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An Improved Multiobjective Shortest Path Algorithm

Pedro Maristany de las Casas1 Antonio Sedeño-Noda2 Ralf Borndörfer1

Abstract

We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that com-
putes a minimum complete set of efficient paths for a given instance. The size of the priority queue used in
the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be
efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm
that can almost be expressed in terms of the running time of Dijkstra’s algorithm for the Shortest Path problem.
Hence, we suggest to call the algorithm Multiobjective Dijkstra Algorithm (MDA). The simplified label manage-
ment in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the
MDA and the classical label-setting MOSP algorithm by Martins, which we improved using new data structures
and pruning techniques. On average, the MDA is 2 to 9 times faster on all used graph types. On some instances
the speedup reaches an order of magnitude.

1 Introduction.
The Shortest Path (SP) problem is one of the most studied classical Combinatorial Optimization problems.
Numerous classical algorithms and applications are reviewed in Ahuja et al. [1]. Moreover, the development
of new algorithms and speedup techniques to solve SP problems remains an actual research topic as the used
graphs and data grow with every new application or required feature. In the SP problem, the quality of paths
is measured w.r.t. a single attribute (e.g., cost, length, time, risk, energy consumption, etc.) defined on each
arc of the input graph. Given a fixed starting node s, the one-to-all variant of the SP problem seeks to find a
shortest path between s and every other node in the graph; in the one-to-one variant, a shortest path between
s and a given target node t has to be found.

In many applications of routing problems, a single attribute is not sufficient to define the preference rela-
tionship among the paths. This naturally leads to the Multiobjective Shortest Path (MOSP) problems, in which
several attributes are defined on the arcs, and hence, on the paths. In this scenario, the minimality of paths1 has
to be redefined and leads to solution sets that may be exponentially sized w.r.t. to the problem’s input size. This
complicates the running time analysis of MOSP algorithms, as dependence on the input size only allows us to
derive bounds that vastly overestimate the running time of many instances. Hence, we study the output sensitive
complexity of the presented algorithms. I.e., we seek to bound its running time with a polynomial depending
on the size of the input and the output of the problem instances. The running time of the new Multiobjective
Dijkstra Algorithm (MDA) turns out to be theoretically and computationally better than the one of existing
label-setting MOSP algorithms.

1.1 Literature Review.
The basics in Multiobjective (Combinatorial) Optimization are well explained in Emmrich and Deutz [19],
Ehrgott [17], or Ehrgott and Gandibleux [16].

In the 70s, Vincke [39] considered the MOSP for the first time using two objective functions. This Biobjec-
tive Shortest Path (BOSP) problem was also considered by Hansen [24], who introduced the first label-setting
algorithm for BOSP problems. Serafini [33] showed that the MOSP problem is NP -complete. Good surveys
on this topic are Ulungu and Teghem [38], Current and Marsh [11], Skriver [34], Tarapata [36], Clímaco and
Pascoal [10].

1Zuse Institute Berlin, Takustraße 7, 14195, Berlin, Germany.
2Departamento de Matemáticas, Estadística e Investigación Operativa, Universidad de La Laguna, 38271 Santa Cruz de Tenerife,

España.
1Minimum paths are called efficient. We give a formal definition in Section 2.
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Most methods providing the (minimum or maximum) complete set of efficient paths (cf. [17]) are labeling
methods or ranking methods. In this paper, we focus on label-setting methods that follow the ideas from the
corresponding algorithms for the SP problem. The first label-setting method for the BOSP problem is due to
Hansen [24]. Later, Martins [25] generalized the previous algorithm for MOSP problems. All of the mentioned
methods consider min-sum criteria in all the objectives but other objective types have also been considered, e.g.,
in Gandibleux [22]. Recently, Sedeño-Noda and Colebrook [32] introduced the Biobjective Dijkstra Algorithm
(BDA), a new algorithm for the BOSP problem. The BDA’s theoretical running time is the number of efficient
solutions times Dijkstra’s [14] running time, hence improving the running time of older label-setting BOSP
algorithms. It also outperforms them in the computational experiments. Different approaches to solve MOSP
problems could be swarm intelligence graph-based algorithms as presented by Ntakolia and Iakovidis [26] or
multi-phase approaches using preference-based optimization as in Di Puglia Pugliese et al. [27].

In general, the cardinality of the sets of efficient paths increases as more objectives are considered simulta-
neously. Deciding whether a newly found path constitutes an efficient solution given the set of already found
efficient paths is hence computationally expensive. This motivates our attempt to parallelize some subroutines
in MOSP algorithms. Little work has been published in this direction. In [31] the authors describe a parallel
variant of Martins’ algorithm. Their approach targets the heap operations as the main source of parallelism.
They focus on the biobjective case and achieve a remarkable asymptotic running time. However, the authors do
not report any computational results as they claim that their algorithm “might be too complicated to be practical”.

A different approach to overcome the problem of the cardinality of the solution sets of efficient paths is to
only output a subset of efficient paths that is good enough. This motivates the study of Fully Polynomial Time
Approximation Schemes (FPTAS) for MOSP problem in the literature. Tsaggouris and Zaroliagis [37] gave an
FPTAS that subdivides the space of possible paths’ costs and stores at most one path per cell in the subdivision.
This idea was also used in Breugem et al. [7], where the authors present a new FPTAS based on Martins’
algorithm [25]. Very recently, Maristany et al. [12] introduced a new FPTAS based on the MDA presented in
this paper.

1.2 Contribution and Outline
We introduce and analyze the MDA, a new label-setting algorithm that computes a minimum complete set of
efficient paths for MOSP problems and generalizes the Biobjective Dijkstra Algorithm (BDA) presented in [32].
The complexity of the BDA benefits from the fact that the efficient paths are stored and ordered in a way
that allows dominance checks in constant time. In the multiobjective scenario discussed in this paper, these
dominance checks run in linear time w.r.t. the number of elements stored in the considered lists and the number
of objectives. This causes different complexity bounds for the BDA and the MDA.

In this paper, we discuss the complexity of the MDA in detail, always considering the number of optimization
criteria as part of the input. The result is an output sensitive algorithm for the one-to-all MOSP problem.
Contrary to the biobjective case, the derived upper bound exhibits a quadratic dependency on the maximum
cardinality of a node’s set of efficient paths. Even though, to the best of our knowledge, the complexity of the
MDA is better than the one of existing MOSP algorithms, we focus on the upcoming quadratic term and try to
soften its impact parallelizing some parts of the algorithm. The used parallelization techniques are much easier
than the ones used in [31] and can also be analyzed in our computational experiments.

In these experiments we compare the new MDA with an improved version of the classical label-setting MOSP
algorithm by Martins [13]. The comparison is done using the one-to-one version of the MOSP problem. As proven
in [8], this version is not output sensitive, unless P = NP . The intuitive reason is that the cardinality of the
sets of efficient paths at intermediate nodes can not be bounded a priori by the cardinality of the set of efficient
paths at the target node. Still, this version is of theoretical and practical interest: having a target node allows us
to use pruning techniques from the literature to reduce the number of computed efficient paths at intermediate
nodes. We also endorse our variant of Martins’ algorithm with these techniques, as in the three objective case,
they performed better than the early stopping criterion suggested in the original publication [13]. Hence, using
the pruning techniques, we are able to experiment on graphs motivated by real world applications such as road or
airway networks without incurring huge time and memory consumption. Such experiments for MOSP instances
with three objectives are rare in the literature. Our experimental setup differs from the one in [32] in that we do
not consider bidirectional versions of the algorithms but instead investigate the impact of parallelization on the
MDA running times. The results reveal that the average speedup of the MDA w.r.t. our version of Demeyer’s
algorithm [13] is greater than in the biobjective case.

All in all, we study in this paper the impact on the general multiobjective case of a key idea that aims
to simplify label setting MOSP algorithms both theoretically and computationally: we only store at most one
candidate label per node in the priority queue, and as a result the computationally expensive task of merging
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sets of labels can be replaced by a more efficient procedure that selects new candidate labels to include in the
queue.

The paper is structured as follows: In Section 2 we define the MOSP problem, formulate it as a general
MOCO problem, state assumptions on the cost functions, and discuss their consequences on the structure of
efficient paths. In Section 3 we introduce the new MDA and state its correctness and output sensitive complexity.
We also explain how the new algorithm can be parallelized. In Section 4 we discuss the classical label-setting
algorithm by Martins. The contents of Section 5 focus on the one-to-one version of both algorithms: we introduce
pruning techniques that reduce the number of computed labels while preserving the algorithms’ exactness at the
target node. In Section 6.3 we present the results of our computational experiments. Finally, in Section 7, we
summarize the findings of the paper.

2 Multiobjective Shortest Path Problem.
Consider a directed graph G = (V,A) with n := |V | nodes and m := |A| arcs. For a node v ∈ V , we denote
its set of outgoing arcs by δ+(v) and its set of incoming arcs by δ−(v). We assume that G has no parallel arcs
and can then incur in a slight abuse of notation by referring to a predecessor node u of v by u ∈ δ−(v) and to
a successor node w of v by w ∈ δ+(v). This assumption also allows us to represent a (u, v)-path P in G as a
sequence (u = v1, . . . , vk = v) of k nodes s.t. (vi, vi+1) ∈ A for i ∈ {1, . . . , k − 1}. Given a cost vector ca ∈ Rd,
d ∈ N, for every arc a ∈ A, the cost of the path P is c(P ) :=

∑k−1
i=1 c(vi,vi+1) ∈ R

d. The minimality of paths is
defined in terms of the Pareto order ≺D , a strict partial order on Rd. Given two cost vectors x, y ∈ Rd, x is said
to dominate y and we write x ≺D y if xi ≤ yi for all i ∈ {1, . . . , d} and there is at least one j ∈ {1, . . . , d} such
that xj < yj . Then, if consider two (u, v)-paths P and P ′, u, v ∈ V , P is said to dominate P ′ if c(P ) ≺D c(P ′).
Moreover, P and P ′ are called equivalent if and only if c(P ) = c(P ′). Finally, in case there is no (u, v)-path in
G that dominates P , P is called an efficient path and its cost vector c(P ) is called a non-dominated cost vector.

From the above definitions two interesting solutions sets arise in Multiobjective Optimization and, in particu-
lar, in MOSP problems. Clearly, the set of non-dominated cost vectors to a MOSP instance is unique. However,
since different paths between the same end-nodes can have equal costs, one can be interested in the maximum
complete set of efficient paths that contains all efficient paths for the given instance or in a minimum complete
set of efficient paths that contains exactly one efficient path per non-dominated cost vector. We now state the
formal definition of the MOSP problem.

Definition 1 (Multiobjective Shortest Path Problem). Given a directed graph G = (V,A), a root node s ∈ V ,
and cost vectors ca ∈ Rd, d ∈ N, for every arc a ∈ A, the one-to-all version of the Multiobjective Shortest Path
(MOSP) problem is to find the maximum or a minimum complete set of efficient (s, v)-paths for every v ∈ V . If
additionally a target node t ∈ V is input, the one-to-one MOSP problem is to find the maximum or a minimum
complete set of efficient (s, t)-paths.

In this paper we focus on the MOSP variant that seeks to find a minimum complete set of efficient paths, i.e.
solution sets of efficient and non-equivalent paths. Label-setting MOSP algorithms iteratively take an already
found path and extend it along the outgoing arcs of the path’s end node. For this dynamic programming approach
to work, the principle of optimality has to hold. This requires some assumptions on the structure of the arc
costs. We only consider MOSP instances (G, s, c) without negative cost cycles C, i.e., c(C) :=

∑
a∈C ca ≥ 0 for

every cycle C in G. As a consequence, we can search for simple paths only since such a path exists for every
non-dominated point in the outcome space. Arcs with negative cost components are allowed. For such instances,
non-negative reduced costs c̃ that preserve efficient paths can be found in time polynomial in the graph’s size.
The new instance (G, s, c̃) can then be solved with the presented label-setting methods. Hence, we consider
w.l.o.g. MOSP instances with non-negative arc cost. In this setting, subpath optimality, also known as principle
of optimality, holds as proven in [25].

Hardness As proven in [24] and [33], the MOSP problem is intractable and NP complete, even for d = 2. The
one-to-all MOSP problem is known to be output-sensitive, while the one-to-one version is not, unless P = NP
(cf. [8]).

3 Multiobjective Dijkstra Algorithm.
We now describe the new Multiobjective Dijkstra Algorithm (MDA), which is shown in Algorithm 1. Given a
one-to-all MOSP instance, the MDA computes a minimum complete set of efficient paths between s and every
other node v ∈ V . We choose to represent paths with an implicit, less memory-consuming representation:
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labels. Given an (s, v)-path P in G ending with the arc (u, v) ∈ A, the unique label representing P is a tuple
lv := (v, clv := c(P ), lpred) consisting of the node v ∈ V , the costs c(P ) of P which we rewrite as clv and a pointer
to the label lpred that corresponds to the (s, u)-subpath of P . This one to one correspondence of paths and labels
allows us to inherit the notation introduced in Section 2: if a path is efficient, we call the corresponding label a
non-dominated label.

Definition 2 (Comparison of Labels). Consider a d-dimensional MOSP instance (G, s, c) and let l and l′ be
two labels corresponding to two (s, v)-paths P and P ′, respectively.

1. Dominance and Non-Equivalence. Then, l dominates l′ and both are non-equivalent iff cl ≺D cl′ and
cl 6= cl′ . In this case, we write l �D l′. If there is no other label l̃ representing an (s, v)-path such that
l̃ �D l, l is called a non-dominated label. Additionally, if Lv is a set of labels representing (s, v)-paths, we
write Lv �D l iff there is a label l̃ ∈ Lv s.t. l̃ �D l. Otherwise, we write Lv �D l.

2. Lexicographic ordering. l is said to be lexicographically smaller than l′ (we write l ≺lex l′) iff cl is lexico-
graphically smaller than cl′ , i.e., iff cl,k < cl′,k for the first index k ∈ {1, . . . , d} s.t. cl,k 6= cl′,k.

Algorithm 1: Multiobjective Dijkstra Algorithm
Blue lines only for one-to-one version described in Section 5.
Input : Graph G = (V,A), Arc Costs ca ∈ Rd≥, Node s ∈ V .
Input one-to-one: Target node t ∈ V , Lower bound cv, v ∈ V , Upper bound label at target lt.
Output : Set Lv of non-dominated labels ∀v ∈ V OR Non-dominated target labels Lt.

1 Priority Queue H ← ∅;
2 for v ∈ V do Efficient labels Lv ← ∅ ;

/* We assume L to store pointers to the sets Lv and hence, contains the updated sets Lv during the whole algorithm. */

3 L←
⋃
v∈V Lv;

4 for a ∈ A do lastProcessedLabel[a]← 0 ;
5 Label ls ← (s, (0, . . . , 0), NULL);
6 H ← H.insert(ls);

7 while H 6= ∅ do
8 l∗v ← H.extract_lexmin() ;
9 v ← l∗v.node;

10 Lv.push_back(l∗v) ;
11 lnewv ← nextCandidateLabel(v, lastProcessedLabel, δ−(v), L, cv, lt) ;
12 if lnewv 6= NULL then H.insert(lnewv );
13 for w ∈ δ+(v) do H ← propagate(l∗v, w,H,L, cw, lt) ;
14 return Lv for all v ∈ V ; OR return Lt;

The MDA is a label-setting algorithm managing a set Lv of non-dominated labels at each node v ∈ V . In
the algorithm, a ≺lex -sorted priority queue H stores tentative labels that correspond to paths that have been
explored during the algorithm but are not yet known/decided to be non-dominated. At any point during the
algorithm, H stores at most one label per node. Hence, H’s size is bounded by n. Throughout the algorithm it
is guaranteed that the extraction of a lexicographically smallest label from H yields a non-dominated label.

The algorithm first creates a start label ls = (s, (0, . . . , 0), NULL), associated with the origin node s, and
inserts it into H. The main part of the algorithm is a loop that ends once H becomes empty. An iteration of
the loop starts with the extraction of a lexicographically smallest label l∗v from H, which is added to the end of
Lv since it is guaranteed to be non-dominated. This is the only way labels are added to the lists Lv, i.e., made
permanent. As a consequence, the sets Lv, v ∈ V, are also sorted according to ≺lex . Each iteration pursues two
main tasks. The first is to find the next tentative/candidate label for node v that can be added to H and the
second is the propagation of l∗v along the outgoing arcs of v. In the pseudocodes we will use L := ∪v∈V Lv to
simplify notation when passing the sets of permanent labels to the subroutines.

Next Candidate Label

Once a label l∗v for node v is extracted from H, a new tentative label lnewv for node v must be found (if it exists)
and added to H. This is the price for keeping only one tentative label per node in H instead of keeping a set
of tentative labels for the same node. This is a crucial difference between Algorithm 1 and the classical label-
setting MOSP algorithms. The label lnewv must not be dominated by any existing label in Lv and is computed
by extending existing non-dominated labels at predecessor nodes u ∈ δ−(v) along the arc (u, v). Among the
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resulting labels, lnewv is set to be a lexicographically smallest, non-dominated one. More precisely, we define

lnewv := arg lexmin l∈Lu,

u∈δ−(v)

{lv := (v, cl + cuv, l) |Lv �D lv} . (1)

If no label lnewv can be found in (1), nothing is added to the priority queue H. Procedure nextCandidateLabel
shows how lnewv is found algorithmically.

Remark 1 (Exploiting the lexicographic order in nextCandidateLabel). Let Nv ∈ N be the number of permanent
labels at node v ∈ V at the end of the MDA. Then, the procedure nextCandidateLabel(v, . . . ) is called Nv + 1
times during the algorithm. If we fix a predecessor node u ∈ δ−(v) of v, does the algorithm need to traverse the
whole list Lu of permanent labels every time a new candidate label for v is searched? The answer is no and has
in fact a big impact on the overall complexity of the MDA. For all nodes w ∈ V , the sets Lw are only modified
by the insertion of labels at the end of the lists in Line 10 of Algorithm 1. Since these are extracted from H as
lexicographically smallest ones in every iteration, the lists Lw inherit the ordering of the priority queue: they
are sorted in lexicographically increasing order.

Assume nextCandidateLabel(v, . . . ) is called for the kth time, k ∈ {1, . . . , Nv}. We claim that if during the
(k − 1)th search the first i ∈ N labels in Lu were considered and only the extension along (u, v) of the label at
position Lu[i] was non-dominated at Lv, the current call to nextCandidateLabel can start from the ith label in
Lu

2. The reason is that between the (k−1)th and kth search for a next candidate label for v, Lv is not modified.
Moreover, if Lu is modified, then just by appending labels behind its ith position. Hence, if the labels in Lu prior
to position i did not qualify as candidates labels to become the result of (1) in the (k−1)th search, they will also
not qualify as such during the kth search. This uses the fact that both, Lu and Lv, are sorted in lexicographically
increasing order. As a result, for every arc (u, v) ∈ A, nextCandidateLabel is called Nv + 1 times and in total,
during all these calls, O (Nu +Nv) dominance checks against Lv are performed. The second summand accounts
for those calls to nextCandidateLabel(v, . . . ) in which no new predecessor label in Lu is processed, i.e., those calls
in which the index lastProcessedLabel[(u, v)] is not increased.

Procedure nextCandidateLabel
Blue lines only for one-to-one version described in Section 5.
Input : Node v, Indices lastProcessedLabel, Node set Q ⊆ δ−(v), Permanent labels L.
Input one-to-one: Lower bound of v to t cv, Upper bound label at t lt.
Output : New lexicographically smallest, non-dominated label for v, if one exists.

1 Label lv ← (v, (∞, . . . ,∞), NULL);
2 for u ∈ Q do
3 for k ∈ [lastProcessedLabel[(u, v)], |Lu|] do
4 Label lu ← Lu[k];
5 Label lnew ← (v, clu + cuv, lu); /* Extension of lu along (u, v). */

6 lastProcessedLabel[(u, v)]← k;
7 /* For the artificial expansion of lnew to t, there is no predecessor label but it is also not needed. Thus, we set

it to NULL. */

8 if lt �D (t, clnew + cv, NULL) and Lt �D (t, clnew + cv, NULL) then
9 if Lv �D lnew then

10 if lnew ≺lex lv then lv ← lnew;
11 break;
12 if clv 6= (∞, . . . ,∞) then return NULL;
13 return lv;

In Section 3.3 we will discuss a parallel version of nextCandidateLabel in which we will need to pass a subset
of predecessors of v to this function. This explains the third input argument Q. In this section we will always
set Q = δ−(v).

Label Propagation

The second main step in any iteration is to propagate the extracted label l∗v to the successor nodes w in δ+(v)
of v. Let lw = (w, cl∗v + cvw, l

∗
v) be such a propagated tentative label. If lw is dominated by any label in Lw,

2Note that the (k − 1)th search stops at position i beacause of Line 11 of nextCandidateLabel.
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Figure 1: MOSP instances (G, s, c) with d = 3. The tuples on the nodes represent the permanent cost labels in Lv.

it is discarded. If that is not the case and if there is no label for w in the priority queue H, lw is inserted into
the priority queue. If there is a label for w in H, we check if lw is lexicographically smaller. If so, w’s label in
H is updated to be lw. Otherwise, lw is discarded. To have constant-time access to a node’s label in H, a copy
of these labels is stored in a vector, indexed by nodes. Whenever we extract or update a node’s label in H, we
update the corresponding entry in the vector. This allows us to use constant time functions H.getLabel(v) and
H.contains(v) to get a node’s heap label or check if one exists. The pseudocode is shown in propagate.

Procedure propagate
Blue lines only for one-to-one version described in Section 5.
Input : Label lv, Node w ∈ δ+(v), Priority Queue H, Permanent labels L.
Input one-to-one: Lower bound cw, Upper bound label at target lt.
Output : Updated Priority Queue H.

1 Label lnew ← (w, clv + cvw, lv);
2 /* For the artificial expansion of lnew to t, there is no predecessor label but it is also not needed. Thus, we set it to

NULL. */

3 if lt �D (t, clnew + cw, NULL) and Lt �D (t, clnew + cw, NULL) then
4 if Lw �D lnew then
5 if !H.contains(w) then
6 H.insert (lnew);
7 else if lnew ≺lex H.getLabel(w) then
8 H.update(lnew);
9 return H;

The MDA terminates once H becomes empty. It returns the sets Lv of non-dominated labels at every node
v.

Example 1. In Figure 1, we sketch an intermediate step in Algorithm 1. The label extracted from the priority
queue has cost (3, 1, 3) at node v3. The label is directly made permanent at Lv3. The algorithm now searches
for a new candidate label for v3 among the permanent labels of the predecessors of v3 (Line 11). A label with
costs (3, 3, 0) coming from s and a label with costs (3, 2, 2) coming from v2 fulfill the requirements since they are
non-dominated at Lv3. The algorithm picks the lexicographically smallest among those, i.e., (3, 2, 2), as v3’s next
label in the priority queue. Now, the label with cost (3, 1, 3) is propagated to the successor nodes of v3 (Line 13).
A new label for v5 with cost (8, 6, 8) is added to H (Line 6 of propagate). The new label with cost (5, 2, 3) at node
v4 dominates the label with cost (12, 12, 12) at v4 that was already in H. Hence, v4’s label in the priority queue
is improved (Line 8 of propagate).

3.1 Correctness.
We sketch the proof of correctness of Algorithm 1. A detailed proof for the biobjective case can be found in
[32] and can be extended to hold in the general multiobjective case. As in Dijkstra’s [14] algorithm, the key of
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the correctness of the MDA is that labels that are extracted from the priority queue can be made permanent.
Formally:

Lemma 1 (Permanent labels). Consider an instance (G = (V,A), s, c) of the MOSP problem with non-negative
costs. Let lv be a label at node v ∈ V extracted from H in Line 8 of Algorithm 1. Then, lv is a non-dominated
label and can be made permanent in Lv.

A proof of Lemma 1 can be found in [25], [32]. As discussed in Section 2, having non-negative costs guarantees
the efficiency of subpaths. All in all we can prove the following theorem by induction:

Theorem 1 (Correctness of Algorithm 1). Given a MOSP instance (G, s, c) with non-negative costs, Algorithm
1 computes a minimum complete efficient set Lv for every v ∈ V that is reachable from s. Labels in Lv correspond
to efficient simple (s, v)-paths.

3.2 Complexity in the One-to-All Case.
The complexity analysis of the MDA differs from the one for the Biobjective Dijkstra Algorithm presented in
[32]. In the biobjective case, the lexicographically increasing ordering of the sets Lv (recall that these sets only
contain non-dominated and non-equivalent labels) causes the contained labels to be sorted increasingly in the
first cost component and decreasingly in the second component (cf. [9], [32]). Since a new candidate label lnewv

is lexicographically greater than all labels in Lv, checking if Lv �D lv can be done in constant-time by just
checking if the second cost component of the last label in Lv is greater than the second cost component of lv.
In the general multiobjective case, this interplay between the lexicographically increasing order and the Pareto
order not happen in general: the check Lv �D lv is done in O (d|Lv|) since all labels in Lv have to be checked
in the worst case (see Example 2).

Example 2. For the case d = 3, consider the following list containing labels representing different (s, v)-paths
for a node v ∈ V :

L = [(v, (1, 5, 1), lpred1), (v, (2, 3, 8), lpred2), (v, (3, 2, 6), lpred3)].

These labels are non-dominated and are sorted in lexicographically increasing order. The check L �D (v, (4, 6, 2), lpred4)
could be answered with just one comparison if the check starts with the first element of L. However, L �D
(v, (4, 4, 7), lpred5) would require to check the whole set L.

To analyze the running time of the MDA, we set N :=
∑
v∈V |Lv| and Nmax := maxv∈V |Lv|. The dimension

d of the cost vectors is considered as an input parameter. First, we determine the time needed by each operation
in the algorithm.

Dominance and lexicographic checks Checking l �D l′ and l ≺lex l′ for two labels l, l′ with d-
dimensional cost vectors takes O (d) comparisons. For any node v ∈ V , checking Lv �D l for a candidate
label l representing an (s, v)-path, takes O (d|Lv|) comparisons. Hence, any check Lv �D l is done in O (dNmax).

Operations on priority queue and lists of permanent labels We assume that in Algorithm 1, H
is a Fibonacci Heap [21]. Recall that the size of the heap is bounded by n. Hence, the extract_min operation
has a running time of O (d log(n)). The insert and update operations run in O (d). The lists Lv of permanent
labels are just modified by the push_back function in Line 10 of Algorithm 1. This operation adds a label at
the end in constant time.

Initialization The initialization phase entails the creation of the empty heap H and of an empty list Lv
for every node v. Additionally, the initial label at node s has to be built and inserted into H. The individual
operations are done in constant time but the iteration over all nodes yields a O (n) complexity for this phase.

Number of iterations Every iteration starts with the extraction of a lexicographically smallest label l∗v
from H. Every extracted label corresponds to an efficient path, so the total number of iterations is N .

Next Candidate Label For any node v, Algorithm 1 searches |Lv|+1 times for a new tentative label using
nextCandidateLabel(v, . . . ) (Line 11 of Algorithm 1). As explained in Remark 1, it is guaranteed that for every arc
(u, v) ∈ A, O (|Lu|+ |Lv|) dominance checks are performed (Line 9) during calls to nextCandidateLabel(v, . . . ).
Taking also the lexicographic checks (Line 10) into account, we get a running time of

O ((|Lu|+ |Lv|) (dNmax + d)) = O
(
dN2

max

)
(2)

7



Table 1: Running time of Dijkstra algorithms depending on the number of objectives.

w.r.t N and Nmax w.r.t. Nmax using nNmax ≥ N

d = 1 O (n log(n) +m) O (n log(n) +m)
d = 2 O (N log(n) +Nmaxm) O (Nmax(n log(n) +m))
d ≥ 3 O

(
d(N log(n) +N2

maxm)
)
O (dNmax(n log(n) +Nmaxm))

per arc (u, v) ∈ A for all calls to nextCandidateLabel(v, . . . ). Hence, summing over all arcs, we get a total running
time of

O
(
dmN2

max

)
(3)

for all calls to nextCandidateLabel.

Label Propagation A single call to propagate performs dominance and lexicographic checks (Lines 4 and
7) and possibly inserts or updates an element to the heap. Hence, the call runs in O (dNmax). In every iteration
of Algorithm 1, the extracted label l∗v is propagated to all successor nodes of v (Line 9). Thus, per iteration, we
get a running time of O

(
|δ+(v)|dNmax

)
. Summing over all iterations, the running time of propagate is:

O

(∑
v∈V

|Lv||δ+(v)|dNmax

)
= O

(
dN2

maxm
)
. (4)

Knowing that the MDA performs N iterations in the main loop, we use (3) and (4) to conclude that its the
running time is

O
(
d(N log(n) +N2

maxm)
)

=︸︷︷︸
nNmax≥N

O (dNmax(n log(n) +Nmaxm)) .

Table 1 gives an overview on the complexity of the one-to-all (MO)SP problems depending on the number of
objective functions.

3.3 Parallelization
Some computations in the presented algorithm can easily be parallelized. The most obvious one is the dominance
check between a set Lv of permanent labels at a node v and a tentative label l. The operation Lv �D l can be
implemented as shown in parallelDominates. It is a recursive approach that splits the array Lv in two halves as
long as the resulting splits contain more than B ∈ N elements. Each such split is called a task. The algorithm
returns TRUE if at least one task finds an element that dominates l. The worst case regarding the number of
comparisons is when Lv �D l. If tasks are processed in parallel, one task per thread, each thread will do O (B)
dominance checks. Parallelization using tasks offers some advantages that we will discuss in Section 6.1.3.

Procedure parallelDominates
Input : Label l, List of non-dominated labels L, Index start, Index end, Bound B.
Output: TRUE iff L �D l.

/* L[start,end] := {L[i] | i ∈ [start, end]} is a subarray of L. */

1 if end− start < B then return L[start,end] �D l ;
2 Boolean dom1 = FALSE; dom2 = FALSE;
3 parallel tasks
4 dom1 ← parallelDominates(l, L, start, b start+end

2
c, B);

5 dom2 ← parallelDominates(l, L, b start+end
2

c+ 1, end,B);
6 return dom1 OR dom2;

As shown in Table 1 the price for considering more than two objectives is a factor Nmax in the second
summand of the algorithm’s time complexity. If we neglect the overhead that arises due to communication of
threads and assume that k threads are available, we can set B = Nmax

k
and reduce the overall running time of

the algorithm depending on the number of threads. Note that the threads do not write or read to/from same
locations during parallelDominates, i.e., communication is minimal. However, Nmax is not known a priori and
thus some parameter tuning might be needed when implementing parallelDominates.
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After extracting a label at node v from the heap, the next heap label for v is determined in function
nextCandidateLabel. This search can also be split into tasks by separating the predecessor nodes of v into
groups. Let

pv :=
∑

u∈δ−(v)

(|Lu| − lastProcessedLabel[(u, v)]) (5)

be the number of predecessor labels of v that have to be considered in nextCandidateLabel3. Given an upper
bound B′ ∈ N, pv > B′, on the number of labels that each task will consider, we can split the workload.
Ideally each task will find a candidate label for v among pv

B′ predecessor labels. After doing so, the next heap
label lnewv for v is found by choosing the lexicographically smallest candidate label. We assume that there is a
function splitPredecessors(v, lastProcessedLabel, B′) that returns groups of predecessors Pi ⊆ δ−(v) such that
∪̇Pi = δ−(v). Then, the function nextCandidateLabelParallel can be used to compute (1) in parallel if the tasks
generated in Line 4 are processed by different threads.

Procedure nextCandidateLabelParallel
Input : Node v, Indices lastProcessedLabel, Permanent Labels L, Bound B′.
Output: New lexicographically smallest, non-dominated label for v, if one exists.

1 Predecessor Subsets [Pi]i∈I ← splitPredecessors(v, lastProcessedLabel, B′);
2 Labels [lv,i]i∈I ← [NULL]i∈I ;
3 parallel tasks i ∈ I
4 lv,i ← nextCandidateLabel(v, lastProcessedLabel, Pi, L);
5 return lexmin{lv,i | i ∈ I, lv,i 6= NULL};

4 Martins’ Algorithm
As noted in the introduction, label setting MOSP algorithms are usually variants and improvements of Martins’
algorithm [25]. In Algorithm 2, we choose to present the variant introduced in [13] since the authors claim (and
report computational evidence) that it is a sped up version of Martins’ algorithm.

The set of temporary labels in Algorithm 2 is also a lexicographically ordered priority queue H but its size
is not bounded by the number of nodes in the graph: more than one label per node can be stored in the H
simultaneously. At the end of the algorithm, the sets of node labels Lv for every node v ∈ V store a minimum
complete set of efficient (s, v)-paths. However, during the search dominated labels can appear therein. Hence,
every time a new non-dominated label lv is added to a set Lv, we have to check whether it dominates existing
labels therein. In this case, these labels have to be removed. This operation, often called merge between lv and
Lv, is one of the main differences between Martins’ algorithm and the new MDA.

Initially, in Algorithm 2, a label with zero costs at the starting node s is generated and inserted into H and
into Ls. The main loop of the algorithm goes on until H becomes empty. In every iteration the lexicographically
smallest label l∗v is extracted from H. For all successor nodes w of v, the tentative label lw := (w, cl∗v + cvw, l

∗
v)

is build. Now the merge operation between Lw and lw takes places: lw is added into H and Lw if it is not
dominated by any other label in Lw. If added, lw might dominate some of the existing labels in Lw and these
labels are deleted from Lw.

Remark 2 (Martins’ Algorithm – Correctness and Running Time). The proof of correctness of Algorithm 2
can be found for example in [25] or [18]. The Algorithm runs in O

(
ndN2

)
time, where, as in Section 3.2, N is

the total number of non-dominated labels at the end of the algorithm. A complete proof of this bound is given
in [7].

From Table 1 and Remark 2, we can see that the running time of our algorithm is superior to that of the
algorithm by Martins. Firstly, bounding the number of labels in the priority queue allows us to explicitly mirror
the priority queue extraction in the running time of Algorithm 1. Secondly, the MDA avoids the tedious merge
operation (Line 15 in Algorithm 2). Hence, a label extracted later will never dominate an existing one. The
price for avoiding the merge operation are the calls to nextCandidateLabel.

Removing labels from the sets Lv as in (Line 15 of Algorithm 2) hides a major drawback: removed, hence
dominated labels, still remain in the priority queue H. Let lv be a label just extracted from H in Line 7 of
Algorithm 2 and assume that it was deleted from Lv in a prior iteration. Due to subpath optimality every
propagated label gotten from lv will also be dominated. Hence, the iteration should be aborted after extracting

3Note that in (5) Lu is not the final set of permanent labels at u but the set containing the ones found at the moment the function
is called.
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Algorithm 2: Demeyer’s et al. [13] variant of Martins’ algorithm.
Blue lines only for one-to-one version described in Section 5.
Input : G = (V,A), ca ∈ Rd≥ for a ∈ A, s ∈ V .
Input one-to-one: Target node t ∈ V , Lower bound cv, v ∈ V , Upper bound label at target lt.
Output : Sets of non dominated labels Lv, v ∈ V OR Non-dominated target labels Lt.

1 Priority queue H ← ∅;
2 for v ∈ V do Lv ← ∅;
3 Initial label linit ← (s, (0, . . . , 0), NULL);

/* The priority queue H is sorted in lexicographically increasing order. */

4 H.insert(linit);
5 Ls.insert(linit);
6 while H 6= ∅ do
7 Label l∗v ← H.extract_min();
8 Node v ← l∗v.node;
9 for w ∈ δ+(v) do

10 Label l← (v, cl∗v + c(v,w), l
∗
v);

11 if lt �D (t, cl + cw, NULL) and Lt �D (t, cl + cw, NULL) then
12 if Lw �D l then
13 H.insert(l);
14 Remove elements Lrem ← {lw ∈ Lw | l �D lw};
15 Lw ← (Lw ∪ {l}) \Lrem;
16 return Lv for v ∈ V ; OR return Lt;

lv. A constant-time check of whether lv is still in Lv can be done choosing an appropriate data structure (e.g.,
a hash map). In Section 6.1 we will discuss the implications of the choice of different data structures in more
detail. Removing the label lv from Lv and from H would imply finding a not necessarily minimum element in a
priority queue, which is also a costly operation.

5 One-to-One MOSP Problem.
In the one-to-one MOSP problem we are interested in the efficient paths between two input nodes s, t ∈ V .
The output of the MDA in this scenario is a minimum complete set of non-dominated labels at t. We adapt
Algorithm 1 to solve one-to-one MOSP instances introducing pruning techniques to discard tentative labels at
nodes v 6= t that provably will not be expanded to non-dominated labels at t. The pruning techniques discussed
in what follows are widely used and their impact on the computational performance of the algorithms presented
here is remarkable. A detailed presentation can be found e.g., in [15].

5.1 Pruning by dominance.
For a node v ∈ V , let cv ∈ (R≥ ∪ {∞})d be a vector of costs that in each dimension j ∈ {1, . . . , d} lower
bounds the cost of a (v, t)-path w.r.t. the jth cost component. Given such a lower bound for every node in the
graph, tentative labels at an extracted node can early be recognized to be provably irrelevant for the final set of
non-dominated labels.

Let lv be a tentative label for node v. If the extended cost clv + cv is dominated by the cost of any label
in Lt, then lv can be pruned from the search space. We find feasible lower bounds for the nodes’ cost in
a preprocessing step that performs d (single criteria) t-to-all lexicographic SP queries on the reverse digraph
←−
G := (V, {(v, u) | (u, v) ∈ A}). The cost of a reversed arc (v, u) in the jth query is the jth cost component of
the original arc (u, v). The queries being lexicographic means while optimizing according to one cost component
only, the tie break criterion in case two labels have the same (single) costs is their lexicographic ordering. Given
a d-dimensional MOSP instance, there are d! possible ways of ordering the objectives to perform such queries.
This would result in a preprocessing phase without polynomial running time. To overcome this issue, we restrict
ourselves to the computation of d such queries, each of them having one of the d cost components as its first/main
optimization criteria. To build d adequate permutations of the objectives, we keep a closed list (round-robin list)
from 1 to d and make shift to the left for every new query. We then set cv,j to the cost of the shortest (t, v)-path
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w.r.t. the jth SP query, i.e., the one with the jth cost component as first optimization criteria.
In Algorithm 1 the described pruning strategy can be used to reduce the number of labels built in nextCan-

didateLabel and propagate. The corresponding checks appear in Line 8 of nextCandidateLabel and Line 3 of
propagate.

5.2 Upper Target Bound Pruning.
The dominance check at the target node’s set of non-dominated labels we introduced in the last subsection
might be costly as the size of Lt gets bigger during the MDA. A less aggressive, yet faster pruning technique can
be applied if an upper bound on the costs of the efficient (s, t)-paths is known. To find such an upper bound
we can reuse the d lexicographic all-to-one queries that we used to determine cv. For the query w.r.t. the jth

cost component, let P jst be the found shortest (s, t)-path and πj := c(P jst) the corresponding multiobjective cost
vector. Then

ct :=

(
max

j∈{1,...,d}
πj1, . . . , max

j∈{1,...,d}
πjd

)
(6)

defines an upper bound on the costs of all efficient (s, t)-paths. This is guaranteed because the ran queries
were performed using the lexicographic ordering of the labels as tie breakers. The results of the single queries
correspond to efficient paths that dominate a path with costs ct. Thus, the artificial cost clv + cv of a candidate
label lv at a node v can be compared with ct (see [15] for a complete proof). In case ct ≺D clv + cv, lv can be
discarded. Upper target bound pruning is weaker than pruning by dominance because for any non-dominated
label l ∈ Lt we have ct ⊀D cl. However, pruning by ct is faster since it involves only the comparison of two
cost vectors. We therefore use it before pruning by dominance, in Line 8 of nextCandidateLabel and Line 3 of
propagate. To be consistent with our notation, we introduce an artificial label lt := (t, ct, NULL) and use it in our
pseudocode when we apply upper target bound pruning.

5.3 Pruning and early stop condition in Martins’ algorithm.
The described pruning techniques can also be included in Algorithm 2 when it is used to solve one-to-one MOSP
instances (Line 11). Each time a tentative label ltent at a node w is determined (Line 10), we can extend its
costs towards node t and get cw,t := cltent + cw. We can discard ltent if either ct ≺D cw,t or if there exists a
label in Lt that dominates the artificial label with costs cw,t.

In [13] the authors introduce an early stop condition for Martins’ algorithm that reduces the number of needed
iterations. Let mini(H) := minl∈H(cl)i be the minimum value among the ith cost component of all labels in the
priority queue H. Recalling that arc cost are non-negative, it is easy to see that if cH := (min1(H), . . . ,mind(H))
is dominated by a label to the target node that is in the list Lt, no label in H will be expanded to an non-
dominated label at the target.

Remark 3 (Search Space Labels and Pruning by Dominance). There is no guarantee that Martins’ algorithm
and the MD algorithm will extract the same label in the ith iteration of their corresponding main loop. Hence,
the set of labels at the target node t can look differently for both algorithms during the execution. This has
an impact on the possibility to prune labels by dominance. In general, the following holds: if pruning by
dominance is used, at the end of both algorithms the sets of non-dominated labels at t will coincide but the sets
of non-dominated labels at intermediate nodes do not.

The running time of the preprocessing needed to define the lower and upper bounds used for the presented
pruning techniques is polynomial in the input size since we run d SP queries only. In the presented pseudocodes
we assume that the bounds are part of the input. In what follows we will refer to Martins’ algorithm with
pruning by dominance and upper target bound pruning as Improved Martins’ Algorithm (IMA).

6 Experiments
We compare the IMA and the MDA on different one-to-one MOSP instances with d = 3. The reasons to do so
are twofold: on one hand, we had data from applications involving three cost components; on the other hand,
contrary to what happens when switching from two to three cost components, there is no algorithmic modification
when using more than three objectives. Moreover, it is likely that due to memory or time requirements, we could
have not considered the large instances used in this work for d > 3. Our intention however was to observe the
behavior of the algorithms on large and practically relevant MOSP instances. This is also the reason why our
experimental results consider only one-to-one MOSP instances. In Section 6.1 we detail how both algorithms
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Table 2: Datastructures and pruning techniques used in our implementations.
IMA MDA

Pruning By Dominance By Dominance
Upper Target Upper Target

Heap Bin. Heap (<lex) Bin. Heap (<lex)
Lv Hash Tables Array

were implemented. Section 6.2 specifies the instances used in our experiments and how they were generated.
Finally, in Section 6.3 we report and analyze the results.

6.1 Implementation Details
Both algorithms are implemented in C and we use the GCC compiler version 7.5 to build the binaries4. The
relevant implementation aspects are the data structures, the used pruning techniques, and how the MDA was
parallelized.

6.1.1 Data Structures

In both algorithms we use a binary heap as the priority queue H. In the MDA, the sets Lv of permanent labels
at the nodes are implemented as dynamically allocated arrays. If a label l is to be added to an array Lv and the
allocated size is completely in use, we double the array’s size. If the number of permanent labels at a node i ∈ V
is Ni ∈ [2ki , 2ki+1] for some ki ∈ N0, allocating the size of the arrays as described here causes an overhead in
the storage space needed by the algorithm of at most

∑
i∈V 2ki+1 ≤ 2N times the size of a label5. In propagate

the heap’s label of a node v is possibly updated. To check if an update has to be done, we avoid searching for
v’s label in the heap by storing the node’s heap labels in a vector indexed by nodes. This means that we store
at most n labels twice during the algorithm but it guarantees constant-time access to v’s label in H.

Concerning our implementation of the IMA, we tried to benefit from the improvements introduced in [13].
Note that dominated labels are only deleted from the sets of node labels Lv. Hence, in every iteration, we have to
check if the label extracted from the heap of temporary labels has already been deleted from the corresponding
Lv set. To perform this check in constant time, we implement the Lv sets as HashTables. We used the HashTable
implementation from the open source GNOME Library GLib 2.64.5 [23]. Since each set Lv does only contain
labels at node v, it is enough to hash the labels using their cost vector only. We hash a label’s cost components
using our own implementation of the hash_combine function included in the Boost libraries [6].

6.1.2 Pruning

In both algorithms we use pruning by dominance and upper target pruning. In the IMA we first tried to use the
early stop condition from Section 5.3. Doing so helped to reduce the running time of the algorithm but not as
much as using pruning by dominance and upper target pruning, i.e., our final implementation does not include
the early stop condition. The reason is that it needs to traverse the heap many times looking for the minimum
value of the labels’ cost components in all but the first dimension. Table 2 shows an overview of the used data
structures and pruning techniques.

6.1.3 Parallelization

We use version 4.5 of the OpenMP API for Parallel Programming [5] to parallelize the dominance checks and the
nextCandidateLabel function as described in Section 3.3. We initialize k threads at the beginning of the algorithm
and let all but one (the master thread) threads wait until tasks are generated. Tasks are put into a queue from
which all active threads can take an element and perform the required computations. The assignment from tasks
to threads is controlled by the Open MP task scheduler. Once all tasks are completed their results are compared
and aggregated to one final return value.

In the recursive parallel functions parallelDominates and nextCandidateLabelParallel we introduced bounds
B and B′ respectively. Workload that is below these bounds is performed by the serial versions of the functions.

4Compiler optimization level was set to O3.
5Note that despite the remarked downside, this is a widely used procedure for efficient memory allocation.
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In our experiments we set B = 3, 000 and B′ = 506. In the description of the nextCandidateLabelParallel we
assumed the existence of a function splitPredecessors that builds groups of predecessor labels. To keep this task
computationally cheap, we iterate through the predecessor nodes of the input node v and group predecessor
nodes together until the sum of the corresponding permanent labels is greater or equal than B′.

6.2 Instance description
In our experiments we consider four different types of instances. The properties of the underlying graphs are
summarized in Table 3.

Grid Graphs We considered a directed 100× 100 grid graph. Arcs between neigbouring nodes exist in both
directions. This results in a graph with 10000 nodes and 39600 arcs. Every arc (u, v) has 3-dimensional costs
and cuv = cvu. The costs were generated uniformly at random with values between 1 and 10 for each component
separately. We use 50 different 3-dimensional cost functions on the 100×100 grid described here. These instances
were already used and described in [28]. Each node gets an id. The ids start at 0 at the lower left node of the
grid and increase first vertically (the node on the upper right corner has id 99) and then horizontally (the node
to the right of node 0 has id 100). For every pair consisting of the grid graph and a cost function, we create
60 (s, t) pairs. We do so by taking 20 random node pairs with ids differing by less than 3333 (Grid-small), 20
random node pairs with ids differing between 3333 and 6666 (Grid-medium), and 20 random node pairs with ids
differing by more than 6666 (Grid-big). Since we consider 50 cost functions, we get 1000 Grid-small instances
(G-S), 1000 Grid-medium instances (G-M), and 1000 Grid-big instances (G-B).

NetMaker NetMaker graphs are synthetic graphs. They were introduced in [35] and have been used for
benchmarks in multiple publications (see for example [29]). The considered graphs have 5000 to 30000 nodes
and 29591 to 688398 arcs. The density of the graphs ranges from 5.92 to 23.05. As explained in [30], NetMaker
graphs are build around a Hamiltonian cycle that ensures the connectivity of the graph. Additionally, the nodes
of the graph are assumed to be numbered and arcs are only allowed to connect nodes in a certain range w.r.t.
their numbering. This helps avoiding direct paths or shortcuts between nodes. Arcs have 3-dimensional costs
between 1 and 1000. For an arc a there is always a cost component with costs between 1 and 333, a cost
component with costs between 334 and 666, and a cost component between 667 and 1000. Cost generation for
an arc is a two stage random process: first the interval in which the cost component will lie is chosen randomly
(among the not yet used intervals for this arc costs) and then the actual costs are generated randomly.

Road Networks Road networks are directed graphs often used to benchmark shortest path queries [2]. We
use the road networks available from the 9th DIMACS Implementation Challenge on Shortest Paths [20]. The
available arc cost functions are the arcs’ distance and the arcs’ travel time. Additionally, we added a third cost
component to every arc that is always 1, i.e., we aim to minimize the number of arcs along a path (or also
sometimes called number of hubs). For every considered graph, we selected 50 random (s, t) pairs to generate
our instances.

Airway Networks Airway Networks are directed graphs used in flight planning for commercial airlines [4].
Nodes can either represent airports or so called waypoints. A waypoint is an intersection of two airways/segments
which in turn represent the arcs of the graph. An example of the current worldwide airway network can be seen
at www.skyvector.com7. Using data provided by our partner Lufthansa Systems GmbH & Co. KG. we built
the airway network over Europe and got a directed graph with 70, 425 nodes and 137, 628 edges. The first cost
component of every arc is the underlying segment’s length. The second cost component is the travel time along
the segment given how the wind was on November 26th, 2016, at 06am. The third cost component are the
segment’s overflight costs [3]. Overflight costs can be thought of as the costs that airlines have to pay to every
country that their aircraft overfly along a route. We uniformly at random built 100 pairs of airports to define
the used instances. A 101st instance from Tenerife to Berlin was solved.

6We set these values after some parameter tuning since they work well for all instance types. Instance dependent considerations and
choices could yield better results.

7Use the option "World Hi".
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Table 3: Overview of the used graphs.
Nodes n Arcs m Density m/n

min. max. min. max. min. max.

Grid Graphs 10, 000 39, 600 3.96
NetMaker 5, 000 30, 000 29, 591 688, 398 5.92 23.05
Road Graphs 264, 346 14, 081, 816 730, 100 33, 866, 826 2.39 2.76
EU Airway Network 70, 425 137, 628 1.95

6.3 Results
All experiments were run on a machine with an Intel Xeon CPU E5-2680 0 @ 2.70GHz processor. It has 2 CPUs
per node and 8 cores per CPU. The available RAM was 64GB. In Sections 6.3.3-6.3.6 we analyze the results
for every graph type separately. We first compare the results of the serial versions of the IMA and the MDA.
Afterwards we focus on the parallel version of the MDA considering different number of threads.

6.3.1 Understanding the Presented Results

For both algorithms we set a time limit to T = 5400s. The running time of the instances that are not solved
when the time limit is reached is set to T . Recall that by N we denote the total number of non-dominated
labels. Additionally, we refer to the number of non-dominated labels at the target node t by Nt. Let I be an
instance. We denote by TI,C and TI,M the running time of the IMA and the MDA respectively. Then, the
speedup for I is sI := TI,C/TI,M . The average speedups reported here are the geometric means of the speedups
in the corresponding instance set. Instances that could not be solved because the memory limit was reached are
neglected when building the averages. An interesting figure when comparing the performance of the algorithms
is the number of extracted labels, which we denote by Next. Note that in the IMA Next and N can differ since
labels in Lv are not permanent until the end of the algorithm (see Remark 3).

6.3.2 Parallel Performance

Even if the dominance checks account for 85% of the running time in every instance, the benefits through
parallelization were not as expected. The reason is that the sets Lv of permanent labels are arrays and checking
dominance between two labels entails the comparison of d = 3 integers. Hence, it is only for very large sets
of permanent labels that the net benefit through parallelization is greater than the overhead caused through
thread communication. On the other hand, the parallelization of the nextCandidateLabel offered better results.
Looking for a node’s next heap label among the unexplored permanent predecessor labels of this node can be,
in particular for big instances, an expensive computation. Splitting the predecessors into groups and assigning
each group to a task becomes beneficial as the density of the underlying graph grows. When reporting speedups,
we always take the serial running time divided by the parallel running time.

6.3.3 Grid Instances

Even if the 100 × 100 grid is the smallest considered graph, the random costs on the arcs make the resulting
instances have many efficient solutions at the target nodes. Table 4 compares the serial results of both algorithms
on grid instances. When reporting about labels (Next, N , or Nt), only instances that were solved by both
algorithms within the time limit are considered. Solution times and speedup are treated as explained in Section
6.3.1.

From the G-S group both algorithms managed to solved all instances. On average the MDA was five times
faster than IMA, the speedup ranging from 1.0 to 13.5 among all instances. In the G-M group source and
destination nodes were allowed to lie farther apart from each other. This resulted in instances having 4, 755
target nodes on average and around 4, 8M (IMA) resp. 4, 3M (MDA) labels in the search space. The average
speedup of ×7.02 was greater than in the G-S instance set. We note that in the G-M set the IMA failed to solve
31 instances because it reached the time limit. The trend continued in the G-B group: the IMA did not manage
to solve 200 instances, while the MDA handled all but four. All failed instances failed because the time limit
was reached. Among the set of instances solved by both algorithms, the average number of labels at the target
nodes was 6, 501 and the search space contained around 10, 8M labels on average. It is remarkable that, as seen
in Figure 2 or Table 5, the MDA could handle instances with more than 74, 5M labels without reaching the time
limit. In particular the bottom plot in Figure 2 shows how the running time increase depending on N is way
lower for the MDA. The IMA instances do not appear for large values of N since the algorithm runs out of time.
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Table 4: IMA vs. serial MDA on the Grid instance sets. The comparison only considers instances that were solved
by both algorithms.

IMA MDA
Nt time [s] Next N time [s] (N =)Next Speedup

G-S

Solved 1, 000/1, 000 Solved 1, 000/1, 000
Avg. 1, 478 1.643 1, 682, 714 1, 499, 954 0.323 1, 500, 523 ×5.09
Min. 1 0.001 3 3 0.001 4 ×1.00
Max. 11, 330 3439.764 21, 003, 709 18, 675, 973 373.429 18, 422, 930 ×13.50

G-M

Solved 969/1, 000 Solved 1, 000/1, 000
Avg. 4, 755 83.648 4, 849, 986 4, 333, 563 11.907 4, 343, 790 ×7.02
Min. 127 0.355 95, 468 87, 721 0.075 85, 081 ×4.18
Max. 18, 814 5395.960 26, 934, 232 23, 963, 251 634.437 23, 559, 011 ×10.36

G-B

Solved 800/1, 000 Solved 996/1, 000
Avg. 6, 501 687.311 10, 776, 651 9, 596, 356 75.830 9, 591, 892 ×9.06
Min. 693 23.129 1, 427, 727 1, 290, 449 3.437 1, 304, 614 ×6.67
Max. 19, 441 5384.353 28, 589, 673 25, 390, 745 633.355 25, 155, 008 ×11.13

Table 5: Parallelization of Grid instances. For 2 to 5 threads the speedup w.r.t. the serial version is shown.
Threads

Nt N 2 3 4 5

G-S
Avg. 533 169, 491 0.915 0.871 0.828 0.810
Min. 1 4 0.500 0.500 0.500 0.500
Max. 11, 330 18, 422, 930 2.000 2.000 2.000 2.000

G-M
Avg. 3, 271 2, 552, 942 0.990 0.929 0.885 0.863
Min. 127 85, 081 0.731 0.707 0.654 0.617
Max. 25, 931 44, 589, 845 1.225 1.182 1.175 1.167

G-B
Avg. 6, 934 10, 787, 338 1.009 1.030 0.999 0.984
Min. 693 1, 304, 614 0.884 0.808 0.76 0.729
Max. 39, 710 74, 520, 469 1.366 1.328 1.335 1.335

The parallelization for Grid instances follows the general remarks stated in Section 6.3.2: in every instance set
the average and maximum speedup is greatest when two threads are active. The average speedup is only greater
than one for the G-B instance group using at most three threads. Table 5 shows the comparison of the parallel
results. We stopped after experimenting with 5 threads because the average speedup for G-B consolidated below
1.0. We believe that the reason is that the Grid instances are sparse.

6.3.4 NetMaker Instances

The serial results of the Netmaker instances are shown in Table 6. On average, these instances are easier to solve
than the grid instances since the search space contains less non-dominated labels than the Grid instances. The
intuitive reason could be the existence of the Hamiltonian cycle in the graph: all other arcs constitute possible
shortcuts w.r.t. the path connecting s and t along the cycle. Then, whenever a shortcut ends close enough to
the target node, the cycle offers a way to reach it without using many arcs. Thus, the average speedup increases
with the graph size but goes up to ×3.09 only. Note that the average number of labels at the target node remains
similar among all groups of NetMaker instances. Also the maximum number of labels remains similar in all but
the last group, where it reaches 11, 566. Solvability is not a big issue among the Netmaker instances: the MDA
solves always at least as many instances as the IMA but the latter solves always more than 90%. There are
Netmaker instances on which the IMA is faster. However, the corresponding search space is always very small:
if the IMA does not have to delete labels from the lists Lv, it can be faster than the MDA. Figure 3 shows the
running time needed by both algorithms to solve all NetMaker instances depending on Nt and N . The picture
is not as clear as for the Grid instances but as N increases the better performance of the MDA becomes more
notable.
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Table 6: IMA vs. serial MDA on the Netmaker instance sets. The comparison only considers instances that were
solved by both algorithms.

IMA MDA
Nt time [s] Next N time [s] (N =)Next Speedup

Net-5000

Solved 240/240 Solved 240/240
Avg. 1, 142 8.096 1, 220, 551 902, 825 3.505 909, 528 ×2.31
Min. 2 0.001 9 9 0.001 44 ×0.53
Max. 7, 730 973.745 8, 603, 674 5, 857, 185 424.093 5, 708, 330 ×5.52

Net-10000

Solved 220/220 Solved 220/220
Avg. 1, 477 24.28 3, 021, 651 2, 239, 276 9.391 2, 252, 072 ×2.58
Min. 11 0.002 131 129 0.001 182 ×0.68
Max. 6, 679 2913.098 17, 422, 129 12, 353, 185 1443.320 13, 201, 644 ×6.63

Net-15000

Solved 238/240 Solved 240/240
Avg. 1, 701 57.313 5, 169, 096 3, 793, 429 20.243 3, 805, 065 ×2.83
Min. 86 0.013 4, 236 3, 667 0.005 2, 879 ×0.63
Max. 7, 227 3703.363 23, 973, 287 15, 878, 181 1705.126 16, 303, 998 ×7.34

Net-20000

Solved 236/240 Solved 239/240
Avg. 1, 808 88.243 6, 720, 274 4, 910, 920 29.589 4, 843, 874 ×2.98
Min. 39 0.011 2, 748 2, 258 0.006 2, 191 ×1.33
Max. 8, 907 5397.193 34, 581, 606 24, 069, 039 2671.336 23, 640, 287 ×7.67

Net-25000

Solved 234/240 Solved 239/240
Avg. 1, 715 95.105 9, 157, 740 6, 628, 449 31.505 6, 542, 399 ×3.02
Min. 13 0.004 271 241 0.003 313 ×1.17
Max. 6, 397 5356.872 38, 396, 986 26, 193, 328 2537.255 27, 844, 522 ×6.80

Net-30000

Solved 225/240 Solved 239/240
Avg. 1, 857 122.074 8, 994, 510 6, 695, 299 39.524 6, 561, 003 ×3.09
Min. 36 0.008 1, 032 938 0.005 1, 107 ×1.11
Max. 11, 566 5246.558 38, 405, 012 27, 139, 791 2392.773 28, 305, 417 ×7.46
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Table 7: Parallel Netmaker

Threads

Nt N 2 3 4 5 6 7

Net-5000
Avg. 696 406, 038 1.279 1.195 1.169 1.160 1.141 1.085
Min. 2 44 1.000 0.974 0.910 0.864 0.797 0.716
Max. 7, 730 5, 708, 330 1.667 1.667 1.560 2.000 1.667 1.667

Net-10000
Avg. 941 1, 032, 373 1.270 1.190 1.166 1.151 1.136 1.085
Min. 11 182 1.000 0.984 0.963 0.932 0.892 0.806
Max. 6, 679 13, 201, 644 2.000 1.588 1.540 1.531 1.597 1.539

Net-15000
Avg. 1, 126 1, 937, 120 1.269 1.189 1.173 1.158 1.146 1.090
Min. 86 2, 879 0.870 0.712 0.680 0.638 0.589 0.523
Max. 7, 227 23, 797, 481 1.616 1.584 1.586 1.578 1.659 1.600

Net-20000
Avg. 1, 252 2, 723, 965 1.266 1.188 1.171 1.159 1.147 1.095
Min. 39 2, 191 1.016 0.909 0.870 0.827 0.775 0.696
Max. 8, 907 30, 669, 161 1.542 1.503 1.594 1.590 1.668 1.615

Net-25000
Avg. 1, 114 3, 126, 577 1.278 1.204 1.191 1.176 1.167 1.114
Min. 0 313 1.000 0.975 0.960 0.940 0.899 0.750
Max. 6, 397 27, 963, 730 1.667 1.523 1.551 1.547 1.613 1.554

Net-30000
Avg. 1, 344 4, 074, 560 1.263 1.187 1.173 1.163 1.152 1.101
Min. 36 1, 107 0.956 0.833 0.799 0.772 0.712 0.648
Max. 11, 566 41, 898, 880 1.570 1.484 1.552 1.548 1.610 1.552

Among all used graphs the ones in the NetMaker instances reach the greatest density (up to 23.05). Hence,
the search for a new label in nextCandidateLabel iterates over labels in many predecessor nodes. As we noted,
there are not many non-dominated labels per node in these instances, so the workload caused by the dominance
checks is rarely split into tasks. We parallelized these instances using up to seven threads. Contrary to what
we saw in the Grid instances, the parallel version always outperforms the serial one (see Table 7). However, the
best average speedup is still reached using two threads only and ranges between 1.263 for the Net-3000 instances
and 1.279 for the Net-5000 instances.

We analyze the parallel results of the NetMaker instances depending on the density of the graphs. As the
density increases, the parallelization of the nextCandidateLabel search becomes more meaningful. Figure 4 shows
the average speedup w.r.t. the serial version of the algorithm for every density among the NetMaker graphs
depending on the number of threads. Grouping instances by density doesn’t change the fact that using only two
threads yields best results. For all threads the trend is the same: sorting instances by increasing densities yields
an increasingly sorted view on the running time improvement through parallelization. The only outlier is the
group of instances with the lowest density of 6̃ since the parallelization of these instances performs better than
the one for instance groups up to a density of 16. The best group of instances is always the one containing the
graphs with the highest density (23). The parallelization of these instances using two threads yields a speedup
of 1.39. Using seven threads the average speedup is 1.31. We stopped after seven threads because even though
switching from five to six threads yields an improvement for some instance sets (see Table 7), the running times
went up again using seven threads.
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Figure 4: Average parallel performance of the Netmaker instances analyzed by graph densities. Speedups above 1.0
imply that the parallel version outperforms the serial one.

Table 8: Solvability of Road Networks using serial versions of algorithms.

Graph IMA MDA
solved out of time out of mem. solved out of time out of mem.

BAY 20 25 5 31 19 0
COL 16 32 2 24 26 0
NE 4 45 1 11 39 0
NY 28 16 6 36 14 0
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Table 9: IMA vs. serial MDA on the Roads instance set. The comparison only considers instances that were solved
by both algorithms.

IMA MDA
Nt time [s] Next N time [s] (N =)Next Speedup

NY

Solved 28/50 Solved 36/50
Avg. 1, 431 57.418 19, 696, 620 17, 851, 922 8.530 17, 875, 409 ×6.73
Min. 16 0.065 15, 655 15, 023 0.023 15, 018 ×2.83
Max. 6, 502 4719.710 60, 288, 358 53, 266, 643 516.811 53, 422, 870 ×12.93

BAY

Solved 20/50 Solved 31/50
Avg. 822 15.693 14, 438, 830 13, 656, 241 2.869 13, 623, 620 ×5.47
Min. 5 0.057 719 689 0.021 710 ×2.67
Max. 3, 136 3959.391 53, 032, 972 50, 683, 607 399.339 50, 484, 009 ×9.91

COL

Solved 16/50 Solved 24/50
Avg. 1, 614 65.130 19, 221, 293 18, 163, 472 9.550 18, 231, 712 ×6.82
Min. 2 0.076 651 640 0.028 638 ×2.64
Max. 8, 250 4916.035 96, 335, 451 91, 431, 937 507.162 91, 260, 276 ×10.82

NE

Solved 4/50 Solved 11/50
Avg. 1, 290 17.208 16, 745, 972 15, 932, 695 3.212 15, 903, 145 ×5.36
Min. 82 0.640 182, 599 171, 620 0.206 176, 968 ×3.11
Max. 4, 392 2492.843 63, 279, 074 60, 330, 338 282.710 60, 165, 456 ×8.82

6.3.5 Road Instances

As shown in Table 3, road networks are the biggest graph considered in our experiments. We have chosen to
report results related to the instances defined on the BAY, COL, NE, and NY graphs since these are the ones
where a meaningful number of instances could be solved within the time limit and given the available memory.
Table 8 shows how the IMA and the MDA performed in terms of solvability. Following the trend, the MDA
always managed to solve more instances than the IMA. The ones that could not be solved by the MDA reached
the time limit. The IMA had a memory consumption issue: the hash tables used to store the nodes’ labels cause
some instances to exhaust the available memory.

Table 9 shows that the average speedup ranges from 5.36 for the NE instances to 6.82 for the COL instances.
The maximum speedup is close to an order of magnitude for every road instance set but for the one using the
NE graph (only 8.82). Since in the table we only compare instances solved by both algorithms, the data does
not show how many labels the MDA is able to analyze within the given time limit. This can be seen in Table 10:
in its serial version, the MDA manages to process more than 295M labels in a BAY instance. This is also the
maximum number of processed labels among all solved instances analyzed in our experiments. The maximum
number of labels that the IMA managed to process was 63M in an instance using the COL network. The running
time depending on the number of permanent labels N is shown in Figure 5.

In Table 10 we see that parallelizing the MDA has not a big impact on the number of instances that could be
solved. In BAY and COL instance sets, using three threads helps to solve one more instance than in the serial
or 2-threaded versions. In the NE and NY instance sets, already two threads manage to solve one more instance
than in the serial version. Table 11 summarizes the speedup gained through parallelization. It is remarkable
that the average speedups are always very close to one. The reason is that as the Nt values in Table 9 and
Table 10 indicate, single nodes do not have many permanent labels in the solved instances. Hence, the parallel
versions of the dominance checks and of nextCandidateLabel are rarely called.

6.3.6 Airway Instances

The Airway instances turned out to be easy to solve: the first two cost components, distance and travel time,
are correlated [4]. The third cost component, the overflight charges, causes some detours from the time/distance
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Table 10: Road Networks Parallel Solvability. 50 instances were considered for every graph. The thread columns
show how many of them were solved.

Threads

max. Nt max. N 1 2 3 4 5

BAY 18,465 295,246,523 31 32 33 32 32
COL 13,507 227,698,068 24 24 25 25 25
NE 7,851 280,697,693 11 12 12 11 12
NY 15,665 274,267,247 36 37 37 37 37

Table 11: Parallel speedup on Road Instances. The speedup is built comparing with the running time of the serial
version.

Threads
2 3 4 5

BAY
Avg. 1.002 0.996 0.978 0.976
Min. 0.802 0.78 0.732 0.7
Max. 1.258 1.26 1.226 1.204

COL
Avg. 1.0 0.987 0.966 0.953
Min. 0.851 0.801 0.741 0.708
Max. 1.221 1.288 1.265 1.263

NE
Avg. 1.005 1.002 0.998 0.99
Min. 0.914 0.826 0.862 0.812
Max. 1.329 1.242 1.291 1.191

NY
Avg. 0.991 0.97 0.932 0.905
Min. 0.778 0.764 0.708 0.677
Max. 1.267 1.235 1.205 1.139
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Table 12: IMA vs. serial MDA on the Airway instance set.

IMA MDA
Nt time [s] Next N time [s] (N =)Next Speedup

Aviation

Solved 101/101 Solved 101/101
Avg. 38 0.026 20, 441 17, 298 0.0080 17, 332 ×3.22
Min. 1 0.012 3 3 0.0043 3 ×2.61
Max. 328 1.302 335, 464 288, 434 0.2213 279, 129 ×5.88
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Figure 6: Solution times depending on Nt and N . Orange dots – IMA. Blue dots – MDA

optimal routes but is still correlated with the distance flown over single countries [3]. As a consequence, the Nt
ranged between 1 and 328 in our experiments, while N lay between 3 and 279, 129 in the MDA solutions. The
average solution times were 0.0026s for the IMA and 0.0080 for the MDA causing an average speedup of ×3.22.
The details are shown in Table 12. Figure 6 shows solutions times depending on Nt and on N . Figure 7 shows
some efficient paths between Tenerife and Berlin.

As a consequence of the low number of labels in the search space and our choice of B and B′, the parallel
versions of the dominance checks and of nextCandidateLabel are not called while solving Airway instances.

7 Conclusion
We introduced a new algorithm for the Multiobjective Shortest Path Problem which we suggest to call Multiob-
jective Dijkstra Algorithm (MDA) because throughout the algorithm only the best known unprocessed label for
every node is stored in the heap, hence bounding its size by the number of nodes in the graph. Additionally, the
new algorithm extracts only non-dominated labels from the heap. These properties allow us to get a running
time of O

(
d(N log(n) +N2

maxm)
)
that to the best of our knowledge is superior to the running time of any

MOSP algorithm known so far. We implemented our algorithm and an improved version of the classical label
setting MOSP algorithm by Martins [25]. Extensive computational experiments showed a remarkable speedup
of the new algorithm both on synthetic (Grids and NetMaker) and real world (Roads and Airway Networks)
instances. Additionally, we tried to parallelize the new MDA and analyzed the parallel performance from a
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Figure 7: Routes from Tenerife to Berlin. The set of efficient paths at the Berlin node contains 284 solutions. The
left figure shows the distance shortest route, the figure in the middle the time optimal route, and the one to the
right the cheapest w.r.t to overflight costs.

theoretical and computational point of view. In [31] the authors introduced new parallel data structures that
yield a great theoretical running time improvement but did not implement them. We tried to parallelize the
dominance checks and label searches but both operations being performed on very efficient C arrays made it
difficult to see big improvements. Parallelization of MOSP algorithms remains a challenge. The dominance
check between a lexicographically increasing label list L of non-dominated and non-equivalent labels and a label
l caused the increased complexity of the multiobjective MOSP compared to the BOSP algorithm presented in
[32]. New ideas regarding an efficient characterization of the unsupported non-dominated solutions are needed
to reduce the complexity of the L �D l dominance check we used in our algorithm. All in all, for more than
two cost components, the search space size that the new MDA is able to handle and its memory efficiency are
beyond the state of the art if we consider exact MOSP algorithms that do not use heavy preprocessing.
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