.0 (1, 0) birth of A

2 ∅ −→ B θ2 = 3.0 (0, 1) birth of B

3 A −→ ∅ θ3 = 0.0 (−1, 0) death of A

4 B −→ ∅ θ4 = 0.7 (0,−1) death of B

5 A −→ B θ5 = 0.0 (−1, 1) transition of A to B

6 B −→ A θ6 = 0.0 (1,−1) transition of B to A

7 A −→ A+A θ7 = 1.25 (1, 0) self production of A

8 B −→ B +B θ8 = 0.0 (0, 1) self production of B

9 A+B −→ A θ9 = 0.0 (0,−1) annihilation of B from encounter with A

10 A+B −→ B θ10 = 0.0 (−1, 0) annihilation of A from encounter with B

11 A+B −→ ∅ θ11 = 0.0 (−1,−1) annihilation of A and B from encounter

12 A+B −→ A+A θ12 = 0.04 (1,−1) birth of A from encounter with B

13 A+B −→ B +B θ13 = 0.04 (−1, 1) birth of B from encounter with A

4.9 Pseudo-Time Approach 439

Pseudo-time analysis aims to achieve a temporal ordering of the unordered observations from an RNA-seq gene 440

expression snapshot (30). The resulting “pseudo-time course” can be used to infer GRNs (13; 14; 32). 441

We performed pseudo-time analysis using diffusion maps as described by (31) and implemented in SCANPY 442

(47). A diffusion map is a non-linear dimension reduction method which yields a lower-dimensional, de-noised 443

representation of the high dimensional gene expression data. Haghverdi et al. derived a measure in the diffusion 444

map space which recovers the dynamics of gene expression and is hence suited for inferring pseudo-time and 445

GRNs. They define the pseudo-time of a cell as the distance from some root cell, which get assigned pseudo-time 446

0 a priori. 447

We recreated a typical pseudo-time analysis on simulated and sub-sampled gene expression snapshots gen- 448

erated according to the gene interaction networks described in section 4.5. We slightly over-sampled cells from 449

earlier time points, as our simulation of gene expression converges to equilibrium in later time points and im- 450

plicitly biases the pseudo-time approach. Furthermore we excluded the first snapshot at time 0. This resulted 451

in three datasets of 50000 cells and two genes. We assigned an arbitrary cell from the first time point as root 452

cell for analysis. Using the diffusion pseudo-time analysis pipeline implemented in SCANPY, we computed a 453

sparse nearest neighbour graph (of 50 neighbours), embedded the observations in diffusion map space using 3 454

dimensions and computed diffusion pseudo-time for each cell with the first 2 dimensions. 455

4.10 Mutual Information 456

The mutual information (MI) measure quantifies the amount of information shared between two interacting 457

species. The MI is a symmetric measure, therefore it has been used to infer non-directed GRN by using it as a 458

score for the confidence of an edge between the genes (28). The MI can take any positive value and therefore 459

there is no general way of interpreting it’s magnitude. A threshold of top scoring network is usually used to 460

draw possible networks (28). In the case of our two gene interaction model (sec. 4.5), it is not possible choose 461

a number of top scoring networks because there is only one possible edge given by the MI method. Therefore, 462

we need to use a different way of interpreting the magnitude of the MI scores. We computed the MI score 463

using the implementation by (28)). We generated MI scores for a batch of 400 time series of moments of 464

gene expression data calculated from 10000 mRNA count time series (section 4.6). We infer the GRN from the 465

resulting distribution of MI scores by conducting ANOVA analysis assessing the statistical difference between 466

the three two gene interaction models No-I, Mono-I, and Bi-I. 467
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4.11 SINCERITIES 468

SINCERITIES, or SINgle CEll Regularized Inference using TIme-stamped Expression profileS, has recently been 469

proposed to infer a directed GRN by using time series of gene expression data (26). SINCERITIES algorithm 470

performs a regularised regression of a system of Kolmogorov–Smirnov distributional distances to infer a set of 471

scores αj representing the influence of gene j on all the other genes. Large score indicates a higher confidence 472

that the corresponding edges exists. Similarly to the MI method (see section 4.10), there is not general way 473

of interpreting the magnitude of these parameters. To infer a GRN and benchmark the results as compared 474

to other methods, Gao et al. (26) used the top scoring edges. In addition, SINCERITIES algorithm infers the 475

direction of the edges, i.e., the nature of the interaction, from the sing of the partial correlation coefficients 476

between the each two genes. 477

We used SINCERITIES to compute interaction scores (i.e., αj) and directions (sign of partial correlation 478

coefficients) for 400 time series of moments of gene expression data calculated from 10000 trajectories from the 479

SSA simulations of mRNA counts. The distributions of the resulting interaction scores are show in Supp. Fig. B. 480

As the authors of SINCERITIES leave it to the user to choose a suitable interaction score threshold for deciding 481

detection of an edge, we chose a generously low threshold of 0.05. The frequencies of the resulting interaction 482

networks across the 400 runs are depicted in Supp. Fig. 1 a and the most frequent network drawn in Fig. 2. 483
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Supplementary Figure A: Comparison of the moments/statistics between simulated data (top row) and Pseudo Time

augmented data (bottom row) for the three two-gene interaction models No-I, Mono-I, and Bi-I.
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Supplementary Figure B: Comparison of interaction scores for the three GRN models: No-I, Mono-I, and Bi-I: (a.) MI

scores with initial population counts (0, 0), (b., c., d.) SINCERITIES scores from data simulated with initial mRNA

population counts (0, 0), (e., f., g.) SINCERITIES scores for the data simulated with initial mRNA population counts

(0,70), (70, 0), and (70, 70).
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Supplementary Figure C: Predicted GRNs and the percentage of times they were inferred by the methods within a

batch of 400 snapshot time series of moments: a. SINCERITIES, b. Linear MBI, c. Nonlinear MBI.
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Supplementary Figure D: Comparison of the first moments time course reconstruction of the stochastic damped

oscillator model for different snapshots time-series data subsampled at time ntervals h (sec) between snapshots. Time

course reconstruction were generated from SSA of the model using the parameters inferred by each MBI methods.
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