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A b s t r a c t 

The placement problem in the layout design of electronic circuits consists of finding a non-
overlapping assignment of rectangular cells to positions on the chip so that wireability is 
guaranteed and certain technical constraints are met. This problem can be modelled as 
a quadratic 0/1-program subject to linear constraints. We will present a decomposition 
approach to the placement problem and give results about .A/^P-hardness and the existence 
of e-approximative algorithms for the involved optimization problems. A graphtheoretic 
formulation of these problems will enable us to develop approximative algorithms. Finally 
we will present details of the implementation of our approach and compare it to industrial 
state of the art placement routines. 
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1. Introduction 

The layout problem for integrated electronic circuits is the following task: We are given 
a finite set B of cells in which each cell b £ B has a finite number of rectangular realiza­
tions which are characterized by their widths and heights,1 the positions of their electrical, 
terminals (pins) and their electrical properties like switching speed, etc,' Furthermore we > 
have a set of nets J V C 2 B , and each net {61, 62 , . . . , &*} € N specifies that certain pins of 
the cells &i, 62, • • • > &Jfc have to be electrically connected. We have to determine a nonover-
lapping assignment of the cells to the plane and a realization of the nets such that certain 
criteria like minimal area of the smallest rectangle containing all cells or minimal switching 
time of the circuit are satisfied. In practice, there are usually many partially contradicting 
such criteria, and their relative weights have to be controlled by parameters. Often,, the 
rectangular area in which the circuit has to be realized is fixed, or maximal switching times 
are demanded, such that the problem becomes a feasibility rather than an optimization 
problem. The layout problem presents one of the major challenges of modern industry to 
mathematics and computer science. 

Any reasonably precise version of the layout problem is AfV-haxd, even very simple ones. 
Moreover, most real world problem instances are very large, so that today's algorithmic 
knowledge makes it very improbable that they can be solved to optimality. Therefore, 
usually heuristic decomposition into subproblems is applied, and the subproblems are 
treated with heuristics and sometimes exact algorithms. Usually, the layout problem is 
decomposed into placement of cells, then wiring and finally compaction. This process 
is iterated with different parameters if the final result is not satisfactory. An excellent 
treatment of this subject can be found in LENGAUER (1990). 

In this paper we deal with the first phase of the process outlined above, namely the 
placement of cells in a common style, the sea-of-cells (or sea-of-gates) layout of VLSI-
chips. 

In Section 2 we give a precise formulation of the placement problem in the sea-of-cells 
layout style. Then we introduce a new optimization model for this problem based on a 
quadratic 0-1 programming problem with special linear constraints. 

The complexity of various versions of this optimization problem is considered in Section 3. 
We show that even simple versions are not only JV^P-hard, they cannot even be solved 
approximately in polynomial time unless V=NP. 

Our complexity results indicate that we cannot expect to find satisfactory solutions to 
reasonably sized instances of the placement problem directly by our method. Therefore, 
Section 4 deals with a method which decomposes an instance of the problem recursively 
into several small instances in a novel way. Our decomposition scheme keeps a global view 
of the entire problem instance at all stages. This feature is not shared by commonly used 
decomposition methods like e. g. "min-cut-tree" decomposition. 

In Section 5 we point out the equivalence of our optimization model to a special clique 
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problem in a graph. This formulation gives rise to several heuristics for small sized problem 
instances as they have to be solved during the decomposition process. 

The computation of good solutions to small instances of our optimization problem still 
has to deal with a considerable amount of data which defines the objective function of the 
quadratic 0-1 programming problem. Section 6 presents several implementation features 
of our experimental software which are crucial for making our program run reasonably fast 
on real world instances of the placement problem. 

Finally, Section 7 gives computational results which show that our approach is, competitive 
with commonly used software. ' • .< , , ,-• ,.,,, 
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2. The quadratic 0/1 model 

The layout style we consider here is usually called "channelless gate array"-, "sea of gates" -
or "sea-of-cells" -layout style. An'integrated circuit in this technology consists of a rectan­
gular array of base cells without predefined wiring channels (the master) plus an outer 
part which consists of two rows and two columns of base cells at the borders of the master 
(pad cells), cf. Figure 1. , .:, 
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' '"" Figure 1 . ! -

Any logic cell (or simply cell) to be placed on the master covers a rectangular array of 
base cells with uniquely defined dimensions. Pad cells are preassigned to One of the four 
outer parts, and cover one base cell. Inter cell wiring takes place on uncovered base cells 
or unused tracks of cells. 

2 



The placement problem consists of finding an assignment of the cells to disjoint areas of 
base cells of appropriate dimensions such that certain side constraints like wireability with 
minimum total wire length are met. Our approach can deal with more than one possibility 
of the dimensions for a logic cell, so it is also suitable as a component of a general floor 
planning technique, for details see WEISMANTEL (1992). 

We say that cell i is assigned to base cell k if cell i is placed on the master so that its 
lower left corner coincides with base cell k. A base cell k is called feasible for a cell i if 
cell i fits on the master when assigned to base cell k. 

Let n denote the number of logic cells and b the number of base cells of the master. We 
introduce variables Xik for i = 1,2, . . . , n and k — 1 ,2, . . . , b such that: 

{ 1, if logic cell i is assigned to feasible base cell k , 
0, otherwise. 

Each logic cell must be assigned to exactly one of the b base cells, so the following set of 

equations has to be satisfied: 

b 

2_\ Xik = 1 for all i = 1 ,2, . . . , n. 

Since the wireability condition is difficult to model it is replaced in practice by an objec­
tive function estimating the total wiring length. By simply counting the number of nets 
connecting both cells i and j the wiring length of nets with cardinality more than two will 
be overestimated. To this end we calculate affinity coefficients c,-j > 0'between i and j 
according to the formula 

Cii = ^ (cardinality of t) - 1" 
net t connects 

• !• . . i i a n d j 

dik,ji denotes the Manhattan distance between cells i and j when1 assigned to base cells 
k and 1 respectively. The Manhattan distance between cells i and j when assigned to 
base cells k and I, respectively, is the sum of the shortest distances in horizontal and 
vertical direction between any two points on the boundary of i and j when assigned to 
base cells k and I, respectively. For reasons that will become clear later we refrain from 
introducing constraints that guarantee that no two cells of a placement overlap. We rather 
treat overlappings by modifying the objective function appropriately. Let Oikji > 0 be the 
number of overlapping units (i. e. the number of common base cells), if cells i and j are 
assigned to base cells k and / respectively. Finally, let R denote the set of pad cells and 
p(r) the (predefined) location, of pad cell r € R- We define a cost matrix Q by setting 

qikji = Cij • dikji + Xoikji for allz, j = 1,2, . . . , n, i ^ j and k, I = 1 ,2, . . . , b, 

Qiku == 0 for all i — 1,2,. . . ,n, k, I = 1,2,... ,m, • ; ' • • -
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where A > 0 is a penalty parameter. With these definitions our model for the placement 
problem can now be stated as follows: 

n n m m 

min ZZZZZZIL, 9ik,jiXikXji + J ] S Yl'öird'ik>r>p(r)Xik 

i = l J = l k=l / = 1 r£R i = l fc=l 

( 2 . 1 ) ' • . • ; . • - , 

\]xik = l for all i = 1,2,... ,n , 

%ik G {0,1} for all i = 1,2,. . . , n, and for all k = 1,2, . . . , b. 

Since z?fc = Xik for all i = 1,2, . . . , n and k = 1,2, . . . , m we can define a matrix (Q' via 

9ifcjj = 9ik,ji for all i, j = 1,2, . . . , n, i ^ ;', fc, / = 1,2, . . . , m, 

9iJfc,ifc = / J Cirdik,r,P(r) for all i = 1,2, . . . , n, J : = 1,2, . . . , m, 

such that 

.T /^/ , min a; Q x 
b 

(2.2) J ] i i t = 1 for all » = 1,2, . . . ,n 
fc=i 

a; ijt 6 {0,1} for all i = 1,2,. . . , n, and for all k = 1 ,2, . . . , b. 

is equivalent to (2.1). In the remainder of this paper the quadratic optimization problem 
(2.2) will be denoted by (P) . 

In addition to the general problem (P) we will consider the variant (P m ) where we have 
for each cell a fixed number m of feasible base cells. This variant of (P) will play an 
important role as a subproblem coming up during the hierarchical decomposition process 
to be described7in Section 4. For ease of notation we assume that the feasible base cells 
for cell i are ordered and we use the interpretation that Xik = 1 if cell i is assigned to its 
A;-th feasible base cell. For convenience, we will still say that cell i is assigned to base cell 
k. The reader should keep this simplification in mind. 

mmx Q x 
m 

{Pm) ]T^2tfc = l for all i = 1,2, . . . ,n , 
k=x 

Xik € {0,1} for all i = 1,2,... ,n , and for all'fc = 1,2,. . . ,m. 

Analogously we define problems ( P + ) and ( P ^ ) if w e require in addition that Q' > 0. 

4 



3. Computational complexity of the placement model 

In this section we deal with the complexity of the problems (P)"and (POT) and their variants 
for nonnegative Q. We will show that they belong to the class of jVP-hard problems. 
In addition, we determine the complexity of finding approximative;solutions for these 
problems. ' 

(3.1) Definition For any e > 0 an algorithm A is said to be an e-approximative 
algorithm for a minimization problem if, for any instance I of the problem, A satisfies 

4 < ( l + e)4t, 

where cT
A > 0 denotes the objective function value of a feasible solution obtained by A and 

Copt > 0 denotes the objective function value of an optimal solution for instance I. The 
numbers is the performance guarantee of A (GAREY & JOHNSON (1979)). 

In the following we will show that problems (P) , ( P + ) , (P m ) and ( P ^ ) , m > 2, are AfP-
hard. In addition, there do not exist polynomial time e~approximative algorithms for these 
problems for any e > 0 unless V = MP. 

(3.2) T h e o r e m . Let m > 3 fixed. There exists no polynomial time e-approximative 
algorithm for (P*) for any e > 0 unless V = NV. 

Proof. Suppose that for some e > 0 algorithm A is a polynomial time e-approximative 
algorithm for ( P ^ ) . 

The m-colorability problem consists of deciding for a given loopless graph G = (V, E) with 
node set V and edge set E whether there exists a function p : V —> {1 ,2 , . . . ,m} such 
that /i(u) ^ fj.(w) for each edge e = (v,w) € E. This problem is NV-complete (I<ARP 
(1972)). 

Let n = |V| and represent any m-coloring of G bijectively via 

xik = { lj if **(') = fc' 
\ 0, otherwise. 

Furthermore let 

M = en2 + 2 

and define for fc, I e { 1 , 2 , . . . , m} and x, j € { 1 , 2 , . . . , n} the matrix Q € R m n X m n by 

q.k 7 = / M, if (t, j ) € E, and Ä: = /, 
'J \ 1, otherwise. 

Obviously, G is m-colorable if and only if (P+) with parameters n and Q has a feasible 
solution with objective function value copt = n 2 . 
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Now apply algorithm A to (P^ ) . If G has an m-coloring, then A produces a feasible 
solution xA with objective function value CA < (1 + e)n2 < (n2 — 1) + M. Thus for anv 
matrix entry qikjl = M the values xfk and xfj cannot both be 1. Therefore, n(i) — & if and 
only if xA

k = 1 represents an m-coloring of G. On the other hand, if G has no m-coloring, 
A produces a feasible solution xA with objective function value CA > copt > (n2 — 1) + M. 
Therefore, we can use algorithm A to decide in polynomial time whether G is m-colorable, 
which is impossible unless V = MV. , • : - M Ü 

(3.3) Corollary. Problems (P+) , m > 3 are J\fP-hard. " ' ' : ' 

D 

(3.4) Corollary. Problems (Pm), m > Z, (P) and (P+) are MP-hard. Furthermore, 
there does not exist a polynomial time e-approximative algorithm for^P^^ m > 3, (P) 
and (P+) for any e>0 unless V = NP. ,, ,\ 

D 

(3.5) Theorem. There does not exist a polynomial time e-approximative algorithm for 
(P2) for any e>0 unless V = NV. ; > 

Proof. Suppose that for some e > 0 algorithm A is a polynomial time e-approximative 
algorithm for (P2). ' 

The 2-partitioning problem consists of deciding for n given integers r i , ra , . . . , r n whether 
there exist two disjoint subsets I\,I% C {1,2,...,71} such that I\ U I2 = { l , 2 , . . . , n } and 
£ \ e / i r j = Y,i&i2

 ri- T l l i s problem is known to be A/P-complete (KARP (1972)). 

Let M = e + 2. We introduce variables xn and 2,2 for all z = 1,2, . . . , n with the interpre­
tation 

1, if i is an element of J j , 
0, otherwise, xn = 

and 
Xi2 = 

Then we define a matrix Q € R 2 n by 

1, if i is an element of I2, 
0, otherwise. 

3ii.ii = 9i2,i2 = i + AM f o r &11 « ' € { 1 , 2 , . . . , n} , 
5ii,i2 = ?i2fii = 0 for all i €~{1,2, . . . , n} , 
Sii.ii = Qi2,j2 - Mnrj for all *, j <E {1 ,2 , . . . , n } , t ^ j , 
9ii,j2 = 9rt.ii = -MriTj for a l H , j € {1 ,2 , . . . , n} , i ^ j . 

Let us now consider the problem 

xmnxTQx 
(P 2 ) Sil + Xi2 = 1 for all z = 1,2, . . . , n, 

Zii j £i2 e {0,1} for all i = 1,2, . . . , n. 
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The constraints Xil + xi2 = 1 imply that xnxi2 = 0 for a l i i = 1,2,.. . ,n so that x Qx 

can be written as 
. n n n 

xTQx = 52(Xii5ii,ii+aJi29i2,i2) + 5 Z E x^xMnn + 
1=1 »=i J=1;«T*J 

E E Xi2Xj2qi2j2 + E E {xilXj2qilj2+Xi2Xj\qi2jl) 
i=l j—l;i^j i=1 J^'M^i 
n .. n » 

= E ^ + M r ' ) ( ^ z l + X]2) + E E ^ ^ 1 * * 1 + 
i = i »=i j=i;&j 

n n n n 

E E Mrir3Xi2xj2 ~ 2 - ^ E E rir3X^XJ'2 

= E - ^ + ^ + ̂ E ^ + E E r<rî ixii + 
i = l i= l i = l j=l;ij£j 

n n n n n 

E r ^ 2 + E E n r - j X i 2 x i 2 - 2 E J ] rirjxuxfl) 
i = l i= l j = l ; i ^ j i= l j= l ; iV j 

n . n n 

n 
i = l 1=1 1=1 

The constraints xn, x& G {0,1} imply that x2
x — xn and x2

2 — x\2 for all z = 1,2,. . . ,n. 
Furthermore the conditions xn + x,-2 = 1 for all z = 1,2, . . . , n imply that 

*—' n 
1=1 

Thus problem (P2) can be written as: 

n n 

min 1 + M(Y^xilri - E xi2Tif 
i = l i= l 

xn + X{2 — 1 for all z = 1,2, . . . , n, 

Xii,x,-2 € {0,1} for all z = 1,2,. . . ,n . 

This is equivalent to 

min 1+M(E ri ~ E r i)2 

I 1 U J 2 = { l , 2 , . . . , n } , 

i i n i 2 = 0, 

J i , J 2 C { l , 2 , . . . , n } . 

If there exists a 2-partition of the given integers r i , r2,..., rn then there exists an optimal 
solution of problem (Pj) defined above with objective function value co p t = 1. 



Now apply algorithm A to (P2)- If there exists a 2-partition, then A produces a feasible 
solution XA with objective function value 

CA < (1 + e)c0pt = (1 + e) < M. 

This and the definition of the objective function in (P2) imply that 

h = {i G {1,2,...,n} \Xil = 1 } 

and 

h = {ie {1 ,2 , . . . , n} I xi2 = 1} 

define a 2-partition of r i , r 2 , . . . , r n . Conversely, if there does not exist a 2-partition of 
n, r 2 , . . . , rn then CA > copt > 1 + M. 

Therefore we can use algorithm A to decide in polynomial time whether there exists a 
2-partition of r\, r 2 , . . . , rn which is impossible unless V = J\fP. U 

(3.6) Corol lary . (P2) and (P?) are M>-hard. 

Proof. Theorem (3.5) obviously implies the .A/P-hardness of problem (P2)-

Let an instance of (Pi) be given and let q — min{gijk,j/ \i,j G { 1 , 2 , . . . , n}, k, I € {1,2}}. 

If q < 0, we define a new matrix Q' € Q 2 n x 2 n
5 Q' > (̂  ^y setting q'ik 7 = qikji — q for all 

i,j € { 1 , 2 , . . . , n} and k, I € {1,2}. 

Then 
mina;TQ'x 

^J'I + Xi2 = 1 for all i = 1,2, . . . , n, 
Xti> Zi2 € {0,1} for all i = 1,2,. . . ,n 

is an instance of (P2
+) with Q' > 0 and xTQ'x = xTQx — n2q for any feasible solution x. 

Since (P2) is MP-h.axd, the statement follows. < D 

4. The decomposition approach 

The complexity of the placement problem suggests to decompose a large instance recur­
sively into smaller ones, and this is indeed a common technique in electronic circuit layout. 
The most popular approach of the creation of a k-nary tree T, called the cut tree. 

The root of T corresponds to all cells and the whole area of the circuit. For any tree node 
t, its k children t i , t 2 , . . . , tjt correspond to k rectangular subareas atl, at2,..% , atk of the 
rectangle at represented by t and k ^ubsetä c<t, c<2,. '.., Ctk of the cell set c< assigned to node 
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t. In addition, for each tree node t which is not a leaf it is specified how atl, at7,..., atk 

must be combined to form the rectangular area at, see Figure 2 for an example with k = 4. 

DDD 
Figure 2 

F igure 3 

Such trees are usually constructed by bottom-up clustering, top down decomposition or a 
combination of both techniques (cf. MÜLLER (1990) for a detailed discussion). It is tried 
heuristically to make sure that little wiring is necessary between the sons of any tree node, 
respectively, the bulk of wiring is within the son nodes ("min-cut placement"). 

Although this approach has proved to be quite successful in practice, it has several draw­
backs. One is that the complexity of the involved optimization problems grows considerably 

9 



with k so that k = 2 is common practice whereas it would require k > 5 to obtain the 
layout displayed in Figure 3. 

Another drawback is that global view is lost when working in a non-root node of the tree. 
This may lead to decisions on lower levels which are unfavorable in higher levels. 

For the special case of the sea-of-cells layout style we consider here, we designed a decom­
position scheme which overcomes such difficulties. 

We denote by w respectively h the number of base cells in horizontal respectively vertical 
direction. Furthermore, we assume that the base cells are linearly ordered from 0 to 
h • w — 1. For ease of exposition base cell k will also be denoted by the tupel (x, y), where 
x — k mod to, y = \_k/w\ and therefore k = y • w + x. 

At the beginning, of the decomposition scheme we consider the-following 16 base cells 

(L™J, L x J ) . « = 0,1,2,3, * = 0,1,2,3 and set I?1 := U3
u=o U ^ O . K L T U » LTJ)>-

Each base cell b = ( [ ^ J i LVJ) ^ ^ r e P r e s e n t s an area of the master, i. e. a set of base 

cells, namely 

.. . uw (u + l)w . ,vh. . (v + l)h n 

{(^>y) = L-4-J < x < Lv
 4

; J, LyJ < y < L 4 J}-

The set B1 is called the set of representative base cells and an element b € B1 is called a 
representative base cell (for the first iteration). 

For cell i to be placed we define a set Zl(i), \Zl(i)\ < 16, that consists of all feasible 
representative base cells for i. More precisely, 

ZY{i) = B1 \ {(bx, by) eB1 \bx+Wi >w or by + hi > h). 

An instance of (-P^) is solved, where the variables x,t = 1 are interpreted as cell i being 
assigned to the A;-th variable of set Zx(i) (i = 1 , . . . ,n , k = 1 , . . . , | ^ 1 ( i ) | < 16). Thus, 
each cell is assigned to one of-these 16 representative base cells. 

In the second iteration each of the 16 areas of the master corresponding to the 16 elements 
of B1 is divided into four equally-sized rectangular units. The lower left base cells of these 
units define the set B2, i. e. the set of representative base cells in the next iteration. Put -
into a formula, 

5 2 = { ( L ^ J , L Y J ) . « = o, i , . . . ,7 , t> = o > i l . . . i 7 } ; -

Similarly we define sets Z2{.) which are the sets of feasible representative base Cells for the 
cells in the second iteration. 

Assume cell.i was assigned to 60 = ( [ ^ J , | / ¥ \ l ) € B1 for Wo, Vo € {0,1,2,3} in the first 
iteration. Then, we determine Z2(i) such that 
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(1) Z2(i) consists of at most 16 elements of B2. 

(2) The distance (measured in the Li-norm) beween fc0 and any element of Z2(i) must 
be less than or equal to the distance between fco a nd every element of B2 \ Z2(i). 

More precisely, we set 

uw vh uw vh 
32(0={(LTJ,L-8-J) I L-g-J+«*<". LYJ + ̂ < ^ - = 

u = max{0,2uo — l},2u0,mm{u> — l,2uo + l},min{i(; — l,2u0 + 2}, 
i. • 

v = max{0,2t>0 — l},2u0,min{/i — l,2u0 + l},min{/i — l,2i?0 + 2}}. 

Proceeding this way, the area represented by b0 is covered by the area represented by Z2(i). 
Furthermore, if |Z 2( i ) | = 16, the area represented by fco is symmetrically covered by the 
area represented by Z2{i). (Note that Z2{i) may represent an area which is larger than 
the area represented by fco). Therefore, cell i is not restricted to the area represented by 
fco, but can leave it in all directions. Thus, our decomposition scheme has the property 
that cells can move around. 

The process of generating sets B3, generating sets Z3(.) for all cells and solving an instance 
of (Pi$) is continued, until in the final iteration jo the set B3° consists of all base cells of 
the master. 

'We strongly believe that our hierarchical decomposition approach is one of the key reasons 
for the practical success of our placement method. 

Figure 4 shows an example of these refinement stages. Assume that in step 1 a certain cell 
is assigned to the marked base cell in the first picture. Then the sixteen equally marked 
base cells in the second picture are the feasible base cells for the cell in step 2. Assuming 
that in step 2 the cell is assigned to the differently marked base cell, the sixteen feasible 
base cells in the final step 3 are marked accordingly in the third picture. 

_, , . .' 
HP 
mm. 

! 
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Working in this scheme, our problem reduces to solving a sequence of instances of (P[g): 

minx Qx ' 

y Xik = 1 for all z = 1,2,... ,n, 
*=i 

xiJt € {0,1} for all i = 1,2,... ,n, and for all 'fc = 1,2, . . . , \Zj(i)\ < 16. 

The variables Xjk = 1 can be interpreted as cell i being assigned to the fc-th element of set 
ZJ(i) {i'"= l j . . . ,n , A; = 1 , . . . , |2:1(2')| < 16). Let z(ifc) denote the base cell corresponding 
to variable £,*. The coefficients of the matrix qikji are determined by the fprmula 

qik,jl = Cij- dist(i, z(ik) J, z(j I)) + \ • o(i,z(ik)J,z(jl)), 

qik,ik = y^c ,y dist(i, z(ik), r,p(r)). 

Recall that Cij > 0 denotes the affinity coefficient between cells i and j . The number 
dist(z, z(ik), j , z(jl)) is the Manhattan distance between cells i and j when assigned -to base 
cells z(ik) and z(jl), respectively. The number of overlapping units is o(i, z(ik),j, z(jl)) > 
0, if cells r a n d j are assigned to base cells z(ik) and z(jl) respectively. R is the set of pad 

' cells and p(r) denotes the (predefined) location of pad cell r. Using this rnatrix Q with 
an appropriate penalty parameter A, solutions of ( P ^ ) with an equal distribution of cells 
to representative base cells are preferred in all iterations j , where \B3\ < n. This is due 
to the fact that the more cells are assigned to the same base cell, the more pairs of cells 
have positive overlap coefficients. In an iteration j with \B^\ > n we strive for a placement 
without overlaps. 

5. Graphtheoretic formulation 

I T • • • . . - ; .... 

1 ;In the following we want to present a graphtheoretic formulation of our placement model. 
' -Based on this new formulation we will develop heuristics for an approximative solution of 
.. the problem. For ease of exposition let us first assume that the set of pad cells is empty. 

To an, instance of the placement problem (Pm) we associate a complete n-partite graph 
Gc — (Vc,ECrwc) as follows. Every node u G Vc corresponds to a unique variable Sjfc, 

, ii=* 1 , . . . , n, k = 1 , . . . , m and vice versa. Between two nodes u, v € yc , u ^ vi where u 
and v correspond to the variables x,jt and Xji respectively, we introduce an edge e if and 
only if i =fi j . The weight wc{e) = wc(u,v) is given by the coefficient qikji of the matrix 
Q. In the following we will use the notation ik for the node representing the variable x,jt. 
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Figure 5 shows the graph Gc for n = 4, m = 3. 

Figure 5 

A stable set in Gc is a subset of Vc in which no two nodes are connected by an edge. A 
clique is a subset of nodes such that every pair of nodes is connected by an edge. 

By construction, all maximal stable of Gc are maximum, and the maximum stable sets are 
precisely the sets Si = {ik \ k = 1,2,.. . , m} for i = 1 , . . . , n. Furthermore, any feasible 
solution of (P m ) is in 1-1-correspondence to a clique in Gc of cardinality n, and its objective 
function value is the total weight of this clique. 

Thus, the placement problem is equivalent to the following graphtheoretic problem. 

"Find among all cliques of cardinality n in Gc = (Vc, EClwc) one of minimum weight." 

We assumed that the set of pad cells R is empty, i. e. qik,ik = 0 for all z = 1 , . . . , ra, k — 
1 , . . . , m. This assumption can be made without loss of generality, since otherwise a matrix 
Q' can be defined via 

1 1 ' 
Qikji = likji H rqikik -\ -qjlji 

n — 1 n — i 

for sllij = l , . . . , n , i ^ j , k,l = l , . . . , m , 

Qikil = Qikil for alH = 1 , . . . , n, k,l = l,...,m, k ^ I, 

q'ikik = 0 for all i = 1 , . . . , n, k = 1 , . . . , m. 

Obviously, every feasible solution of (P) with matrix Q corresponds to a feasible solution 
of (P) with matrix Q' such that the objective function values are equal, and vice versa. 
Thus, we will asssume in the following that qikik = 0 for all i = 1 , . . . , n, k = 1 , . . . , m. 

In the remainder of this section we will present the heuristics we designed and implemented 
for a solution of this graphtheoretic formulation of the placement problem (Pj^). 

For every v G Vc let S(v) denote the unique maximal stable set 5,- such that v G S{. 
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The first heuristic is a greedy type heuristic. We start with a clique of cardinality 2. In 
each step, we add a node to the present clique until maximum cardinality is reached. 

Heuristic 1 

Input: Gc = (Vc, Ec, wc). 

Output: A clique Q in Gc of cardinality n. 

(1) Let wc(u0,vo) — min{u;c(u,u) | (u,u) € Ec}. 

Set Q = {u0,vo} and Q = S(uo) U S(vo). 

(2) As long as \Q\ < n perform the following steps. 

(2.1) Let J2veQwc(v,w0) = m i n{£„6Qu 'c( t> )uO \w e Vc \ Q}. 

(2.2) Set Q = Qli{w0} a,nd Q = QöS(w0). 

It is easy to see that the worst case running time of this algorithm is 0(mn3). In each 
iteration the heuristic adds a node WQ to the present clique and all nodes belonging to the 
maximal stable set S(WQ) except wo are deleted simultaneously. 

The second heuristic idea avoids the simultaneous deletion of more than one node. We 
iteratively delete nodes until a clique of cardinality n is left. To this end we assign weights 
to the nodes in Gc and to the maximum stable sets in Gc. In each step we determine a 
maximum stable set So with the highest weight and a node uo of So with highest weight 
(among all nodes of So). The node UQ is deleted from Gc. These steps are repeated until 
every maximum stable set consists of only one node. These remaining nodes define a clique 
of maximum cardinality. 

Let 6{y) denote the set of edges of Gc incident to v G Vc. 

Heuristic 2 

Input: Gc = (Vc,Ec,wc). 

Output: A clique Q in Gc of cardinality n. 

(1) For each v € Vc compute c(v) = j ^ £(«,»)€£. wc(u,v). 

(2) For each maximum stable set S in Gc let 7(5") = maxvgs c(v)/ min„ e s <?(u)- Set 
Q = 0. 

(3) As long as |VC| > n perform the following steps. 
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(3.1) Compute 5 0 with j(S0) = max{7(S) | S is a maximum stable set in Gc, \S\ > 
2}. Let VQ be a node in So with c(v0) = max^gSo c(v)-

(3.2) Set VC = VC\ {vo} and Ec = Ec\ S(v0). 

(3.3) Update the values c(v) for all v eVc and compute 7(5) for all maximum stable 

sets S in Gc. 

(4) Set Q = Ve. 

It is obvious that the worst case running time of this algorithm is 0(m2n2). 

The two heuristics presented above can be applied at any stage of the decomposition 
approach. The third heuristic is developed for-the solution of instances of ( P ^ ) after the 
first iteration has been finished. Suppose we have performed an iteration. For each cell 
i let Oi be the total number of overlapping basecells between cell i and all othör cells. 
The location cell i is assigned to is represented by a node ik in the new graph C?c of 
the next iteration. We use Oi as the weight of the maximum stable set S(ik) and sort 
these maximum stable sets according to decreasing weights. Without loss of generality 
let 5 i , S2, • • •) Sn denote this ordered sequence. We start with m cliques of cardinality 
1 corresponding to the m nodes of the maximum stable set S\ and extend each of these 
cliques by one node in every step. Therefore, we will end up with m cliques of cardinality 
n. Each of these m cliques is finally tried to be improved by applying a one-exchange 
heuristic (i. e. a node of the present clique is replaced by another one, if this substitution 
reduces the objective function value of the old solution). Finally we choose a clique with 
lowest objective function value.. 

Heuristic 3 

Input: Gc = (Vc, Ec, wc). 

Output: A clique Q of cardinality n. 

(1) L e t ' K - , ^ , • • - , < * } be the nodes of 5,-. Set Q\ = {t;f}, and q{Q\) = 0 for all 
k = 1 , . . . , m. (Qi denotes the Mh clique in step i.) Set i' = 2. 

(2) As long as i < n perform the following steps. 

(2.1) Set 7 = { l , . . . , m } . 

(2.2) For all Jb = l , . . . , r o 

(2.2.1) Compute 

(*)9* = <KQti) + rnin( £ u;e((u,vj))). 
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(2.2.2) Let lo G I be an index such that qf = q(Qi_i) + ]Cueo* wc((u,Vi°)) and 

set q(Qi) = ?,*. 

(2.2.3) Set J = I \ { / 0 } , Q ? = Q t 1 U K ' 0 } 

(2.3) Set i = i + i . • ' 

(3) Set Qfc = Qk
n for all fc = 1 , . . . , m. 

•.: i i 

(4) For each of the cliques Qk, k — 1,2,... ,m, perform 1-exchanges as long as q(Qk) 
can be decreased. 

(5) Determine the clique Q with q(Q) = raln{q(Qk) \ k = 1,2,. . . , m } . 

The. running time of this algorithm depends on the number of 1-exchanges examined in 
step (4). If, the running time spent in step (4) is bounded by 0(m2n2) then we obtain an 
overall worst case running time for heuristic 3 of Ö(m2n2). 

Step (2.2) to determine the cliques of the z'-th iteration could be substituted by solving .a 
matching problem between the nodes of the maximum stable set Si and the m cliques of 
the [i — l )- th iteration. 

We have performed several tests to evaluate the heuristics outlined above (for details, See 
WEISMANTEL (1992)). To this end we generated instances ( P ^ ) that come up' during 
the decomposition approach of the placement problem. Summing up, it may be said that 
heuristic 2 provides the best solutions. However, the running times necessary to find a 
solution of the problem instances by heuristic 2 are much higher than those of the other 
algorithms. Nevertheless, we decided to solve the instances of (P^) at all stages of the 
decomposition approach using heuristic 2, since our main goal was to find good solutions. 

6. Implementation details 

In this section we discuss some details that make our approach work in practice. We 
present several ideas that help to reduce the huge demand on memory space and' running 
time. For demonstration purposes we use an industry example with 1021 logic cells, 1023 
nets and 63 pad cells. 

A first problem is to store all relevant information as compactly as possible, but without 
loosing too much time for retrieving this information from the data structures. We would 
get the fastest access to the data if we could store Q as a full matrix. In our example, this 
would require 540 megabytes of memory space for m = 16 if we assume that one floating 
point/integer number needs 4 bytes of memory space. To reduce this memory demand we 
analyze the objective function more carefully. The entries of Q are given as 

qik,ji = Cij • dikji + A • Oikji, 
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where 
dj = affinity coefficient between cells i and j , 

dik,ji = Manhattan distance between cell i assigned to base cell k 

and cell j assigned to base cell /, 

Oikji = number of overlapping base cell units if cells i and j 

are assigned to base cells k and Z, respectively. 

First, consider the coefficients c*j for i,j — l , . . . , n . Each cell has relatively few pins. 
Thus, each cell is only connected to a small number of nets. In addition, nets connecting 
many cells very probably have to be routed over the whole chip. Such large nets give little 
information on where to place the cells. Therefore, we eliminate large nets. What a large 
net is, .depends on the features of a given chip. We analyse the structure of the nets and 
then decide heuristically which nets are called large. In our example, nets with more than 
33 cells are eliminated and each cell is only connected to 1% of the cells on the average. 
This way one can obtain an enormous reduction on the number of nonzero coefficients c,j. 

Second, consider the coefficients dikji. In our model, we use the Manhattan metric as a 
distance measure and assume that a coordinate system is underlying with its origin at the 
lower left corner of the master. In the sea-of-cells layout style each cell i is of a predefined 
type t(i). Two types are different if they differ in their width, height or the list of pins. 
(In our example there are only 34 different types of logic cells.) If we want to calculate the 
distance between cells i and j when assigned to base cells k and /, respectively, it is sufficient 
to compute the distance between the two types t(i) and t(j) when a cell of type t(i) is 
assigned to base cell k and a cell of type t(j) is assigned to base cell I. Furthermore, we use 
the fact that the distance in Manhattan metric is the sum over the distances in horizontal 
and vertical directions, and that the distance is invariant with respect to translation. The 
latter fact implies that we can assume without loss of generality that cell i is located at 
the origin. 

Taking all these observations into account, the coefficients dikji can be calculated by 

• • • ^ r = c h s t ( ^ 

where px and py denote the horizontal and vertical coordinates, respectively, of location p. 

Analogous arguments apply for the third type of coefficients Oikji except that we have to 
multiply the number of overlapping units in x-direction by those in y-direction. So, the 
coefficients Oikji can be calculated by 

Oikji = ov, (*(0, (°0),*(j), (l '--*-l)) • ov, (t(i), (°0),t(i), ( , ^ f c y l ) ) , 

where pvx and ovy are the overlaps in horizontal and vertical direction, respectively (see 
Figure 6), This way the number of different coefficients that have to be stored can be 
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reduced enormously. In our example we just need 2.8 megabytes of memory space instead 
of 540 megabytes. Another advantage of this decomposition of the matrix Q is that the 
relevant values have to be computed only once. 

Still, computation of exact overlappings is time consuming. In the first iterations the 
number of node pairs ik and jl with positive overlap coefficient Oikji is quadratic in n. 
Because of the few feasible locations many cells must overlap. Therefore we decided to 
consider a simplified evaluation of the overlap term. For each base cell we compute the 
number of nodes jl with the property that when cell i is assigned to location Z, it covers 
this base cell. For a base cell /, let z(l) denote this number. Based on the information 
provided by the values z(l) we developed improvement heuristics. For example, we try to 
get a better distribution of the cells over the chip or to get rid of overcapacitated locations 
(these are locations / such that the values z(l) exceed a certain number) .still taking our 
estimate of the wiring length exactly into account. Or vice versa, we try to improve our 
estimate of the wiring length (maintaining a reasonable distribution of the cells). 

1 
ov 

1 

Figure 6 

In later iterations the situation changes. The number of node pairs ik and jl with positive 
overlap coefficients Oikji reduces considerably. Now the problem is to get for each node 
ik fast access to those nodes having positive overlap coefficient with ik. We have designed 
suitable data structures that allow for an efficient computation of exact overlaps. 

Combining the ideas indicated in this section we were able to reduce the running time 
considerably. 

7. Computational results 

Our experimental software has been compared to industrially used placement algorithms. 
The placements obtained were assessed in two ways. A first measure for the quality of a 
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placement is the so-called estimated wiring length which is computed by adding up the 
lengths of the minimum spanning trees of all nets. This is only an estimate since nets are 
routed using Steiner trees and since in order to make the routing feasible, detours have 
often to be taken. Nevertheless, this is an accepted number for comparing placements. In 
addition, we employed a maze router used in industry to really compute routings for our 
placements. This maze router was used as a black box, i. e., We could not tune the router 
with respect to our placement approach. For a real chip, this router can almost never 
completely route a nonoverlappihg placement of the cells. The interesting measure here 
is the number of two-pin connections necessary to complete the wiring produced by the 
maze router. This corresponds to the amount of work that has to be spent interactively 
to find a feasible wiring. Öür experience with this router has shown that the placement 
routine influences the number of non-connected pin pairs only to a certain.extent. A lot 
of non-connected pin pairs are caused by the greedy type approach of the router, i. e. 
pin pairs are connected one at a time so that connections.between succeeding pin: pairs 
m a y b e blocked. Nevertheless, this number is an indication for the routability of a given 
placement so that the estimated wiring length in combination with the number of missing 
connections allows for a reasonable comparison of different placement approaches. 

We report here on experiments with three test circuits. Circuit 1 consists of 1022 cells 
and 1025 nets, its.density is 50%. Circuit 2 consists of 2293 cells and 2776 nets, its 
density is 23.6%.- Circuit 3 consists of 2670 cells and 3128 nets, its density is 50.3%. The 
density, of a circuit is the total area of the cells to be placed divided by the area of the 
master. Table 1 presents the results of a min-cut based placement procedure (cf. LAUTHER 
(1979) for a detailed discussion of the procedure), Table 2 shows the results for Gordian, 
a method based on an energy model (KLEINHANS, SlGL, JOHANNES (1988)). Columiy2.in 
these tables contains the estimated wiring length, column 3 gives the number of missing 
connections for circuits 1, 2 and 3, respectively. The running times in column 4 were 
obtained on 8 and 16'MIPS workstations, respectively. 

Tables 3, 4 and 5 present the results obtained by the experimental version of our method. 
Column 2 in Tables 3, 4 and 5 shows the estimated wiring length for circuits 1, 2 and 
3 ̂ respectively. The number of missing connections for circuits 1, 2 and 3 are shown,in 
column 3 of Tables, 3, 4 and 5, respectively. 

In placement routines an estimate of the total wiring length is minimized, whereas the 
routability condition is almost neglected. To overcome this difficulty a lot of sophisticated 
little tricks exploiting technical information must be implemented. To this end years of 
testing are necessary (consider, for example, the development of Gordian in JOHANNES, 
J U S T , A N T R E I C H (1983), J U S T , KLEINHANS (1985), KLEINHANS, SIGL, JOHANNES (1988), 
KLEINHANS, S IGL, JOHANNES, ANTREICH (1991)). 

Up to now we only use a quite simple approach to reflect the wireability condition in our 
placement algorithm. Namely, we extend certain cells by at most one unit in horizontal 
and vertical direction. We bound the total amount of extension by a constant factor c, 
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0 < c < 1, i. e. the total amount of extension is c • (1 — density) • b, where b denotes the 
number of base cells of the master. ,..,, 

Furthermore^ we used Heuristic 2 followed by an improvement algorithm based on one-
exchanges for a solution of the instances of Pa"g (cf. sections 5 and 6). Tables 3, 4 and 5 
present the results we obtained for circuit 1, circuit 2 and circuit 3, respectively. Row 1 
in Tables,3, 4 and 5 shows the results, if the total amount of extension is bounded by 
c = 20%. In rows 2 and 3 of these tables we evaluate the final placement of the 3 circuits, 
if c is set to 40% and 60%, respectively. Column 4 of the tables shows the running times 
of our implementation obtained on a 27 MIPS computer. 

Finally, Figures 7, 8 and 9 show the final placements for the three circuits resulting from 
the version of our method displayed in row 2 of Tables 3, 4 and 5. , ... 

The results show that the solutions provided by the Min-Cut placement procedure are 
significantly worse than the ones provided by Gordian and our method. On the average, 
the number of non-connected pin pairs in the placements obtained by applying Gordian 
or our method are approximatively equal. .••••''. 

However, in nearly all examples the estimated wiring lengths of our solutions are better 
than those of Min-Cut and Gordian. In case of circuit 2 the estimated wiring length of 
the solution provided by our algorithm (c = 20%) is 16% better that Gordian's solution. 
Tables 3, 4 and 5 show that the higher the total amount of extension is chosen, the fewer 
pin pairs are not connected and the higher the estimated wiring length is. The right choice 
of this parameter depends on special features of a circuit. For circuit 1, the choice C — 40% 
seems to be best, whereas for circuits 2 and 3 the best results are obtained, when c is-set'.to 
20% and 60%, respectively. Based on these results we propose that for circuits with a very 
homogeneous cell- and net structure the factor c should be chosen small (c — 20%). For 

' circuits with ä more heterogenous cell or net structure a higher value should? be assigned 
to c (c = 40%). If, additionally, the density of the circuit exceeds 50%, a choice of c = 60% 
seems, tq be .reasonable. ), . ,.., • " • , , . . ' . , 

In terms of running time we are far away from comparison to any industrially used al­
gorithm. However, if one realizes that it lasts from 10 hours' (circuit-1) up to two« days 
(circuit 3) for routing a given placement on a workstation (using-the industry software 
that was available to us), the running time of our placement, procedure is still acceptable. 
Taking into account that the implementation of our approach is a prototype, in which 
technical information is not fully exploited (see the extension factor c) and that t h e r u n " 
ning time was not optimized, the results indicate that it is worthwile to further.explore 
our approach. , , 
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circuit estimated 
wiring length 

number of non-
connected pin pairs 

CPU-Time 
(min./ 8 mips) 

circuit 1 194732 24 4:25 

circuit 2 796622 33 15:54 

circuit 3 623159 551 21:04 

Table 1 (Min Cut) 

circuit estimated 
wiring length 

number of non-
connected pin pairs 

CPU-Time 
(min./ 16 mips) 

circuit 1 189683 19 3:43 

circuit 2 652129 51 3:13 

circuit 3 506160 253 6:52 

Table 2 (Gordian) 

options estimated 
wiring length 

number of non-
connected pin pairs 

CPU-Time 
(min./ 27 mips) 

c = 20% 180101 17 26:07 

c = 40% 185592 14 26:08 

c = 60% 191577 14 26:09 

Table 3 (circuit 1) 

options estimated 
wiring length 

number of non-
connected pin pairs 

CPU-Time 
(min./ 27 mips) 

c = 20% 553575 48 129:39 

c = 40% 570387 57 129:24 

c = 60% 576845 50 129:37 

Table 4 (circuit 2) 
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options estimated 
wiring length 

number of non-
connected pin pairs 

CPU-Time 
(min./ 27 mips) 

c = 20% 472473 309 159:22 

c = 40% 486175 278 159:21 

c = 60% 497285 260 159:23 

Table 5 (circuit 3) 
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Figure 7 (circuit 1) 
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Figure 9 (circuit 3) 
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8. Final Remarks 

We have presented a new method for the placement of electronic circuits in the sea-of-
cells layout style and we have discussed the results of an experimental version of our 
implementation. There are still several possibilities for further improvement. 

(1) Exact pin coordinates are not taken into account yet. 

(2) As an initial step for our placement routine, clustering could be performed (i. e. 
several cells are put together and treated as a super cell). This would speed up 
computations considerably. - . 

(3) We could modify our decomposition approach by solving a sequence of instances 
of (P9 ) instead of a sequence of instances of (P^ ) . This would further reduce the 
running time, but might have a negative effect on the quality of the placements. 

(4) Up to now we only use a simple approach to reflect the wireability condition in our 
placement algorithm (cf. Section 7). Improvements should be possible if we take 
technical details of the cells and of the master into account. 

Our approach is not limited to the layout style discussed in this paper. It can also be 
applied if pad cells are not preassigned (methods like Gordian are based on an energy 
model and cannot handle this case) and it can be extended to the case that cells are 
positioned on different layers. 
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