
Optimization and Engineering (2021) 22:735–781
https://doi.org/10.1007/s11081-020-09584-x

RESEARCH ART ICLE

Optimal Operation of Transient Gas Transport Networks

Kai Hoppmann-Baum1,2 · Felix Hennings1 · Ralf Lenz2 · Uwe Gotzes3 ·
Nina Heinecke3 · Klaus Spreckelsen3 · Thorsten Koch1,2

Received: 24 December 2019 / Revised: 4 September 2020 / Accepted: 23 November 2020 /
Published online: 16 February 2021
© The Author(s) 2021

Abstract
In this paper, we describe an algorithmic framework for the optimal operation of tran-
sient gas transport networks consisting of a hierarchical MILP formulation together
with a sequential linear programming inspired post-processing routine. Its implemen-
tation is part of the KOMPASS decision support system, which is currently used in an
industrial setting. Real-world gas transport networks are controlled by operating com-
plex pipeline intersection areas, which comprisemultiple compressor units, regulators,
and valves. In the following, we introduce the concept of network stations to model
them. Thereby, we represent the technical capabilities of a station by hand-tailored
artificial arcs and add them to network. Furthermore, we choose from a predefined set
of flow directions for each network station and time step, which determines where the
gas enters and leaves the station. Additionally, we have to select a supported simple
state, which consists of two subsets of artificial arcs: Arcs that must and arcs that
cannot be used. The goal is to determine a stable control of the network satisfying all
supplies and demands. The pipeline intersections, that are represented by the network
stations, were initially built centuries ago. Subsequently, due to updates, changes,
and extensions, they evolved into highly complex and involved topologies. To extract
their basic properties and to model them using computer-readable and optimizable
descriptions took several years of effort. To support the dispatchers in controlling the
network, we need to compute a continuously updated list of recommended measures.
Our motivation for the model presented here is to make fast decisions on important
transient global control parameters, i.e., how to route the flow and where to compress
the gas. Detailed continuous and discrete technical control measures realizing them,
which take all hardware details into account, are determined in a subsequent step.
In this paper, we present computational results from the KOMPASS project using
detailed real-world data.

Keywords Transient gas network optimization · Hierarchical optimization · Mixed
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1 Introduction

Natural gas is andwill remain one of themajor energy sources in Europe (https://www.
bmwi.de/Redaktion/EN/Dossier/conventional-energy-sources.html). Furthermore, it
is often considered an important transit medium towards a low- or no-carbon future
(Winegarden 2019). While the overall gas consumption in Germany is assumed to
remain constant in the future, the hourly supplies and demands at the sources and
sinks of the network are expected to become more volatile. An example reason
for this behaviour is the growing usage of renewable energy, e.g., solar and wind
power. While their share in the energy mix is going to increase due to the planned
nuclear and coal phase-outs, there is a lot of uncertainty regarding their production.
One possibility to mitigate this effect is to use natural gas fired power plants, which
can be ramped up on short notice. Hence, for the Open Grid Europe GmbH (OGE)
(https://www.open-grid-europe.com/), one of the largest transport system operators
(TSOs) in Germany (https://www.open-grid-europe.com/cps/rde/oge-internet/hs.xsl/
Strukturdaten-gemass-27-Abs-2-GasNEV-654.htm?rdeLocaleAttr=de), amore robust,
secure, and stable control of the network becomes inevitable in order to guarantee secu-
rity of supply. Thus, the idea for KOMPASS (Kontinuierliches Optimierungsmodul
zur prognoseabgesicherten Systemsteuerung/Continuous optimization module for a
prognosis-based system control), a decision support system for the dispatchers, who
control the gas network, was born and realized within the GasLab of the Research
CampusMODAL (http://forschungscampus-modal.de/). Before we explain the archi-
tecture of KOMPASS in detail in Sect. 2 and thereby motivate the model presented in
this paper, we first give an overview of important related work.

The optimization of natural gas transport through pipeline networks is a challeng-
ing task due to two crucial aspects: The physics of gas flow and the combinatorics
behind the setup of compressor units together with imposed technical restrictions and
limitations. The gas flow through cylindric pipelines is commonly described by the
so-called Euler equations (Osiadacz 1996), a set of non-linear hyperbolic partial dif-
ferential equations (PDEs), see Sect. 4.8 for details. On the other hand, compressor
units can run sequentially or in parallel by opening and closing surrounding valves
in order to achieve the required compression ratio and flow rate. Additionally, they
feature feasible operating ranges and are subject to a non-linear power bound. More
detailed explanations on these topics can be found in Hennings et al. (2019) and Koch
et al. (2015).

While the stationary case, i.e., determining a feasible network state given the nec-
essary boundary values, has gained a lot of attention in recent years, see Koch et al.
(2015) for an extensive overview, research regarding the transient case is still in the
early stages. One of the first papers on transient gas transport optimization to appear
is Moritz (2007). Here, a mixed integer linear program (MILP) featuring indepen-
dent single compressor units is introduced. Furthermore, the gas flow in pipelines
is modelled using piecewise linear functions. Pure non-linear programs (NLPs) are
considered inMak et al. (2016) and Zlotnik et al. (2015), which decide on the compres-
sion ratios of compressors, while minimizing fuel consumption. Recently Gugat et al.
(2018) and Burlacu et al. (2019) have been published, which both make use of special
discretization schemes for the Euler equations and again consider independent single
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compressor units. Gugat et al. (2018) use a linear feasible region for the compressors
and minimize the deviation from future flow and pressure values by iteratively solving
aMILP and an NLPmodel for each time step. In contrast, Burlacu et al. (2019) impose
lower and upper bounds on the compression ratios and on the achievable pressure dif-
ferences of the compressor units. Here, the amount of gas stored in the network is
maximized by alternatingly solving a MILP and an NLP model.

On the other hand, due to the liberalization of many energy markets, where so-
called entry-exit models were introduced, many new optimization problems arose in
these areas. For such problems, hierarchical optimization turns out to be well suited
for modelling purposes, and this is not only because, for example, the entry-exit model
for the European natural gas market (Rövekamp 2015) itself can be described using
a multi-level formulation (Grimm et al. 2019). For the US market a discrete bi-level
programming approach is used to solve a cash-out problem,where a gas shipperweighs
daily delivery imbalances against penalties claimed by the transport company (Dempe
et al. 2005;Kalashnikov andRíos-Mercado 2002). Bi- andmulti-level programming in
general has recently experienced a renaissance and is usedmoreoften tomodel a variety
of real-world applications. Areas include but are not limited to network design (Gao
et al. 2005), capacity planning (Garcia-Herreros et al. 2016), toll setting (Brotcorne
et al. 2001), robust unit commitment (Jiang et al. 2011), or critical infrastructure
protection (Alderson et al. 2011). Detailed overviews on possible applications can be
found in Colson et al. (2007), Kalashnikov et al. (2015), and Lu et al. (2016), and for
an introduction to hierarchical and bi-level optimization we refer to Dempe (2002)
and Migdalas et al. (2013).

The remainder of this paper is structured as follows: In Sect. 2 we give an overview
of the architecture of the KOMPASS decision support system to further motivate the
problem formulation presented in this paper. Afterwards, we introduce the concept
of network stations, a modelling approach to simplify complex pipeline intersection
areas, and explain the corresponding mathematical formulation in Sect. 3. Subse-
quently, we introduce our tri-level transient gas flowMILP model in Sect. 4, for which
a solution approach is presented in Sect. 5. Afterwards, we introduce a sequential
linear programming inspired post-processing routine to derive physically more accu-
rate solutions in Sect. 6. The solution approach and the post-processing routine from
the last two sections are subsequently combined in an algorithmic framework, which
is presented in Sect. 7. We conclude with computational experiments regarding this
framework, which were conducted on real-world instances, and an outlook on future
improvements and extensions in Sects. 8 and9, respectively.

2 KOMPASS—A decision support system for gas network control

The dispatchers at OGE control the gas network mainly based on their personal set of
skills, e.g., knowledge from training they receive and experience. However, since they
are starting to face more volatile and previously unseen transport scenarios, guarantee-
ing a safe operation and security of supply has become more difficult. Hence, the idea
for a decision support system for the control of transient gas transport networks was
born: KOMPASS (Kontinuierliches Optimierungsmodul zur prognoseabgesicherten
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Fig. 1 Architecture of KOMPASS and flow of information within it. Red squares denote computational
modules, blue parallelograms describe input data (if in top row) or intermediate output data (if not in top
row), which serve as input for subsequent algorithmic modules, and green ovals denote the output data

Systemsteuerung/Continuous optimization module for a prognosis-based system con-
trol). Its architecture, as currently implemented and running at OGE, is shown in
Fig. 1.

First of all, KOMPASS receives the topology of the network, its current state, and
prognosis data as input. The latter features historic gas flows at the sources and sinks
of the network, weather data, and information regarding work- and holidays. Based
on this, supplies and demands are predicted using the approach presented in Petkovic
et al. (2019), and time series of future pressure values for the sources are subsequently
determined by a heuristic.

As output, highly detailed technical control recommendations shall be determined
for the next 12h and all remotely controllable elements. To be able to create such
recommendations, we are given additional information describing these elements.
Thus, their characterizations are part of the input and contained in the intersection
area data, which exists for each complex pipeline intersection area. Another important
part of the intersection area data are the operationmodes. Each operationmode features
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detailed technical settings for all remotely controllable elements at the corresponding
junction and thereby enables certain technical control possibilities. A main goal of
the KOMPASS decision support system is to determine operation modes for each
junction such that the given supplies and demands are satisfied while the stability of
the network is maximized. Switching from one operation mode to another is called a
technical measure and we consider the operation of a network to be more stable the
less technical measures have to be applied in the following, see Hennings et al. (2019)
for details.

In the real-world the dispatchers try to control the network using technical measures
only. But since this is not always possible, they additionally have some non-technical
measures at hand. The most common and standardized ones result in changes to the
supplies and demands by for example either buying or selling gas, i.e., the usage of
so-called balancing energy, or by using contractual options like the interruption of
customers. If changing the supplies and demands alone does not guarantee a feasible
control of the network, the last option is to ask neighboring TSOs for future pressure
changes at some sources. In practice, this is done by phone calls and it can therefore
be seen as an emergency and non-standardized option. This establishes a hierarchy on
the usage of measures. If the network can be controlled by technical measures only,
i.e., without the usage of non-technical measures, this is most favorable. As a second
option, deviations from the supplies and demands are allowed. If there still does not
exist any feasible control for the network, the last option consists of a change of future
source pressures.

Thus, given the network topology, its current state, time series on supplies and
demands as well as on the pressures at the sources, and the intersection area data, we
have to solve a transient gas network control problem on a large-scale and complex
real-world gas network within KOMPASS. This problem formulation has to first of
all incorporate the operation modes, which include the complex combinatorics of the
setup of compressor stations. Second, an as accurate as possible physical model of
the transient gas flow in pipelines. And third, the described hierarchy of technical and
non-technical measures. Additionally, due to the nature of the application for which
KOMPASS is designed, its run time does play an important role. The decision support
system is supposed to run 24/7 and continuously provide technical and non-technical
control recommendations to the dispatchers.

However, our first experiments showed that models incorporating all these needs
simultaneouslywere computationally intractable or not solvablewithin any reasonable
amount of time. Thus, we decided to split the complexity and introduced a two-stage
approach. First, a transient control problem using hand-tailored simplified models for
each of the complex pipeline intersection areas is solved. The original junctions are
replaced by these simplified graph representations, which we call network stations in
the following, and we call the resulting networkmacroscopic. Their description is also
part of the intersection area data and their derivation is explained in more detail in
Sect. 3. Furthermore, non-technical measures are recommended based on the results
of this model.

Afterwards, the resulting flow and pressure values at the boundaries of the network
stations serve as input for highly detailed models on the original complex pipeline
intersection areas. In particular, these models validate whether there exist actual oper-
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Fig. 2 Top to bottom explanation of the rationale behind our tri-level formulation. Note that change instruc-
tions are executed such that the sums of the absolute deviations from the given input values are minimized

ation modes realizing the given pressure and flow scenarios (Hennings et al. 2019).
Here, stationary models focusing on the combinatorics and the technical restrictions
of compressor stations are solved in a first step. The rationale behind this is that inter-
section areas contain only pipelines of short length, which cannot store or provide
much gas for future usage, i.e., they do not feature a lot of linepack. Therefore the
transient aspect of the gas flow can be neglected. However, this aspect is included in
a second step, where a corresponding mathematical model is solved using a rolling
horizon approach. For more details on the second stage of KOMPASS we refer to the
original source (Hennings et al. 2019).

The paper at hand deals with the first stage of the approach, i.e., formulating and
solving the transient gas flow problem on macroscopic networks. Therefore, we intro-
duce a tri-level MILP formulation to accommodate for the hierarchy regarding the
technical and non-technical measures. A top to bottom explanation of the rationale
behind our hierarchical modelling approach is depicted in Fig. 2.

However, for the sake of comprehensibility, we additionally give a bottom to top
explanation in the following. The third level features the technical control problem,
which tries to maximize the stability of the network by minimizing changes in the
operation of the network stations, i.e., by minimizing the usage of technical measures.
The second level minimizes the changes of supplies and demands w.r.t. the sum of
absolute deviations that is necessary to guarantee feasibility of the third level. The first
level pursues a similar goal but minimizes the sum of deviations from future pressure
values at the sources instead. Thereby, it takes all possible actions of the second level
into account. In other words, the first and the second level minimize the extent of their
corresponding non-technical measures in hierarchical order to ensure that a feasible
technical control of the network exists.
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Fig. 3 The colored triangles represent sources (green triangle) and sinks (red triangle), which are closely
located to the network station. Further, the other single network elements are depicted as (pipe),

(valve/shortcut), (regulator/regulating arc), (compressor station/compressing arc), and
(bi-directed regulating arc). The fence groups of the network station are highlighted by colored circles

3 Network station fundamentals

A majority of the remotely controllable elements within gas transport networks, i.e.,
elements whose behaviour can be remotely controlled by the dispatchers, such as
compressor stations, regulators, and valves, is located at intersections of major trans-
portation pipelines. For each of these junctions and each point in time, exactly one
operation mode is in use. Due to the amount of possible operation modes and the
induced complexity, together with experts from OGE we developed the hand-tailored
simplified graph representations called network stations in order to summarize and
approximate the technical control capabilities. While detailed mathematical formula-
tions and explanations regarding network stations can be found in Sect. 4.9, we briefly
explain the basic idea and the process of their derivation here. To do this, an example
of a simplification is shown in Fig. 3.

As mentioned before, the derivation of the network station models is currently
manually done by experts at OGE, who know their network, its elements and its
control very well. Thus, we can only give some intuition of how they are created here
by using examples. But as we discuss later in the outlook in Sect. 9, we are currently
working on an automatized process to derive them.

First of all, the intersection areas are identified as connected subgraphs of the
network. Their layouts are created with the goal in mind to include as many remotely
controllable elements as possible while only containing few pipelines of significant
length. The latter follows from the idea behind the two-stage approach in KOMPASS,
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where the transient behaviour of the gas flow is considered less important in the second
stage, see Sect. 2 for the details.

The nodes at the boundaries of these subgraphs are called fence nodes. If a subset
of the fence nodes features the same behaviour, e.g., all are connected to pipelines
of large diameter, which run in parallel and nearly always possess the same pressure
level as well as the same direction and amount of flow, they are merged in the network
station topology and called a fence group. In Fig. 3 the fence groups are indicated
using colored circles.

In the next step we create the topology of the network station by removing the
interior of the subgraph and adding auxiliary nodes together with artificial arcs, which
connect them and the fence nodes. There are four types of artificial arcs: Shortcuts,
which can be seen as the equivalents of valves, regulating arcs, which can be seen as
regulators, compressor arcs, which shall capture the pressure increasing capabilities
of compressor stations, and combined arcs, which can work as either regulating or
compressor arcs. Further, for each of these arc types, with the exception of shortcuts,
there exists a bi-directed version,where the gas canflowand thementioned capabilities
can be applied in both directions. While the mono-directed arcs only support positive
flow w.r.t. their topological orientation, shortcuts are bi-directed by definition.

Auxiliary nodes do not have any special meaning and are used to decrease the
number of necessary artificial arcs or to improve the general comprehensibility of
the graph model. For the artificial arcs, we can often identify them with remotely
controllable elements, which are contained in the original topology. But it is important
to note that this does not hold in general. Combined arcs for example usually comprise
at least one compressor station and one regulator.

Looking at the example in Fig. 3, we can identify the two anti-parallel regulators in
the north-east of the original network topologywith the bi-directed regulating arc in the
station model. Additionally, we see two compressing arcs in the station model, which
directly correspond to the two compressor stations depicted in the original topology.
Here, the experts know that the compressor station in the east of the picture is used to
compress gas coming from the north and leaving to the south, while the other, more
central compressor station is used to compress gas coming from the south and leaving
to the west. This explains their choice of endnodes and the direction of the artificial
arcs.

Finally, the experts from OGE look at the possible operation modes and create
the sets of possible flow directions and simple states. A flow direction consists of
two subsets of fence nodes: Entries, where gas enters, and exits, where gas leaves.
Additionally, they developed the simple states. Each simple state consists of a subset
of flow directions that it supports and two subsets of artificial arcs: Arcs that have to
be used and arcs that cannot be used. While an unusable arc can conceptually be seen
as a closed valve, the former have to be used according to their corresponding models,
which are described in Sect. 4.12. The goal for the design of the simple states is to
summarize and approximate the technical capabilities at the original intersection area
induced while keeping their overall number small.

In our example in Fig. 3, very common flow directions are situations, where gas
enters from the north and/or east and leaves to the south and/or west. But asmentioned,
it may also happen that gas enters from the south and leaves to thewest. The creation of
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the corresponding simple states is then mainly based on experience and data regarding
which of the operation modes of the corresponding intersection area have been used
in the past.

4 Macroscopic transient gas flowmodel

In this section, we define our tri-level macroscopic transient gas flow model. We
describe the entities of the underlying network and introduce variables and constraints
representing their behaviour. Additionally, we explain the concepts describing their
interplay and derive mathematical models for them.

Note that all constraints introduced here are part of the third level of our hierar-
chical MILP model, i.e., the level responsible for the technical control, and that the
first and second levels do not feature any constraints. Furthermore, the first level does
only control the inflow pressure slack variables, which are introduced in Sect. 4.3, and
the second level is only in charge of the boundary value slack variables, which are
introduced in Sect. 4.2. Both types of variablesmodel the described non-technicalmea-
sures, i.e., deviations from future pressure values at the sources and from supplies and
demands, respectively. The assignment to the levels is due to the explained hierarchy
and it is the goal of each level to minimize the extent of their usage, i.e., the sums of the
absolute deviations, see Sect. 4.13 for the objectives and the overall model structure.

In the remainder of this paper, a gas network is modelled as a directed graph
G = (V,A), where V denotes the set of nodes and A the set of arcs.

4.1 Time steps and granularity

Additionally, we are given a set of time steps T0:={0, . . . , k} together with a monoton-
ically increasing function τ : T0 → N, called granularity. We assume that τ(0) = 0.
In this context, τ(t) represents the number of seconds that have passed until time step
t ∈ T0 w.r.t. time step 0. For notational purposes let T :=T0 \ {0}.

4.2 Boundary values

Furthermore, V+ ⊆ V and V− ⊆ V denote the sources and sinks of the network,
respectively, and we assume that V+ ∩ V− = ∅. While Vb:=V+ ∪ V− is called the
set of boundary nodes, V0:=V \ Vb denotes the set of inner nodes.

For each boundary node v ∈ Vb and each time step t ∈ T we are given so-called
boundary values Dv,t ∈ R. They represent the future requirements in terms of supply
(inflow), when v ∈ V+ is a source and we have Dv,t ∈ R≥0, and demand (outflow),
when v ∈ V− is a sink and we have Dv,t ∈ R≤0. The boundary values may be
adjusted dynamically to ensure the feasibility of the model. Thus, for each boundary
node v ∈ Vb and t ∈ T we introduce two continuous variables σ d+

v,t , σ d−
v,t ∈ R≥0.

The actual boundary values, which are then considered in the model, are established
through additional variables dv,t ∈ R≥0 for each source v ∈ V+ and dv,t ∈ R≤0 for
each sink v ∈ V− and constraints
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dv,t + σ d+
v,t − σ d−

v,t = Dv,t ∀v ∈ Vb, ∀t ∈ T . (1)

σ d+
v,t and σ d−

v,t are called boundary value slack variables and they are used to model
the non-technical control measure of deviating from the given supplies and demands.
Thus, they are controlled by the second level of our tri-level model, whose goal is to
minimize their usage, i.e., their sum, see Sect. 4.13 for more details.

4.3 Pressures and pressure bounds

Additionally, for each node v ∈ V we are given a non-negative pressure, which
we denote by pv,0 ∈ R≥0, representing the corresponding value in the initial state.
Furthermore, we introduce pressure variables pv,t ∈ [

¯
pv,t , p̄v,t ] ⊆ R≥0 for each point

in time t ∈ T . Here
¯
pv,t is a lower and p̄v,t is an upper bound on the pressure at node

v and time t . These bounds are called technical pressure bounds.
For each boundary node v ∈ Vb and each point in time t ∈ T we are additionally

given so-called inflow pressure bounds
¯
pactv,t ∈ R≥0 and p̄actv,t ∈ R≥0. These bounds

are tighter than the technical pressure bounds and have to be respected if a boundary
node has an nonzero boundary value. They represent the expected future pressures
at the sources of the network. Nevertheless, in contrast to the hard technical pressure
bounds they may be relaxed to ensure feasibility. Thus, we introduce two continuous
variables σ

p+
v,t ∈ [0,

¯
pactv,t −

¯
pv,t ] and σ

p−
v,t ∈ [0, p̄v,t − p̄actv,t ] as well as constraints

pv,t + σ
p−
v,t ≥

¯
pactv,t ∀v ∈ Vb with Dv,t �= 0, ∀t ∈ T and (2)

pv,t − σ
p+
v,t ≤ p̄actv,t ∀v ∈ Vb with Dv,t �= 0, ∀t ∈ T . (3)

σ
p+
v,t and σ

p−
v,t are called inflow pressure slack variables in the following and they

are used to model the non-technical control measure of deviating from future source
pressure values. Thus, they are controlled by the first level of our tri-level model,
whose goal is to minimize their usage, i.e., their sum, see Sect. 4.13 for more details.

4.4 Mass flows

Next, we introduce variables representing the flow of gas on arcs in mass flow, which
we are going to call simply flow in the following. Therefore, the arc set is partitioned
into four setsA = Ava ∪̇Arg ∪̇Api ∪̇Aar, representing the different network element
we consider. Here, Ava denotes the set of valves, Arg the set of regulators (often
synonymously called control valves in the literature), Api the set of pipes, and Aar

the set of so-called artificial arcs. The artificial arcs are further partitioned into mono-
directed arcs Aar-mo and bi-directed arcs Aar-bi, i.e., Aar = Aar-mo ∪̇Aar-bi, which is
further discussed in Sect. 4.12. We allow parallel and anti-parallel arcs, but we do not
allow loops.

For each mono-directed arc a ∈ Arg ∪ Aar-mo and each time step t ∈ T we
introduce a variable qa,t ∈ [0, q̄a,t ] representing the mass flow on the corresponding
arc in forward direction. On the other hand, for valves and bi-directed artificial arcs we
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add two variables q→
a,t , q

←
a,t ∈ [0, q̄a,t ] representing mass flow in forward direction and

backward direction on arc a ∈ Ava ∪ Aar-bi, respectively. For pipes we distinguish in-
and outflow to be able to account for changes in the amount of gas which is currently
stored in the pipe. Therefore, for each pipe a = (�, r) ∈ Api and each time step t ∈ T
we introduce two variables q�,a,t , qr ,a,t ∈ [−q̄a,t , q̄a,t ] representing the mass flow
into a at � and out of a at r . Note that negative variable values represent mass flow out
of a at � and into a at r , respectively. In all of the previous definitions, q̄a,t represents
a practically reasonable flow bound.

Finally, for time step t = 0 and each of the variables introduced above we are given
an initial mass flow value, which is denoted with index 0.

4.5 Mass flow conservation

Next, for all nodes v ∈ V we introduce mass flow conservation equations. For each
inner node v ∈ V0 and each time step t ∈ T the amount of flow entering v has to
leave it and for a boundary node v ∈ Vb supply or demand must be satisfied. Hence,
we have

∑

a=(�,v)∈Ava∪Aar-bi

(q←
a,t − q→

a,t ) +
∑

a=(v,r)∈Ava∪Aar-bi

(q→
a,t − q←

a,t )

+
∑

a=(v,r)∈Arg∪Aar-mo

qa,t −
∑

a=(�,v)∈Arg∪Aar-mo

qa,t

+
∑

a=(v,r)∈Api

qv,a,t −
∑

a=(�,v)∈Api

qv,a,t = dv,t ∀v ∈ Vb, ∀t ∈ T . (4)

For each inner node v ∈ V0 we introduce the same constraints except for the right
side hand being 0.

4.6 Valves

Valves are network elements that can be used to link or unlink network parts by either
creating a connection between the two corresponding endnodes or by disconnecting
them. Thereby, a valve can be in one of two possible states. Either it is open, which
implies that the pressure values at both ends are equal and mass flow is allowed in
arbitrary direction (one can think of the endnodes being merged). Or it is closed,
implying that there is no mass flow and the pressure values are independent or, as we
synonymously call it, decoupled.

Thus, let a = (�, r) ∈ Ava be a valve inG. For each step in time t ∈ T we introduce
an additional binary variable za,t ∈ {0, 1} indicating whether the valve is open or not.
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The behaviour described above can then be modelled using the following constraints

p�,t − pr ,t ≤ (1 − za,t )( p̄�,t −
¯
pr ,t ) ∀a = (�, r) ∈ Ava, ∀t ∈ T (5)

p�,t − pr ,t ≥ (1 − za,t )(¯
p�,t − p̄r ,t ) ∀a = (�, r) ∈ Ava, ∀t ∈ T (6)

q→
a,t ≤ q̄a,t za,t ∀a ∈ Ava, ∀t ∈ T (7)

q←
a,t ≤ q̄a,t za,t ∀a ∈ Ava, ∀t ∈ T . (8)

4.7 Regulators

Regulators can be seen as the continuous equivalent of valves. Besides being com-
pletely open or closed, regulators can also be partially open. Thereby, they generate
friction due to which the gas pressure is decreased in the direction of flow. To model
this behaviour, consider some a = (�, r) ∈ Arg. For each t ∈ T we add constraints

p�,t − pr ,t ≥ 0 ∀t ∈ T . (9)

It is important to note that thereby thepressure at r cannever begreater than thepressure
at � in ourmodel, i.e., we do notmodel so-called flap traps here. Thismechanism closes
the regulator if the pressure at r gets greater than the pressure at l andmakes flow in the
backward direction impossible. The reason for not including this mechanism in our
model is that all regulators are considered to be connections to distribution parts of the
network, i.e., parts only consisting of pipes, inner nodes and sinks, which are usually
not operated at a higher pressure level than the upstream transportation network.

4.8 Pipes

One-dimensional gas flow in cylindric pipelines is usually described by the so-called
Euler equations, a set of non-linear hyperbolic partial differential equations (Osiadacz
1996). In this paper we are going to assume isothermality, i.e., that the temperature
remains constant. In that case the equations reduce to the Continuity Equation and the
Momentum Equation. While the first equation ensures the conservation of mass, the
second describes the interaction between the force acting on the gas particles and the
rate of change in their momentum. Thus, for a pipe a = (�, r) ∈ Api the isothermal
Euler Equations can be stated as

∂ρ

∂t
+ ∂(ρv)

∂x
= 0

∂(ρv)

∂t
+ ∂ p

∂x
+ ∂(ρv2)

∂x
+ λa

2Da
|v|vρ + gsaρ = 0.

Here, the x-variable represents the position in the pipe w.r.t. the distance from node �.
Furthermore, t denotes the time, and ρ and v the density and the velocity of the gas,
respectively. Additionally, Da denotes the diameter of the pipe and the gravitational
acceleration is given by g. Further, by λa we denote the friction factor of the pipe,
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which we derive from the formula of Nikuradse. This formula depends only on two
characteristics of the pipe, namely its diameter and its integral roughness, see Fügen-
schuh et al. (2015) and Nikuradse (1950) for details. Finally, the slope of the pipe is
sa = hr−h�

La
∈ [−1, 1], where h� and hr denote the altitude at � and r , respectively.

Next, we reformulate these equations w.r.t. the quantities we are interested in, i.e.,
mass flow q, pressure p, and velocity v. First of all, mass flow is defined as

q = Aaρv,

where Aa = D2
a

π
4 denotes the cross-sectional area of the pipe. Second, we apply the

equation of state for real gases, which describes the relation between the gas pressure
p and the density ρ

p = ρRsT za .

Here, za is the compressibility factor of the gas in the pipe and Rs denotes the specific
gas constant. In the following, we assume both of them to be constants. For the com-
pressibility factor this is a common assumption, see for example (Osiadacz 1996), and
we define it as the average of the compressibility factors at both endnodes using their
initial pressure values p�,0 and pr ,0 and the formula by Papay, see Saleh (2002). For
the specific gas constant, this is a consequence of the fact that we assume the molar
mass of the gas to be constant. Third, we drop the first and the third summand in the
Momentum Equation, since their contribution under typical operating conditions in
gas transport networks is negligible (Burlacu et al. 2019; Osiadacz 1996). Putting all
this together, we can rewrite the equations and derive the so-called friction dominated
model

∂ p

∂t
+ RsT za

Aa

∂q

∂x
= 0

∂ p

∂x
+ λa RsT za

2Da A2
a

|q|q
p

+ gsa
RsT za

p = 0.

Next, we discretize the equations using the implicit box scheme proposed in Dom-
schke et al. (2011) and Kolb et al. (2010), respectively. Here, the length of the pipe La

serves as spacial domain while we use the set of time steps T0 as time domain. Recall
the definition of the mass flow variables q�,a,t and qr ,a,t from Sect. 4.5, where the first
describes the flow into the pipe at node � and the second the flow out of the pipe at
node r . The discretized equations for two adjacent time steps t−1 and t , where t ∈ T ,
can then be written as

2RsT za(τ (t) − τ(t − 1))

La Aa

(
qr ,a,t − q�,a,t

)
(C)

+ p�,t + pr ,t − p�,t−1 − pr ,t−1 = 0
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pr ,t − p�,t + λa RsT zaLa

4Da A2
a

( |q�,a,t |q�,a,t

p�,t
+ |qr ,a,t |qr ,a,t

pr ,t

)
(M)

+ gsaLa

2RsT za

(
p�,t + pr ,t

) = 0.

Finally, we are going to use the linear model for the Momentum Equation, which
was proposed by Hennings (2018). To derive it, we fix the absolute velocities in the
friction-based pressure difference term of the Momentum Equation, i.e., in the third
summand, to the absolute gas velocities in the initial time step. Thereby, we derive the
following equations, which we use to model the transient gas flow in pipelines

2RsT za(τ (t) − τ(t − 1))

La Aa

(
qr ,a,t − q�,a,t

)

+ p�,t + pr ,t − p�,t−1 − pr ,t−1 = 0 ∀t ∈ T (10)

pr ,t − p�,t + λa La

4Da Aa

(|v�,0| q�,a,t + |vr ,0| qr ,a,t
)

+ gsaLa

2RsT za

(
p�,t + pr ,t

) = 0 ∀t ∈ T . (11)

The obvious issue arising here is that if the velocity of the mass flow in- or decreases
significantly over time, we might under- or overestimate the friction loss, respectively.
An analysis of historic real-world data in Hennings (2018) shows, that the resulting
deviation can be significant, but is small in most of the cases when considering a time
horizon of 12h. However, in Sect. 6 we introduce and discuss an iterative velocity
adjustment procedure inspired by sequential linear programming, which we apply
in order to determine solutions that are also feasible for the non-linear Momentum
Equation (M).

4.9 Network stations

Themain idea behind the network stationmodel and the process of how it is derived are
discussed in Sect. 3. Formally, within G there exist m ∈ N subgraphs Gi = (Vi ,Aar

i )

called network stations, which consist of inner nodes and artificial arcs only, i.e.,
Vi ⊆ V0 and Aar

i ⊆ Aar for all i ∈ {1, . . . ,m}. Each artificial arc is contained
in exactly one station and each inner node is contained in at most one station, i.e.,
Aar

i ∩ Aar
j = ∅ and Vi ∩ V j = ∅ holds for i, j ∈ {1, . . . ,m} with i �= j and we have

Aar = ⋃m
i=1Aar

i .
The node set Vi can be further partitioned into so-called fence nodes V fn

i and auxil-
iary nodes Var

i , i.e., Vi :=V fn
i ∪̇Var

i . A node v ∈ Vi is a fence node if it is connected to
at least one arc outside the gas network station, i.e., if δ(v)∩ (Api ∪ Arg ∪ Ava) �= ∅,
where δ(v) denotes the set of arcs incident to v. Otherwise, if δ(v) ⊆ Aar

i , it is an
auxiliary node.
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Additionally, Fi ⊆ P(V fn
i ) × P(V fn

i ) denotes the set of so-called flow directions
of gas network station Gi , where P is the powerset operator. A flow direction f =
( f +, f −) ∈ Fi consists of its entry fence nodes f + ⊆ V fn

i and its exit fence nodes
f − ⊆ V fn

i and it holds that f + ∩ f − = ∅.
Furthermore, the set Si ⊆ P(Fi ) × P(Aar

i ) × P(Aar
i ) containing the so-called

simple states is given for each gas network station Gi . A single simple state s =
(s f , son, soff) ∈ Si is composed of the set of flow directions s f it supports as well as
the set of its active son and its inactive artificial arcs soff.

4.10 Controlling network stations

In each time step t ∈ T0:={0, . . . , k} three types of control decisions have to be made
for a gas network station Gi . These decisions impact each other and can be put into a
hierarchical order. Here, we describe an order in a top to bottom fashion and introduce
the variables and constraints modelling the decisions and their interplay.

First of all, exactly one flow direction f ∈ Fi has to be chosen for each Gi . Given
this flow direction, onemust additionally choose exactly one simple state s ∈ Si which
supports this flow direction, i.e., f ∈ s f has to hold. Given a decision on the simple
state, all arcs in son must be active, while the inactive arcs soff cannot be used. For all
remaining artificial arcs a ∈ Aar

i \ (son ∪ soff), which we call optional arcs, we can
independently choose whether they are active or not.

Thus, for each time step t ∈ T0 we introduce binary variables x f ,t ∈ {0, 1} for
each flow direction f ∈ Fi , xs,t ∈ {0, 1} for each simple state s ∈ Si , as well as
xa,t ∈ {0, 1} for each artificial link a ∈ Aar

i all indicating whether the corresponding
entity is active at that point in time or not. Furthermore, for each network station Gi

we add the following constraints

∑

f ∈Fi

x f ,t = 1 ∀t ∈ T0 (12)

∑

s∈Si

xs,t = 1 ∀t ∈ T0 (13)

∑

f ∈s f

x f ,t ≥ xs,t ∀s ∈ Si , ∀t ∈ T (14)

xs,t ≤ xa,t ∀s ∈ Si , ∀a ∈ son, ∀t ∈ T0 (15)

1 − xs,t ≥ xa,t ∀s ∈ Si , ∀a ∈ soff, ∀t ∈ T0. (16)

While constraints (12) and (13) ensure that exactly one flow direction and one simple
state are chosen for each time step t ∈ T0, (14) guarantees that the chosen simple state
supports the chosen flow direction. Additionally, constraints (15) and (16) make sure
that the artificial arcs corresponding to the simple state are active or not, respectively.
No condition is imposed on the optional arcs.

Next, in order to penalize changes over time w.r.t. simple states or artificial links in
the objective function we introduce additional binary variables. For each station Gi
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and each time step t ∈ T we have δs,t ∈ {0, 1} for each s ∈ Si and δona,t , δ
off
a,t ∈ {0, 1}

for each a ∈ Aar
i . Furthermore, we add constraints

xs,t−1 − xs,t + δs,t ≥ 0 ∀s ∈ Si , ∀t ∈ T (17)

xa,t−1 − xa,t + δona,t − δoffa,t = 0 ∀a ∈ Aar
i , ∀t ∈ T . (18)

While δs,t and δona,t indicate whether or not a simple state or artificial link has been
switched on in time step t , δoffa,t additionally indicates whether or not an artificial link
has been switched off. For the simple states we do not need such a variable, since we
know that exactly one of them is active in each time step, but in the case of optional
artificial arcs this does not apply. All variables δs,t are associated with an individual
cost parameter ws ∈ R≥0, while variables δona,t as well as δoffa,t are assigned a common
cost parameter wa ∈ R≥0.

Note that we refrain from penalizing changes w.r.t. the flow directions here. For
example, if a network station is in a so-called bypass state, e.g., only shortcuts are
active, the gas may “slosh” back and forth between the fence nodes. Thus, flow direc-
tions changes do not suggest an unstable behaviour and are actually very common.

4.11 Flow direction related constraints

Activating a flow direction imposes certain conditions on the mass flow and pressure
values w.r.t. a gas network station Gi . Most importantly, for a flow direction f =
( f +, f −) ∈ Fi no outflow is allowed at its entry and no inflow at its exit fence nodes.
It is however allowed that there is no flow at all, which is the condition that must hold
for all other fence nodes v ∈ V fn

i \ ( f + ∪ f −). Furthermore, for some of the fence
nodes there exist additional pressure bounds if a flow direction is chosen in which they
serve as exits. And finally, there exist conditions on the sums of absolute amounts of
flow of subsets of fence nodes, which have to be satisfied in order to activate certain
flow directions.

4.11.1 In- and outflow constraints

First of all, for each fence node v ∈ Vi and each point in time t ∈ T0 we introduce
two continuous variables q inv,t , q

out
v,t ∈ R≥0 that, together with the following constraint,

account for the total in- or outflow from outside the station, respectively

∑

(�,v)∈Aar

qa,t −
∑

(v,r)∈Aar

qa,t +
∑

(�,v)∈Aar-bi

q→
a,t

−
∑

(�,v)∈Aar-bi

q←
a,t −

∑

(v,r)∈Aar-bi

q→
a,t +

∑

(v,r)∈Aar-bi

q←
a,t = qoutv,t − q inv,t . (19)

Note that one could alternatively sum up the mass flow values of the incident pipes,
regulators, and valves on the left hand side and switch the signs of the variables on
the right hand side of the equation. This is because flow conservation holds at the
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fence nodes, since V fn
i ⊆ V0. Next, for each flow direction f = ( f +, f −) ∈ Fi we

introduce the following constraints:

q inv,t ≤ q inv,t (1 − x f ,t ) ∀ f ∈ Fi , ∀v ∈ Vi \ f +, ∀t ∈ T (20)

qoutv,t ≤ qoutv,t (1 − x f ,t ) ∀ f ∈ Fi , ∀v ∈ Vi \ f −, ∀t ∈ T . (21)

Here, q inv,t and qoutv,t are upper and lower bounds on the maximum possible in- and
outflow, respectively, which can be derived from constraints (19) together with the
abovementioned alternative constraint. If a flow direction is active, q inv,t can be nonzero
for the entry and qoutv,t for the exit fence groups only.

4.11.2 Exit pressure bounds

Furthermore, for some fence nodes v ∈ V fn
i there exists an additional upper pressure

bound p̄exitv , which is tighter than its technical upper bound and has to be respected if
a flow direction f = ( f +, f −) ∈ Fi is active, for which v is an exit fence node, i.e.,
for which v ∈ f −. This can be modelled via the following constraints

pv,t ≤ p̄v,t + x f ,t ( p̄
exit
v − p̄v,t ) ∀ f ∈ Fi with v ∈ f −, ∀t ∈ T . (22)

4.11.3 Flow direction conditions

Finally, for each network station, there exists a set of so-calledflowdirection conditions
Wi ⊆ Fi ×P(V fn

i )×P(V fn
i ), demanding that the sum of the absolute in- and outflows

of the first set of fence nodes is less than or equal than the sum of the in- and outflows
of the second set in order to activate the corresponding flow direction. Hence, for each
w = ( f ,Vw1 ,Vw2) ∈ Wi we introduce

∑

v∈Vw2

(q inv,t + qoutv,t ) −
∑

v∈Vw1

(q inv,t + qoutv,t ) ≥ Mw,t (x f ,t − 1) ∀t ∈ T0 (23)

where Mw,t := ∑
v∈Vw1∩ f + q inv,t +

∑
v∈Vw1∩ f − qoutv,t . They are introduced because cer-

tain simple states with the ability to compress need these conditions in order to work.

4.12 Artificial arcs

The set of artificial arcs can be further partitioned into four disjoint subsets Aar =
Aar-sc∪̇Aar-rg∪̇Aar-co∪̇Aar-cb. Here,Aar-sc denotes the set of so-called shortcuts,Aar-rg

the set of so-called regulating arcs, Aar-co the set of so-called compressor arcs, and
Aar-cb the set of so-called combined arcs. Further,we denote the set of pressure increas-
ing arcs by Aar-pr = Aar-co ∪ Aar-cb. The sets Aar-sc

i ⊆ Aar-sc, Aar-rg
i ⊆ Aar-rg,

Aar-co
i ⊆ Aar-co, Aar-cb

i ⊆ Aar-cb, and Aar-pr
i ⊆ Aar-pr describe the corresponding

entities contained in gas network station Gi .
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In this sectionwe explain how the artificial arcs and their different capabilities when
controlling the gas flow through the station are modelled. But first, we shortly explain
the difference between bi-directed and mono-directed arcs.

4.12.1 Bi-Directed arcs

In contrast to the mono-directed arcs, mass flow and pressure modifications according
to the corresponding artificial arc are possible into both directions on bi-directed arcs.
Further, their capabilities, for example the compression of gas, are also applicable in
both directions. Thus, in our model for these arcs we first decide into which direction
the mass flow is going at each point in time.

Therefore, for each bi-directed arc a ∈ Aar-bi and each time step t ∈ T0 we introduce
two binary variables x→

a,t , x
←
a,t ∈ {0, 1} encoding the direction of the flow in case the

arc is active and add constraints

x→
a,t + x←

a,t = xa,t ∀a ∈ Aar-bi, ∀t ∈ T (24)

to the model. Given this decision, bi-directed arcs are modelled analogously to their
mono-directed counterparts using the corresponding variable.

4.12.2 Shortcuts

All shortcuts are bi-directed arcs and mass flow is possible into both directions. They
can conceptually be seen as the equivalent of valves (see Sect. 4.6) inside a station and
are used to connect network parts if the corresponding pressure levels are equal. Thus,
for each shortcut a = (�, r) ∈ Aar-sc we add constraints

p�,t − pr ,t ≤ (1 − xa,t )( p̄�,t −
¯
pr ,t ) ∀t ∈ T (25)

p�,t − pr ,t ≥ (1 − xa,t )(¯
p�,t − p̄r ,t ) ∀t ∈ T (26)

q→
a,t ≤ q̄a,t x

→
a,t ∀t ∈ T (27)

q←
a,t ≤ q̄a,t x

←
a,t ∀t ∈ T . (28)

If a shortcut is active at time t ∈ T , i.e., if xa,t = 1, the pressures at � and r have
to be equal and mass flow can go into an arbitrary direction with an arbitrary value,
i.e., there may be be forward flow q→

a,t ∈ [0, q̄a,t ] or backward flow q←
a,t ∈ [0, q̄a,t ]

depending on the decision made in constraint (24). If the shortcut is not active, the
pressure values are decoupled and there is no flow.

4.12.3 Regulating arcs

Regulating arcs can conceptually be seen as the equivalent of regulators (see Sect. 4.7)
inside a gas network station. They are used to decrease the gas pressure in the direction
of the mass flow, which is needed if, for example, gas enters a distribution network,
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which is technically not suited for the high pressure of the transportation network.
Hence, for regulating arcs a = (�, r) ∈ Aar-rg we introduce the following constraints

p�,t − pr ,t ≥ (1 − xa,t )(¯
p�,t − p̄r ,t ) ∀t ∈ T (29)

q→
a,t ≤ q̄a,t xa,t ∀t ∈ T . (30)

If a regulating arc is active at some point in time t ∈ T , i.e., if xa,t = 1, the pressure
at � has to be greater or equal than the pressure at r . Otherwise, the pressure values
are decoupled and there is no mass flow. For bi-directed regulating arcs a = (�, r) ∈
Aar-rg ∩Aar-bi, we derive an analogous set of constraints using x→

a,t and x
←
a,t instead of

xa,t .

4.12.4 Pressure increasing arcs

The pressure increasing arcsAar-pr, i.e., the compressor arcsAar-co and the combined
arcs Aar-cb, are key elements when it comes to control a macroscopic gas network.
They are able to compress gas and thereby increase its pressure, which makes up for
pressure loss due to friction in the pipes or height differences that have to be overcome.

In our model, one can conceptually think of one (big) compressor unit being
installed at each arc a ∈ Aar-pr

i of each gas network station Gi . The maximum power
it has available for compression π̃a,t ∈ R≥0, the maximum amount of mass flow that
can pass through it q̃a,t ∈ R≥0, and its maximum compression ratio r̃ a,t ∈ [1,∞) are
dynamically determined in each time step through an assignment of approximations
of real-world compressor units, simply called machines in the following, and a linear
combination of their corresponding values.

Thus, for each station Gi we are given a set of machines Mi and each machine
m ∈ Mi possesses an associated power value Pm,t ∈ R≥0, a maximum mass flow
Qm,t ∈ R≥0, and a maximum compression ratio Rm,t > 1 for each time step t ∈ T .
Further, for each pressure increasing arc a ∈ Aar-pr

i there exists a subset of machines
Ma

i ⊆ Mi that can potentially be assigned to it and a maximum number of assignable
machines Mmax

a . Since each machine can be assigned to at most one compressing link
in each time step t ∈ T , we introduce binary variables ym,a,t ∈ {0, 1} indicating
whether machine m ∈ Mi is assigned to arc a ∈ Aar-pr

i or not, and add constraints

∑

a∈Aar-pr
i :m∈Ma

i

ym,a,t ≤ 1 ∀m ∈ Mi , ∀t ∈ T (31)

∑

m∈Ma
i

ym,a,t ≤ Mmax
a xa,t ∀a ∈ Aar-pr

i , ∀t ∈ T . (32)

In the real world, compressor units are operated alone, in parallel, sequentially or in
a parallel-sequential setting. This is achieved by the opening and closing of valves in
the surrounding piping. By setting them up in parallel, a larger amount of mass flow
can be compressed, while in serial a higher compression ratio can be achieved. In
our model, we refrain from choosing a setup for the machines and overestimate the
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capabilities of pressure increasing arcs in the sense that we assume that the maximum
amount of flow (parallel setting) and the highest compression ratio (sequential setting)
are available at the same time. Thus, we add the following constraints

∑

m∈Ma
i

Pj,t ym,a,t = π̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (33)

∑

m∈Ma
i

Q j,t ym,a,t = q̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (34)

1 +
∑

m∈Ma
i

(R j,t − 1) ym,a,t = r̃ a,t ∀a ∈ Aar-pr
i , ∀t ∈ T . (35)

The first constraint (33) determines the power available on arc a ∈ Aar-pr by adding
up the maximum power of the assigned machines. Analogously, the second constraint
(34) determines the maximum amount of mass flow that can be compressed. On the
other hand, the third constraint (35) is a (conservative) approximation of themaximum
compression ratio, which is used in order to avoid non-linear constraints.

Finally, the connection between pressure difference, the amount of mass flow pass-
ing through a compressor machine, and the power necessary to realize it is given by
the non-linear power equation for compressor machines

π̃a,t ≥ πa,t = qa,t

ηad
RsT z�

κ

κ − 1

[(
pr ,t
p�,t

) κ−1
κ − 1

]
,

where πa,t ∈ R≥0 is the variable representing the necessary power when a mass
flow of qa,t with initial pressure p�,t shall be compressed up to pr ,t . Here, ηad is
the adiabatic efficiency of the compression, which we assume to be constant for all
existing compressor machines, and κ = 1.296 [14] is the isentropic exponent.

To avoid introducing this non-linear constraint we determine a linear approximation
as follows: For each artificial compressing link a ∈ Aar-pr and each t ∈ T , we sample

N points (p�,t , pr ,t , πa,t ) ∈ [
¯
p�,t , p̄�,t ]×[

¯
pr ,t , p̄r ,t ]×[πmax

a,t
4 , πmax

a,t ], whereπmax
a,t is the

maximum possible power for a at t derived from (31) and (32), such that p�,t ≤ pr ,t
and determine the corresponding mass flow qa,t using the original power equation. To
the resulting set of 4-tuples we apply an ordinary least-squares method and determine
coefficients (α0, α1, α2, α3) for a linear approximation, which gives rise to constraints

α0 + α1 p�,t + α2 pr ,t + qa,t ≤ α3 πa,t + (1 − xa,t )(α0 + α1 ¯
p�,t + α2 p̄r ,t ),

(36)

α0 + α1 p�,t + α2 pr ,t + qa,t ≥ α3 πa,t + (1 − xa,t )(α0 + α1 p̄�,t + α2 ¯
pr ,t ),

(37)

where we assume that α1 ∈ R≤0 and α2 ∈ R≥0 (otherwise we use the correspond-
ing other bound for the coefficients of xa,t on the right hand sides). If the pressure
increasing arc is active, it has to respect this linear approximation. Otherwise, there
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is no flow and the pressures at both ends are decoupled. Here, typical values of the
coefficients are in the ranges α0 ∈ [500, 25000], α1 ∈ [−70,−10], α2 ∈ [3, 40], and
α3 ∈ [400, 1200]. However, the concrete values depend on the number of assignable
machines, their properties, as well as different mass flow and pressure bounds. To give
a concrete example, for an active compressing arc (xa,t = 1) which features up to four
assignable machines, we derive the following relationship

18232.61 − 46.56p�,t + 28.82pr ,t + qa,t = 1209.96πa,t

when constraints (36) and (37) are merged.
Finally, we add the following set of constraints

πa,t ≤ π̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (38)

qa,t ≤ q̃a,t ∀a ∈ Aar-pr
i , ∀t ∈ T (39)

p�,0r̃ a,t − pr ,t ≥ (1 − xa,t )(p�,0 − p̄r ,t ) ∀a ∈ Aar-pr
i , ∀t ∈ T . (40)

The first two constraints (38) and (39) ensure that the mass flow and power used
for compression do not violate the upper bounds given by the machine assignments.
Finally, the outgoing pressure is bounded by the product of the initial ingoing pressure
at t = 0 and the current maximum compression ratio (40) if the corresponding arc is
active.Using the pressure variables insteadwould again result in non-linear constraints.

4.12.5 Compressor arcs

Besides constraints (31)–(40), for each compressor arc a = (�, r) ∈ Aar-co and each
time step t ∈ T we add constraints

p�,t − pr ,t ≤ (1 − xa,t )( p̄�,t −
¯
pr ,t ) ∀t ∈ T (41)

rmax
a,t p�,t − pr ,t ≥ (1 − xa,t )(r

max
a,t ¯

p�,t − p̄r ,t ) ∀t ∈ T . (42)

If the arc is active at some point in time t ∈ T , i.e., xa,t = 1, the pressure at � has to
be smaller than or equal to the pressure at r . Further, we bound pr ,t by rmax

a,t p�,t where
rmax
a,t is the maximum possible compression ratio of a at time t , which can be derived
from constraints (32) and (40). If it is not active, the pressure values are decoupled
and there is no mass flow due to constraints (39) and (34).

Further, there may be an additional upper bound on the pressure at node r , which
has to be respected if the arc is active. Let p̄outr ,t denote this upper bound. We can model
this requirement by:

pr ,t ≤ p̄r ,t − xa,t ( p̄r ,t − p̄outr ,t ) ∀t ∈ T . (43)

If such a bound is given, we shrink the sample space described in the previous section,
accordingly.
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4.12.6 Combined arcs

A combined arc a = (�, r) ∈ Aar-cb
i can be used as a regulating or a compressor arc.

Hence, we first of all introduce two binary decision variables encoding in which mode
it is activated.

x rga,t + xcpa,t = xa,t ∀a ∈ Aar-cb
i , ∀t ∈ T (44)

All constraints (31)–(40), where xa,t is replaced by xcpa,t in (32), (36), (37), and (40),
are added for each combined arcs except for (39), which is replaced by

qa,t ≤ q̃a,t + q̄a,t x
rg
a,t ∀a ∈ Aar-cb

i , ∀t ∈ T , (45)

since q̃a,t = 0 holds if x rga,t = 1. To capture the behaviour as regulating arc, we add
constraints

p�,t − pr ,t ≥ (1 − x rga,t )(¯
p�,t − p̄r ,t ) ∀t ∈ T (46)

analogously to (9), while for the pressure increasing arc we additionally have

p�,t − pr ,t ≤ (1 − xcpa,t )( p̄�,t −
¯
pr ,t ) ∀t ∈ T (47)

rmax
a,t p�,t − pr ,t ≥ (1 − xcpa,t )(r

max
a,t ¯

p�,t − p̄r ,t ) ∀t ∈ T , (48)

analogously to (41) and (42). Further, as for the compressor arcs, there may be an
additional upper bound on the pressure at node r , if compression is used. Thus,

pr ,t ≤ p̄r ,t − xcpa,t ( p̄r ,t − p̄outr ,t ) ∀t ∈ T (49)

is added, similar to (43), and we shrink the sample space from the previous section,
accordingly.

4.13 Objectives and complete model

As mentioned before, we solve a hierarchical MILP formulation consisting of three
levels, i.e., a tri-level mixed-integer linear program. This is motivated by the follow-
ing rationale. In the real-world dispatchers first of all try to control the network by
using technical measures only, i.e., by using and changing the setting of the remotely
controllable elements in order to satisfy the supplies and demands desired by the cus-
tomers. If this does not seem to work, they have some non-technical measures at hand.
The most common and standardized ones are the change of supplies and demands by
either buying or selling gas, i.e., using so-called balancing energy, or by using contrac-
tual options like the interruption of customers. If changing the supplies and demands
alone does not work out, the last option is to ask other transport system operators for
pressure changes of the future supply at some source nodes. In practice, this is done
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by phone calls and can therefore be seen as the last possible non-standardized option.
Thus, we finally state the complete tri-level MILP formulation as

min
σ p

∑

t∈T

∑

v∈Vb

(σ
p+
v,t + σ

p−
v,t ) (50)

min
σ d

∑

t∈T

∑

v∈Vb

(σ d+
v,t + σ d−

v,t ) (51)

min
...

∑

t∈T
(
∑

s∈S
wsδs,t +

∑

a∈Aar

wa(δona,t + δoffa,t )) (52)

s.t. (1) − (49)

In our model the first level controls the slack variables for the inflow pressure bounds,
while the second level controls the slack variables for the boundary values. The goal
of both levels is to minimize the sum of the corresponding slack variables, i.e., the
sum of absolute deviations. The third level, which can be seen as the level for the
technical operation of the network while the other two only ensure feasibility, controls
the remaining variables and minimizes the total cost, which is given as the weighted
sum of simple state and auxiliary link changes.

5 An algorithmic approach for solving the tri-level MILPmodel

To state our algorithmic approach for solving the tri-level MILP model, which we
call AATM in the following, we define three closely connected (single-level) MILP
formulations: First, the MILP consisting of objective function (52) and constraint set
(1)–(49) with all slack variables being fixed to zero, which we denote by L3 in the
following. Second, objective function (51) together with (1)–(49) as well as all inflow
pressure slack variables being fixed to zero we denote as MILP L2. And third, (50)
combinedwith (1)–(49) describesMILP formulation L1, which is often synonymously
called high point relaxation in the context of hierarchical optimization. The AATM is
stated in Algorithm 1.

Within the AATM we may use any exact algorithm, which can prove whether the
MILPs defined above are infeasible or determine an optimal solution for it. Note that if
there exists a feasible solution for any of them, there exists an optimal solution since the
objective functions are all bounded from below by 0. Typically, linear-programming
(LP) based branch-and-bound algorithms are applied, such as the one provided by
Gurobi Optimization (2020), which we used for our computational experiments in
Sect. 8. For more information, we refer to Achterberg (2007).

If there exists a feasible solution with no slacks, i.e., for L3, an optimal solution
for it is returned as an optimal solution for L in line (23). Otherwise, if there exists a
feasible solution for L2, we subsequently solve L̂3, i.e., L3 with all slack variables fixed
to an optimal solution of L2. Doing this, we again determine an optimal solution for
the tri-level MILP, see lines (18)–(20). Finally, if L2 does not admit a feasible solution,
we consider the high point relaxation L1. If it is infeasible, the whole problem L is
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Algorithm 1: Algorithmic Approach for Tri-level MILP Model (AATM)
Input : Tri-level MILP formulation L
Output: An optimal solution for L or INFEASIBLE

1 Solve L3
2 if L3 is infeasible then
3 Solve L2
4 if L2 is infeasible then
5 Solve L1
6 if L1 is infeasible then
7 return INFEASIBLE
8 else
9 SOL1 ← Optimal solution for L1

10 L̃2 ← L2 with inflow pressure slacks fixed to SOL1
11 Solve L̃2
12 ˜SOL2 ← Optimal solution for L̃2
13 L̃3 ← L3 with both slack types fixed to ˜SOL2
14 Solve L̃3
15 return Optimal solution for L̃3
16 end
17 else
18 SOL2 ← Optimal solution for L2
19 L̂3 ← L3 with both slack types fixed to SOL2
20 return Optimal solution for L̂3
21 end
22 else
23 return Optimal solution for L3
24 end

infeasible (7). Otherwise, we subsequently solve L̃2 and L̃3 to determine an optimal
solution for L , see lines (9)–(15).

5.1 Heuristics for single-level MILP formulations

Next, we introduce two heuristics that can be applied to the single-level MILP
formulations from the previous section, i.e., to L1,L2, L̃2,L3, L̃3, or L̂3. Having
branch-and-bound based algorithms in particular in mind, our main motivation is
to produce feasible solutions, use them within the chosen exact algorithm to solve
MILPs in Algorithm 1, and thereby try to accelerate the solving process.

First, we introduce a rolling horizon approach.We start by solving themodel for the
variables and constraints corresponding to t = 0 only. Next, in each of the following
n iterations we solve the model where the next time step is added and the binary
decisions of all but the newly added time step are fixed to the solution values from the
previous iteration.

The second heuristic initially solves a specially designed Min-Cost-Flow (MCF)
problem defined on G = (V,A) for each time step t ∈ T . Analyzing the in- and
outflows at the fence nodes of each station in the optimal solutions, we reduce the
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number of possible flow directions by fixing binary variables of those flow directions
for this time step to zero, which are not consistent with the MCF solution.

5.1.1 Rolling horizon heuristic

The first idea to determine a feasible solution for any of the MILP models above
is to use a rolling horizon approach, i.e., to iteratively consider the model with an
additional time step, solve it, and fix the binary decision variables in the next iteration
to the solution values of the corresponding binary variables of an optimal solution of
the current iteration. This procedure is stated in Algorithm 2.

Algorithm 2: Rolling Horizon Heuristic (RHH)

Input : MILP model L1,L2, L̃2,L3, L̃3, or L̂3
Output: Feasible solution SOLn or UNSUCCESSFUL

1 for k ← 0 to n do
2 MILP0k ← model for T0 := {0, . . . , k}
3 for i ← 0 to k − 1 do
4 MILPi+1

k ← Fix binary variables for time step i in MILPik to SOLk−1
5 end
6 Solve MILPkk
7 if MILPkk is infeasible then
8 return UNSUCCESSFUL
9 else

10 SOLk ← Optimal solution for MILPkk
11 end
12 end
13 return SOLn

Let MILP j
k denote the model on the first k time steps with all binary variables

corresponding to some i ∈ T0 with i < j fixed. If a MILP formulation MILPkk turns
out to be infeasible, we stop the heuristic and return UNSUCCESSFUL. Otherwise, the
heuristic terminates with a feasible solution. Rolling horizon style approaches have
been widely used to find feasible solutions for time-dependent optimization problems,
for example for disruption management in the railway industry (Nielsen et al. 2012)
or scheduling problems (Addis et al. 2016; Samà et al. 2013).

5.1.2 Amin-cost-flow based heuristic

The idea behind the MCF heuristic is to decrease the number of binary variables
regarding the flow directions in the MILP formulation by fixing a subset of them for
each time step to zero. Due to the hierarchical structure of the decisions in a station, i.e.,
the constraints modelling the interplay between the binary variables corresponding to
flow directions, simple states, and artificial arcs, further fixations may follow. In order
to exclude certain flow directions, we solve a specially designed MCF problem on
the underlying graph for each time step and analyze the in- and outflows at the fence
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nodes. Besides the existence of fast algorithms for solving it, MCF is often used in
practice by TSOs to approximate the flow of natural gas, see for example (Hoppmann
and Schwarz 2018; Steringa et al. 2015), where it is used to determine worst case
transport scenarios.

For each arc a ∈ Arg ∪Aar-mo we introduce a non-negative flow variable fa ∈ R≥0
and for each a ∈ Ava ∪ Api ∪ Aar-bi we introduce two non-negative flow variables
f →
a , f ←

a ∈ R≥0 describing the forward and the backward flow, respectively. Further,
consider some t ∈ T and w.l.o.g. we have

∑
v∈V+ Dv,t ≥ ∑

v∈V− |Dv,t | > 0 and let

χt :=
∑

v∈V+ Dv,t∑
v∈V− |Dv,t | . Additionally, recall that for each pipe a ∈ A we are given its length

La ∈ R≥0. Finally, the MCF we solve for each time step t can be formulated as the
following linear program (LP)

min
∑

a∈Api

La( f
→
a + f ←

a )

∑

(v,r)∈Arg∪Aar-mo

fa +
∑

(v,r)∈Ava∪Api∪Aar-bi

( f →
a − f ←

a )

−
∑

(�,v)∈Arg∪Aar-mo

fa +
∑

(�,v)∈Ava∪Api∪Aar-bi

( f ←
a − f →

a ) = 0 ∀v ∈ V0

∑

(v,r)∈Arg∪Aar-mo

fa +
∑

(v,r)∈Ava∪Api∪Aar-bi

( f →
a − f ←

a )

−
∑

(�,v)∈Arg∪Aar-mo

fa +
∑

(�,v)∈Ava∪Api∪Aar-bi

( f ←
a − f →

a ) = Dv,t ∀v ∈ V+

∑

(v,r)∈Arg∪Aar-mo

fa +
∑

(v,r)∈Ava∪Api∪Aar-bi

( f →
a − f ←

a )

−
∑

(�,v)∈Arg∪Aar-mo

fa +
∑

(�,v)∈Ava∪Api∪Aar-bi

( f ←
a − f →

a )

= χt Dv,t ∀v ∈ V−.

Note that if there is no supply or demand in a time step, we define the right hand sides
of all constraints to be 0. Now, given an optimal solution, for each gas network station
Gi and each of its fence nodes v ∈ V fn

i we check whether there is in- or outflow w.r.t.
to Gi at v. If for

fv :=
∑

(v,r)∈Aar-mo

fa +
∑

(v,r)∈Aar-bi

( f →
a − f ←

a ) −
∑

(�,v)∈Aar-mo

fa

+
∑

(�,v)∈Aar-bi

( f ←
a − f →

a )

we have fv ∈ R≥0 \[0, γ )we call v anMCF entry fence node and if fv ∈ R≤0 \(γ, 0]
we call it an MCF exit fence node. The idea to use some threshold γ ∈ R≥0 in this
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definition is that small in- and outflows could be realized by using the gas stored in
adjacent pipelines, i.e., linepack.

Next, we call a flow direction f = ( f +, f −) MCF-valid for station Gi and time
step t , if for each MCF entry fence node v we have v ∈ f + and for each MCF exit
fence node v we have v ∈ f −. As the final step of the heuristic, we solve the MILP
model as described in Sect. 4, where we fix for each station Gi and each time step
t ∈ T all binary variables corresponding to flow directions which are not MCF-valid
to zero, if there exists at least one MCF-valid flow direction. Otherwise, we do not
apply any fixations.

5.2 Solution smoothing

Due to the nature of LP-based branch-and-bound algorithms, such as the one provided
by Gurobi (2020) which we use for our computational experiments in Sect. 8, a typical
issue that arises is the non-smoothness of solutions. This can for example be observed
on compressing arcs, where in many cases massive amounts of gas are compressed in
a single time step, while there is basically no compression at all in all other time steps.
Instead, we would like to have a steady mass flow over the whole time horizon, if that
is possible. Similarly, the same behaviour can be observed for the outgoing pressures.
Of course, these solutions with big differences in the corresponding variable values
for consecutive time steps may be feasible w.r.t. the model, but such a behaviour is
not desirable in practice. In the following, we consider a solution to be smooth if the
changes in the inflow and pressure values at the fence nodes of the network stations are
as small as possible for two consecutive time steps. Thus, we introduce the following
LP-based smoothing routine.

Given a solution S for the hierarchical MILP formulation, consider the following
single-level LP: First, fix all binary variables to their corresponding solution values. If
all inflow pressure slack variables are zero, fix them as well. If furthermore all supply
and demand slacks are zero, we fix them, too. We denote this induced linear program
by LPbase(S) in the following.

Next, for each network station Gi , each fence node v ∈ V fn
i , and each time step

t ∈ T we add four continuous variables δ
p+
v,t , δ

p−
v,t , δ

q+
v,t , δ

q−
v,t ∈ R≥0 as well as two

continuous variables δ
p
v , δ

q
v ∈ R≥0 together with the following constraints:

pv,t − pv,t−1 = δ
p+
v,t − δ

p−
v,t ∀v ∈ V fn

i , ∀t ∈ T (53)

δ
p+
v,t + δ

p−
v,t ≤ δ

p
v ∀v ∈ V fn

i , ∀t ∈ T (54)

qoutv,t − q inv,t − qoutv,t−1 + q inv,t−1 = δ
q+
v,t − δ

q−
v,t ∀v ∈ V fn

i , ∀t ∈ T (55)

δ
q+
v,t + δ

q−
v,t ≤ δ

q
v ∀v ∈ V fn

i , ∀t ∈ T . (56)

Constraint (53) measures the difference between the pressure values at v from time
step t − 1 to time step t using variables δ

p+
v,t and δ

p−
v,t . Analogously, the difference

between in- and outflow is measured by constraint (55) using variables δ
q+
v,t and δ

q−
v,t .

The maximum difference between any two consecutive time steps w.r.t. pressure and
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in- and outflow at v is determined by constraints (54) and (56) using variables δ
p
v and

δ
q
v , respectively.
Furthermore, for each network station Gi and each time step t ∈ T we add two

continuous variables δ
p
i,t , δ

q
i,t ∈ R≥0 and introduce constraints

δ
p+
v,t + δ

p−
v,t ≤ δ

p
i,t ∀v ∈ V fn

i , ∀t ∈ T (57)

δ
q+
v,t + δ

q−
v,t ≤ δ

q
i,t ∀v ∈ V fn

i , ∀t ∈ T (58)

Here, we determine the maximum difference w.r.t. to pressure and in- and outflow
between time step t − 1 and time step t at the fence nodes of station Gi using δ

p
i,t and

δ
q
i,t , respectively.

While variables δ
p
v and δ

q
v are associated with objective coefficients w

sm-q
v and

w
sm-p
v , δ

p
i,t and δ

q
i,t are associated with objective coefficients w

sm-q
i and w

sm-p
i , respec-

tively. Note that these variables are the only ones having nonzero objective coefficients
in case that the solution values of all slack variables are zero. The linear program
LPbase(S) together with constraints (53)–(58) we denote as smoothing linear program
LPsm(S) in the following.

6 Iterative velocity adjustment procedure

Amain drawback of the linear model for the transient gas flow through pipelines used
in our MILP formulation is the fixation of the absolute velocity in the friction term of
the Momentum Equation, see Sect. 4.8. If the mass flows or pressures at the endnodes
of a pipeline change significantly over time, we might under- or overestimate the
pressure loss, what in turn may lead to inaccurate decisions. Thus, we introduce an
iterative velocity adjustment procedure (IVAP) which we later on combine with the
hierarchical optimization model, see Sect. 7. Inspired by the successful application
of sequential linear programming in the context of gas network control problems,
see Rueda et al. (2019) for an example, its goal is to determine a solution, which is
feasible for the tri-level MILP L featuring non-linear constraints (M) instead of the
linear model (11) for the Momentum Equations.

Themain idea is the following: Given a solution S for the hierarchicalMILPmodel,
we first of all consider the induced linear program LPbase(S) as defined in Sect. 5.2.
Next, we retrieve the gas velocities at the endnodes of all pipelinesw.r.t. to S and update
the friction terms of the linear model for the Momentum Equations accordingly. The
goal of this LP shall be to determine a solution such that the pressure and flow variables
corresponding to constraints (11) stay as close as possible to the variables values in S.
In case that there exists a solution such that all these variable values are equal, we have
determined a solution satisfying constraints (M), as the gas velocity depends only on
the mass flow and the pressure in our model.

Thus, we need to introduce additional variables and constraints to measure devi-
ations and penalize them. Therefore, let us denote the set of vertices incident to a
pipeline by Vpi:= ⋃

(�,r)∈Api{�, r}. Furthermore, given a solution S for the tri-level
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MILP formulation, let pSv,t q
S
a,�,t , and qS

a,r ,t denote the values of the corresponding
variables in the following.

First of all, we add variables δ
p+
v,t , δ

p−
v,t ∈ R≥0 for each node v ∈ Vpi and each time

step t ∈ T . Furthermore, we add one additional variable δ
p
and constraints

pv,t − pSv,t = δ
p+
v,t − δ

p−
v,t ∀v ∈ Vpi, ∀t ∈ T (59)

δ
p+
v,t + δ

p−
v,t ≤ δ

p ∀v ∈ Vpi, ∀t ∈ T . (60)

Constraint (59) measures the difference of the pressure value of node v and time step t
to the corresponding solution value in S using variables δ

p+
v,t and δ

p−
v,t . The maximum

difference for any node and any time step is determined by constraint (60) and is equal
to variable δ

p
, since it has non-zero objective coefficient wsm-p ∈ R≥0.

Second, for each pipeline a = (�, r) ∈ Api and each time step t ∈ T we add
four continuous variables δ

q+
a,�,t , δ

q−
a,�,t , δ

q+
a,r ,t , δ

q−
a,r ,t ∈ R≥0 as well as one additional

variable δ
q ∈ R≥0 and introduce constraints

qa,�,t − qS
a,�,t = δ

q+
a,�,t − δ

q−
a,�,t ∀a = (�, r) ∈ Api, ∀t ∈ T (61)

qa,r ,t − qS
a,r ,t = δ

q+
a,r ,t − δ

q−
a,r ,t ∀a = (�, r) ∈ Api, ∀t ∈ T (62)

δ
q+
a,�,t + δ

q−
a,�,t ≤ δ

q ∀a = (�, r) ∈ Api, ∀t ∈ T (63)

δ
q+
a,r ,t + δ

q−
a,r ,t ≤ δ

q ∀a = (�, r) ∈ Api, ∀t ∈ T . (64)

Here, constraints (61) and (62) determine the difference between the in- or outflow at
the endnodes � and r of pipeline a and the corresponding solution values in S. Themax-
imum difference for any pipe, endnode and time step is determined by constraints (63)
and (64) and is equal to δ

q
since it has non-zero objective coefficient wsm-q ∈ R≥0.

The iterative velocity adjustment procedure (IVAP) can now be stated as shown in
Algorithm 3: Given a feasible solution S0 for the initial hierarchical MILP model L ,
we first of all determine the gas velocities for all v ∈ Vpi and all time steps w.r.t. S0.
Next, we iteratively repeat the following procedure: In iteration i , we are going to use
the absolute value of the average gas velocities from the last min{i, k} solutions, i.e.,
|v∗

i |, in constraints (11). Thus, we obtain linear program LPiiv as LPbase(Si−1) using
|v∗

i | in constraints (11) together with constraints (59)–(64). If LPiiv is infeasible, the
procedure is terminated and UNSUCCESSFUL is returned. Otherwise we retrieve the
gas velocities vi from an optimal solution Si . If |vi | and |v∗

i | differ by less than ε for
all pipelines, nodes and time steps, Si is returned as result.

7 Algorithmic framework

The complete algorithmic framework for the optimal operation of transient gas trans-
port networks, which combines AATM and the solution smoothing from Sect. 5 with
the IVAP from Sect. 6 is shown in Algorithm 4.
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Algorithm 3: Iterative Velocity Adjustment Procedure (IVAP)
Input : Solution S0 for tri-level MILP model L , k, ε
Output: Solution for L with constraints (M) instead of (11) or UNSUCCESSFUL

1 v0 ← Gas velocities at all v ∈ Vpi w.r.t. S0
2 i ← 1
3 repeat

4 v∗
i ←

i−1∑
j=max{0,i−k}

v j
min{i,k}

5 LPiiv ← LPbase(Si−1) with |v∗
i | used in (11) + constraints (59)–(64)

6 Solve LPiiv
7 if LPiiv = INFEASIBLE then
8 return UNSUCCESSFUL
9 end

10 Si ← Optimal solution for LPiiv
11 vi ← Velocities at all v ∈ Vpi w.r.t. Si
12 i ← i + 1
13 until |||vi | − |v∗

i |||∞ ≤ ε

14 return Si

Algorithm 4: Algorithmic Framework
Input : Tri-level MILP formulation L , Δ,k, ε
Output: Solution for L with Momentum Equations (M) or UNSUCCESSFUL

1 i ← 1
2 while i ≤ Δ do
3 Si ← Solve AATM(L)
4 if Si = INFEASIBLE then
5 return UNSUCCESSFUL
6 end
7 Ssmi ← Solution of LPsm (Si )

8 Sivi ← IVAP(Ssmi , k, ε)

9 if Sivi = UNSUCCESSFUL then

10 v
update
i ← velocities from last IVAP iteration

11 else
12 return Sivi
13 end

14 L ← L with v
update
i used in Momentum Equations (11)

15 Add no-good-cut w.r.t. values of simple state variables xs,t in Si
16 i ← i + 1
17 end
18 return UNSUCCESSFUL

The following procedure is iteratively repeated: In iteration i , we solve the tri-level
MILP formulation L with the AATM. If the model is infeasible, UNSUCCESSFUL
is returned. Otherwise, we apply the smoothing routine to its solution Si and start
the IVAP with the resulting Ssmi . If the IVAP terminates with a feasible solution, this
is a feasible solution for L with constraints (M) instead of (11) and Algorithm 4 is
terminated. Otherwise, we retrieve the velocities v

update
i from the last IVAP iteration

and derive a new tri-levelMILP formulation L where constraints (11) are updated using
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Table 1 Composition of the
macroscopic gas network

|V| |V+| |V−| |Api| |Arg| |Ava| |Aar|
179 12 89 149 5 1 67

the corresponding absolute values in the friction terms. Further, we add a no-good-cut
w.r.t. the simple state variable values in Si to L , i.e.,

∑

s∈S

∑

t∈T0
x Sis,t · xs,t ≤ m(k + 1) − 1

where x Sis,t denotes the corresponding variable value in Si , k + 1 is the number of
time steps, and m the number of network stations. The algorithm terminates with
UNSUCCESSFUL if no solution within Δ iterations is found.

The reason to start the IVAP with the smoothed solution Ssm instead of S is that
the differences w.r.t. the gas velocities at the nodes for consecutive time steps are
intuitively smaller. This may not only accelerate the procedure, but also lead to a
higher success rate of the IVAP. Furthermore, the solution produced by the IVAP may
maintain some degree of smoothness of the initial Ssm .

If the IVAP fails, we use the velocities from its last iteration in the friction terms
of the Momentum Equations of model L in the next iteration, since it may be closer
to the velocities of some feasible solution for L with non-linear equations (M). By
adding the no-good-cut ensures, that the same solution w.r.t. the simple states does
not occur again. We do this, since we were not able to find a feasible solution for the
non-linear pipe equations using this solution.

Finally, it is important to note, that the solutions produced here are not necessarily
optimal for L with the non-linear equations (M). However, if no slack is needed and
the objective value is zero, the solution is actually optimal.

8 Computational experiments

In this section we present computational experiments, which were conducted in order
to test whether the framework presented in Algorithm 4 is suitable to make important
transient global control decisions for the first stage of the KOMPASS algorithm or
not. First, we describe our set of test instances, followed by the computational setup.
We conclude with an analysis of the results.

8.1 Instances

For our computations we used 333 instances provided by our project partner OGE,
which are based on a real-world network and the corresponding historically measured
data. Thus, the initial state, the boundary values, and the source pressures represent
feasible network states. Non-technical control decisions, which were undertaken by
the dispatchers during the considered time horizon, are already included in this data.
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Table 2 Overview of the
properties of the 7 network
stations A to G

Name |Vfn
i | |Var

i | |Aar
i | |Aar-pr

i | |Fi | |Si |
A 2 0 3 2 3 5

B 2 0 4 3 2 5

C 6 1 10 1 4 4

D 3 0 5 3 6 10

E 6 0 9 2 12 13

F 6 2 12 3 3 14

G 10 2 24 5 18 32

Hence, if the model would perfectly capture reality, we expect it to find feasible
solutions without using any slack.

While the overall composition of the network is depicted in Table1, the properties
of the 7 network stations contained in the network are shown in Table2. For our
experiments, we considered two different data sets. Dataset 1 consists of 168 instances
in 30 minute intervals starting at noon of a virtual day 1 and ending of 23:30pm of
virtual day 4. The other set consists of 165 instances starting at midnight of a virtual
day 6 and ending at 10:00am on virtual day 9. Note that the time difference of 30
minutes between two successive instances does not posses any meaning and is due to
the data creation process at OGE. Furthermore, we considered a granularity of 4 · 15
minutes and 11 · 60 minutes, i.e., we have n = 15 time steps and cover a time horizon
of 12h for each single instance. The reason for the first four time steps having short
length is to have more exact recommendations w.r.t. the time of their execution in the
near future. Additionally, this goes hand in hand with one of our our long-term goals,
namely to have an overall run time of KOMPASS of 15 minutes.

The cost parameters regarding the third level objective were set to wa = 5.0 for
all a ∈ Aar and for each simple state s ∈ S an individual cost parameter ws ∈
{0, . . . , 200} for a change into it was fixed according to expert opinions. Recall, that
the cost for both types of slack variables is equal to 1.0, see Sect. 4.13. For the solution
smoothing we set w

sm-q
v :=15, wsm-p

v :=150, wsm-q
i :=|V fn

i |, and w
sm-p
i :=10.0|V fn

i | for
each v ∈ V fn

i and network station Gi , while for the IVAP we used wsm-p:=104 and
wsm-q:=103, respectively.

8.2 Computational setup

We performed our computations on a cluster of machines composed of two Intel Xeon
Gold 5122 running at 3.60GHz, which provide in total 8 cores and 96GB of RAM.
As solver for the underlying MILP problems we usedGurobi in version 9.0.2 (Gurobi
Optimization 2020), which was accessed via the native C interface.

Since the correspondingMILP formulations turned out to be numerically challeng-
ing, we set the NumericFocus parameter to the maximum value, as well as IntFeasTol
andMIPGap to 10−6, and used the standard settings ofGurobi otherwise.Additionally,
we fixed the absolute velocities in the friction-based pressure difference term of the
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Fig. 4 The y-axis represent time in seconds on a logarithmic scale. For each problem instance in data set
1 (left) and data set 2 (right), there exists a blue and an orange dot representing the cumulative running
times of the PURE and the HEUR approach spent in the AATM. Note that dots can overlap if too many are
present for the same value range

Momentum Equation (M), i.e., in the third summand, to the maximum of the absolute
gas velocity in the initial time step at the corresponding node and vmin:=0.1m

s . The
introduction of the threshold vmin is necessary in order to control the magnitudes of
the constraint’s coefficients and thereby to avoid numerical instabilities. However, this
threshold is decreased to 10−3 m

s for the IVAP, where we used k:=3 and ε:=10−2 m
s

as input parameters.
Furthermore, to each test instance we applied two versions of the AATM, i.e.,

Algorithm 1, which we used within the algorithmic framework, i.e., Algorithm 4.
First, a pure approach, as described in the pseudocode (PURE). And second, a version
where both the RHH and theMCF heuristic were run before everyMILP of the overall
solving process (HEUR). In both cases, we set a cumulative time limit of 3600s for
all MILPs that are solved within all calls of the AATM. For HEUR, we additionally
imposed individual sub time limits of 300s for each single MILP solve performed by
RHH or MCF. For the smoothing LPs and the IVAP no time limit was imposed.

8.3 Results

Detailed computational results for all our test runs can be found in AppendixA. First,
we compare the performance of the PURE and the HEUR approach w.r.t. the deter-
mined solutions and the cumulative run times of all AATMcalls, see Fig. 4. Afterwards
we discuss the run times of the whole framework, see Algorithm 4 and Fig. 5, and con-
clude with an analysis of the solutions and the objective values.

Considering the first data set, both approaches determined solutions with the same
objective values in rather short amounts of time for all instances. Although it seems
that PURE outperforms HEUR here, this is only true for the instances having zero
objective value. Here, HEUR is slower as it has to run our heuristics, which take up
the biggest shares of the running times. Additionally, feasible solutions having zero
objective seem to be quickly found byGurobi, too. However, on fourteen of the sixteen
instances with non-zero objective HEUR is faster.
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Fig. 5 The y-axis represent time in seconds on a logarithmic scale. For each problem instance in data set
1 (left) and data set 2 (right), there exists a blue and an orange dot representing the running times of the
PURE and the HEUR approach including smoothing and IVAP, respectively. Note that dots may overlap

In the second data set, for all but one instance, namely 7-2230, a feasible solution
satisfying the ε-criterion was found by the HEUR approach. In contrast, the PURE
approach failed to determine any feasible solution during the first run of AATM for
instances 6-0500, 6-0730, 6-0830, and 6-1400, and could not produce a solution satis-
fying the ε-criterion for instances 6-0800, 7-1630, and, analogous to HEUR, 7-2230.
HEUR outperformed PURE w.r.t. the determined solution values, as it always ter-
minated with not greater objective value, except for instance 6-1230. Although the
PURE approach again solved instances with solution value zero faster, the advantage
of HEUR on instances with non-zero objective becomes inevitably clear considering
the upper part of the plot.

If we consider the running times of the complete algorithmic approaches, which are
shown in Fig. 5, the advantage of PURE becomes less significant as the IVAP takes up
a big share of the complete run times for instances with zero objective. Additionally,
we see that HEUR is the more robust approach, not only w.r.t. determining feasible
solutions as discussed above, but also w.r.t. the run times, in particular when consid-
ering the second data set. For all but instances 6-1230 and 7-2230, HEUR terminated
within the time limit of 3600s even if smoothing and IVAP times are included.

Only one instance needed the inflow slack at boundary nodes: Instance 6-1530 had
small amount of slack used in the second time step. A deeper analysis showed, that
this slack was needed close to a network station, suggesting that a deeper investigation
regarding the corresponding station and the input data is necessary. Furthermore,
for a majority of the instances a solution was found within the first iteration of the
framework. For HEUR, for example, this is the case for 315 instances. Additionally,
the IVAP performed around 50–70 iterations for most of the instances.

Considering the solution value curves shown in Fig. 6 and analyzing the corre-
sponding measures, we can see that the recommended technical control measures are
stable over consecutive runs, which is a desired behaviour for our decision support
systemKOMPASS.Most importantly, the experts consider them reasonable. However,
for the outliers, in particular instances 4-0700, 6-0530, 6-0600, and 6-2000 a deeper
investigation of the model and the corresponding input data has to be conducted.

123



Optimal Operation of Transient Gas Transport Networks 769

Fig. 6 While the y-axis shows the third level’s objective value of the solution, the x-axis represents the
problem instances of data set 1 (left) and data set 2 (right) in chronological order. The curves are a linear
interpolation of the values of the best solution w.r.t. the third level that was found by any of the two
approaches, i.e., all HEUR solutions except for 6-1230. No value for instance 7-2230 is shown as no
solution satisfying the ε-criterion was found by any of the two approaches

9 Conclusion and outlook

In this paper we presented an algorithmic framework consisting of a tri-level MILP
model together with a sequential linear programming inspired post-processing proce-
dure for the optimization of the control of transient gas transport networks. Complex
pipeline intersection areas are replaced by so-called network stations, i.e., simplified
hand-tailored graph representations modelling the technical control capabilities. The
proposed framework represents the first stage of the two-stage approach implemented
in KOMPASS, a decision support system giving technical and non-technical control
recommendations to the dispatchers. Its goal is to make important transient global
control decisions, i.e., to determine the directions of the flow and where to compress
the gas. The results are then verified in the second stage using the highly detailed
model described in Hennings et al. (2019). Using a linear model for the transient gas
flow in pipelines and further approximations, especially regarding the compressor sta-
tions, we derive a tri-level MILP formulation, which can be solved using a sequence of
single-levelMILPmodels. For these single-levelMILPs, we developed two heuristics,
which determine initial solutions of good quality in rather short amounts of time and
have a positive impact on the overall run time. Additionally, we introduced an itera-
tive velocity adjustment procedure IVAP inspired by sequential linear programming
in order to eliminate the drawbacks of the linear model for the pipe equations. Our
computational experiments using historic flow and pressure values suggest that the
presented framework represents a valuable basis for further development and possible
extensions of KOMPASS.

Regarding the model itself, the analysis of our computational results showed that
a deeper investigation of the solutions w.r.t. the hand-tailored network stations has to
follow. In particular, an automated process to create the network station models given
the topologies of the intersection areas and their corresponding operation modes is
necessary, as it would not only improve the robustness and accuracy of our framework,
but also lead to a better maintainability of KOMPASS. This is because currently every
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time the topology at a junction changes, the network stations have to be revised and
adapted by hand.

Additionally, there exists further potential regarding themodelling of the compress-
ing arcs. Besides an improvement of the approximation of the power bound, it would
be beneficial to dynamically adapt the compression ratio in constraint (40). Currently,
we are working on including this feature in the IVAP.

Another major point for future research is a theoretical analysis of the IVAP.
Although it works well in practice, it is our goal to derive some certificate of con-
vergence. As a first step, we are currently working on a proof for passive networks,
i.e., networks consisting of pipelines only, and for solutions of the tri-level MILP
that fulfill certain criteria. Furthermore, we investigate if and how smoothing may be
integrated.

From the industrial application point of view, we currently aim at applying the
model to larger parts of the network, which include more intersection areas. Of course,
it may also be beneficial to extend the formulation bymodelling parallel and sequential
setting choices for compressor stations or to improve the overall solution quality by
adding additional features like ramp up times of compressor units. However, our
current priority is to decrease the run time in order to be able to scale the presented
approach. Hence, we are for example investigating possibilities to speed up the solving
process of the single-level MILPs in the AATM by developing new heuristics and the
introduction of valid cutting planes. Additionally, we are looking into speeding up the
IVAP by developing a warm start heuristic for successive LP runs.

The whole algorithmic framework and the IVAP in particular may also benefit from
a new feature that we are currently integrating: Using the solutions of chronologically
earlier instances. Assume you have solved some problem instance, consider the next
instance based on the network state 30 minutes later. First of all, we are working on a
new primal heuristic based on the solution values of the binary variables corresponding
to the jointly covered time horizon. And second, we are experimenting with using the
absolute velocities of the solution directly in the Momentum Eq. (11) of the initial
tri-level MILP model for the new instance. The rationale here is, that those values
probably serve as a better and more realistic starting point.

Finally, for our computational experiments we used instances that are based on
historic supplies, demands and pressure values. When forecasted values are used, the
presented model may need to apply non-technical measures more often. This can lead
to a significant increase in the run time. Thus, this is an issue that we have to address
in the near future, too.
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A Appendix

The columns of the following tables contain the results of the computational exper-
iments described and discussed in Sect. 8. In the following, the solution values are
stated w.r.t. the objective function of the third level (52), i.e., the cost of slack is not
shown. All running times are given in seconds.

The 1st column contains the instance name. It consists of the virtual day together
with the time in hours and minutes of the corresponding initial state, i.e., 2-0400 is
the instance having the initial state from 4am of virtual day 2. For cursively written
instances both approaches featured some non-zero solution values for the inflow slack
variables. Otherwise all slack variables were zero for the final solutions.

The 2nd and 3rd column show the value of the best solution found and the gap for
the final MILP solve within AATM, respectively. In case these columns are empty, the
approach did not find a feasible solution in its last iteration.

The 3rd column denotes the total run time spent in the algorithmic approachAATM,
i.e., Algorithm 1 for the PURE variant, while the 4th column denotes the run time of
the complete algorithmic framework, i.e., it additionally includes solution smoothing
and the runs of the iterative velocity adjustment procedure (IVAP). If the time limit
of 3600s for the AATM runs was hit and the 4th column also lists 3600s as result,
this means that no feasible solution was found by AATM within the time limit in the
first iteration of Algorithm 4 since no smoothing or velocity adjustment took place.
Otherwise, either the best solution found was smoothed and processed by the IVAP or
at least one no-good-cut must have been added, i.e., Algorithm 4 performed at least
two iterations.

Additionally, the 6th column shows the number of total IVAP iterations, while the
7th column shows the number of added no-good-cuts which is equal to the number of
iterations of Algorithm 4. The 8th up to the 13th column contain the corresponding
entities for the HEUR approach. Note that the run times of the heuristics are included
in the 10th column.
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INST Val Gap AATM PURE SM-IT NG Val Gap AATM HEUR SM-IT NG

1-1200 0 0 10.99 225.98 56 0 0 0 23.1 326.21 54 0
1-1230 0 0 13.36 236.96 44 0 0 0 23.87 238.17 43 0
1-1300 0 0 12.62 211.04 48 0 0 0 52.25 229.61 45 1
1-1330 0 0 14.89 263.45 44 0 0 0 19.09 185.72 49 0
1-1400 0 0 12.43 377.97 47 0 0 0 21.15 278.8 50 0
1-1430 0 0 12.77 217.51 59 0 0 0 24.92 221.21 52 0
1-1500 0 0 12.65 339.93 46 0 0 0 27.23 490.1 60 0
1-1530 0 0 12.28 377.6 42 0 0 0 18.74 216.09 43 0
1-1600 0 0 11.12 212.29 45 0 0 0 19.79 177.99 43 0
1-1630 0 0 12.4 197.8 48 0 0 0 19.26 175.84 46 0
1-1700 0 0 10.99 181.47 43 0 0 0 19.51 179.2 46 0
1-1730 0 0 11.67 248.37 53 0 0 0 24.5 195.33 45 0
1-1800 0 0 67.32 275.53 54 0 0 0 23.82 211.6 46 0
1-1830 0 0 11.44 179.18 45 0 0 0 25.5 208.27 47 0
1-1900 0 0 12.13 176.09 46 0 0 0 24.89 317.58 50 0
1-1930 0 0 19.21 202.26 49 0 0 0 39.8 223.73 49 0
1-2000 0 0 12.87 197.46 47 0 0 0 22.25 226.12 49 0
1-2030 0 0 12.98 280.37 45 0 0 0 22.76 193.94 49 0
1-2100 0 0 11.35 254.89 61 0 0 0 24.33 202.53 46 0
1-2130 0 0 13 187.86 50 0 0 0 21.86 190.06 46 0
1-2200 0 0 11.65 200.2 51 0 0 0 19.12 165.17 43 0
1-2230 0 0 11.55 222.28 44 0 0 0 19.66 282.64 50 0
1-2300 0 0 13.95 200.91 45 0 0 0 22.3 218.06 49 0
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INST Val Gap AATM PURE SM-IT NG Val Gap AATM HEUR SM-IT NG

1-2330 0 0 11.97 200.11 50 0 0 0 22.39 216.22 47 0
2-0000 0 0 11.78 210.78 50 0 0 0 24.77 326.06 55 0
2-0030 0 0 13.39 204.14 51 0 0 0 26.51 218.03 46 0
2-0100 0 0 12.53 188.86 44 0 0 0 24.43 365.18 49 0
2-0130 0 0 12.7 235.53 53 0 0 0 32.54 253.63 53 0
2-0200 0 0 12.58 286.92 49 0 0 0 19.5 163.44 45 0
2-0230 0 0 12.93 241.62 49 0 0 0 33.12 260.76 49 0
2-0300 0 0 12.3 310.6 53 0 0 0 20.59 381.86 54 0
2-0330 0 0 12.22 267.06 50 0 0 0 19.69 334.53 62 0
2-0400 0 0 11.37 200.32 46 0 0 0 20.11 202.44 51 0
2-0430 0 0 12.96 248.93 51 0 0 0 20.58 283.96 47 0
2-0500 0 0 14.93 232.7 57 0 0 0 26.46 227.23 54 0
2-0530 0 0 12.26 218.2 48 0 0 0 26.85 193.18 43 0
2-0600 0 0 12.31 208.37 52 0 0 0 23.48 201.94 47 0
2-0630 0 0 13.83 233.46 46 0 0 0 26.32 211.75 45 0
2-0700 0 0 12.1 219.65 46 0 0 0 26.12 194.7 44 0
2-0730 0 0 12.88 278.35 48 0 0 0 26.61 221.86 46 0
2-0800 0 0 12.02 228.06 41 0 0 0 28.69 192.77 43 0
2-0830 0 0 11.83 232.01 41 0 0 0 26.52 193.45 45 0
2-0900 0 0 15.12 201.12 49 0 0 0 31.95 209.63 51 0
2-0930 0 0 14.07 257.42 44 0 0 0 33.35 179.89 42 0
2-1000 0 0 13.42 215.57 46 0 0 0 28.73 189.12 46 0
2-1030 0 0 11.47 205.77 43 0 0 0 27.12 180.32 43 0
2-1100 0 0 11.92 189.32 44 0 0 0 23.46 186.7 45 0
2-1130 0 0 12.78 230.85 53 0 0 0 316.24 483.59 44 0
2-1200 0 0 12.59 287.21 45 0 0 0 632.67 847.09 52 1
2-1230 0 0 12.35 177.1 46 0 0 0 313.37 493 46 0
2-1300 0 0 11.89 198.78 47 0 0 0 313.32 526.14 48 0
2-1330 0 0 11.75 264.54 54 0 0 0 283.86 436.63 43 0
2-1400 0 0 11.91 233.64 53 0 0 0 313.09 473.44 48 0
2-1430 0 0 11.07 185.68 45 0 0 0 313.1 470.03 42 0
2-1500 0 0 11.18 203.62 52 0 0 0 310.11 470.53 53 0
2-1530 0 0 10.49 175.66 46 0 0 0 64.13 217.83 40 0
2-1600 0 0 24.97 212.57 55 0 0 0 312.92 525.89 58 0
2-1630 0 0 10.9 218.19 58 0 0 0 182.26 345.83 46 0
2-1700 0 0 13.26 219.93 54 0 0 0 319.2 473.1 47 0
2-1730 0 0 11.93 208.27 48 0 0 0 43.21 203.75 45 0
2-1800 0 0 10.52 196.08 49 0 0 0 257.03 394.22 45 0
2-1830 0 0 10.94 182.13 46 0 0 0 92.07 241.15 41 0
2-1900 0 0 10.83 190.26 51 0 0 0 63.38 219.95 43 0
2-1930 0 0 10.66 181.32 52 0 0 0 55.8 400.2 57 0
2-2000 0 0 13.65 277.3 49 0 0 0 67.82 491.07 66 0
2-2030 0 0 10.68 371.18 50 0 0 0 76.76 397.1 48 0
2-2100 0 0 11.2 295.92 50 0 0 0 60.69 368.89 45 0
2-2130 0 0 11.96 284.45 49 0 0 0 50.44 451.92 54 0
2-2200 0 0 11.94 484.38 52 0 0 0 63.31 557.59 51 0
2-2230 0 0 12.21 384.72 61 0 0 0 82.51 458.42 62 0
2-2300 0 0 12.96 330.6 49 0 0 0 26.09 293.37 50 0
2-2330 0 0 11.78 327.02 52 0 0 0 23.94 444.13 54 0
3-0000 0 0 12.02 318.39 53 0 0 0 20.22 451.52 52 0
3-0030 0 0 11.97 313.32 50 0 0 0 22.69 439.95 54 0
3-0100 0 0 13.09 228.76 51 0 0 0 19.99 464.64 52 0
3-0130 0 0 13.88 437.81 55 0 0 0 19.51 286.08 82 0
3-0200 0 0 13.05 232.45 53 0 0 0 20.5 212.65 54 0
3-0230 0 0 13.96 232.06 56 0 0 0 19.01 191.04 65 0
3-0300 0 0 14.14 211.14 54 0 0 0 19.61 255.8 54 0
3-0330 0 0 13.94 195.78 50 0 0 0 19.6 219.28 54 0
3-0400 0 0 13.09 185.83 55 0 0 0 19.7 230.3 54 0
3-0430 0 0 13.7 169.11 53 0 0 0 19.77 222.12 52 0
3-0500 0 0 15.01 190.72 49 0 0 0 19.58 259.89 50 0
3-0530 0 0 12.95 206.87 55 0 0 0 21.28 231.68 51 0

123



774 K. Hoppmann-Baum et al.

INST Val Gap AATM PURE SM-IT NG Val Gap AATM HEUR SM-IT NG

3-0600 0 0 13.2 158.39 45 0 0 0 20.25 158.04 47 0
3-0630 0 0 12.12 184.94 49 0 0 0 19.8 205.16 53 0
3-0700 0 0 14.55 172.81 49 0 0 0 21.42 172.62 46 0
3-0730 0 0 15.86 198.43 41 0 0 0 20.24 404.88 48 0
3-0800 0 0 12.82 163.51 43 0 0 0 26.51 361.16 63 0
3-0830 0 0 12.84 164.7 43 0 0 0 26.49 361.26 63 0
3-0900 0 0 17.64 186.09 53 0 0 0 20.23 326.13 63 0
3-0930 0 0 14.28 151.34 44 0 0 0 20.51 179.17 43 0
3-1000 0 0 13.18 221.99 58 0 0 0 19.57 194.74 46 0
3-1030 0 0 14.62 161.69 44 0 0 0 20.46 173.49 46 0
3-1100 0 0 12.55 181.64 51 0 0 0 21.41 243.33 55 0
3-1130 0 0 14.33 167.84 44 0 0 0 18.96 161.62 45 0
3-1200 0 0 13.7 276.92 72 0 0 0 23.57 172.71 45 0
3-1230 0 0 15.3 168.5 43 0 0 0 26.16 196.97 45 0
3-1300 0 0 14.96 176.69 47 0 0 0 310.07 470.96 47 0
3-1330 0 0 14.1 165.41 42 0 0 0 75.81 240.29 43 0
3-1400 0 0 14.34 204.37 48 0 0 0 313.38 486.96 56 0
3-1430 0 0 15.73 175.93 44 0 0 0 117.06 281.22 44 0
3-1500 0 0 18.15 316.25 83 0 0 0 313.56 497.99 65 0
3-1530 0 0 13.78 208.88 46 0 0 0 270.71 458.73 45 0
3-1600 0 0 15.88 226.05 49 0 0 0 300.95 500.15 49 0
3-1630 0 0 17.87 243.05 43 0 0 0 267.39 521.95 43 0
3-1700 0 0 73.51 336.35 46 0 0 0 312.81 564.04 58 0
3-1730 0 0 13.12 251.13 45 0 0 0 24 260.87 44 0
3-1800 0 0 14.48 202.74 46 0 0 0 19.4 239.49 73 0
3-1830 0 0 14.36 267.46 49 0 0 0 23.89 231.77 43 0
3-1900 0 0 13.19 197.49 45 0 0 0 24.13 219.42 43 0
3-1930 0 0 14.53 249.2 44 0 0 0 43.42 250.42 41 0
3-2000 0 0 13.55 180.63 53 0 0 0 22.52 220.46 61 0
3-2030 0 0 15.28 213.26 46 0 0 0 22.71 207.46 45 0
3-2100 105 0 26.73 265.24 49 0 105 0 24.19 204.8 44 0
3-2130 105 0 22.45 397.37 56 0 105 0 24.42 239.2 49 0
3-2200 105 0 110.05 270.53 49 0 105 0 25.58 198.52 45 0
3-2230 105 0 30.26 196.31 43 0 105 0 27.95 216.4 48 0
3-2300 105 0 84.35 354.46 53 0 105 0 24.35 198.91 44 0
3-2330 105 0 141.72 416.5 53 0 105 0 27.05 302.85 52 0
4-0000 0 0 13.99 244.42 54 0 0 0 21.44 256.56 47 0
4-0030 0 0 13.06 244.35 50 0 0 0 20.68 292.13 60 0
4-0100 0 0 12.28 189.63 50 0 0 0 20.04 219.04 50 0
4-0130 0 0 14.28 202.48 50 0 0 0 25.64 230.92 48 0
4-0200 0 0 11.18 195.47 50 0 0 0 22.36 220.06 50 0
4-0230 0 0 14.1 227.4 49 0 0 0 20.66 199.52 48 0
4-0300 0 0 14.22 212.59 48 0 0 0 21.08 199.41 52 0
4-0330 0 0 12.26 187 48 0 0 0 20.09 230.91 49 0
4-0400 0 0 14.26 180.48 50 0 0 0 34.29 200.74 50 0
4-0430 0 0 13.96 182.07 48 0 0 0 19.69 225.56 48 0
4-0500 0 0 12.89 203.21 48 0 0 0 22.22 207.54 48 0
4-0530 0 0 13.81 190.98 61 0 0 0 19.58 233.13 64 0
4-0600 0 0 13.04 170.61 49 0 0 0 21.87 205.06 52 0
4-0630 0 0 28.59 218.78 46 1 0 0 21.38 180.5 49 0
4-0700 85 0 131.06 320.75 49 1 85 0 44 220.33 62 1
4-0730 0 0 17.4 184.51 57 0 0 0 20.14 173.61 50 0
4-0800 0 0 13.7 171.31 50 0 0 0 22.98 162.78 50 0
4-0830 0 0 12.97 177.93 51 0 0 0 22.59 191.5 51 0
4-0900 0 0 36.26 210.06 50 1 0 0 45.29 217.49 44 1
4-0930 0 0 14.34 176.17 46 0 0 0 20.62 189.69 47 0
4-1000 0 0 22.42 185.97 49 0 0 0 61.32 223.6 44 0
4-1030 0 0 13.8 157.16 48 0 0 0 20.26 166.68 42 0
4-1100 0 0 15.57 174.55 43 0 0 0 20.59 161.03 43 0
4-1130 0 0 13.33 174.29 48 0 0 0 21.14 164.76 42 0
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INST Val Gap AATM PURE SM-IT NG Val Gap AATM HEUR SM-IT NG

4-1200 0 0 14.22 177.04 45 0 0 0 21.7 172.8 47 0
4-1230 0 0 14.48 237 66 0 0 0 22.18 183.07 46 0
4-1300 0 0 16.38 283.37 55 0 0 0 20.77 171.32 46 0
4-1330 0 0 14.28 305.25 58 0 0 0 21.41 241.34 44 0
4-1400 0 0 12.98 221.55 40 0 0 0 22.45 259.05 45 0
4-1430 0 0 13.53 250.89 42 0 0 0 22.16 368 41 0
4-1500 0 0 13.81 295.23 44 0 0 0 21.88 425.25 47 0
4-1530 0 0 15.7 441.1 45 0 0 0 20.34 408.15 46 0
4-1600 0 0 13.99 430.63 40 0 0 0 22.68 536.65 45 0
4-1630 105 0 138.64 697.47 45 0 105 0 53.45 461.14 53 0
4-1700 105 0 180.42 848.27 47 0 105 0 27.02 494.34 54 0
4-1730 105 0 62.14 878.77 53 0 105 0 27.16 1003.2 52 0
4-1800 105 0 125.7 710.72 48 0 105 0 25.36 427.58 43 0
4-1830 105 0 208.29 664.09 46 0 105 0 92.41 734.1 47 0
4-1900 105 0 133.17 493.23 49 0 105 0 63.86 338.05 43 0
4-1930 105 0 128.54 640.38 50 0 105 0 168.99 651.96 48 0
4-2000 105 0 90.8 507.54 47 0 105 0 65.67 556.58 50 0
4-2030 105 0 170.66 562.53 53 0 105 0 83.46 510.97 61 0
4-2100 0 0 12.62 569.4 49 0 0 0 21.21 376.63 45 0
4-2130 0 0 14 327.12 50 0 0 0 25.82 335.74 51 0
4-2200 0 0 15.35 314.91 51 0 0 0 22.69 404.91 57 0
4-2230 0 0 12.77 424.66 50 0 0 0 20.89 369.53 53 0
4-2300 0 0 13.5 510.89 75 0 0 0 21.67 228.67 52 0
4-2330 0 0 13.62 405.77 75 0 0 0 20.81 196.74 51 0
6-0000 0 0 13.43 214.68 58 0 0 0 20.37 247.61 43 0
6-0030 0 0 46.88 289.02 41 0 0 0 60.05 324.09 47 0
6-0100 0 0 159.84 464.4 39 1 0 0 133.52 496.28 39 0
6-0130 0 0 166.96 511.41 47 0 0 0 29.99 453.62 47 0
6-0200 0 0 1060.57 1398.41 44 1 0 0 29.12 389.04 40 0
6-0230 0 0 12.95 501.91 45 0 0 0 25.15 497.18 47 0
6-0300 0 0 40.01 488.95 46 0 0 0 29.78 550.22 44 0
6-0330 0 0 12.98 389.08 53 0 0 0 35.63 500.91 49 0
6-0400 0 0 31.08 421.51 48 0 0 0 32.45 353.1 51 0
6-0430 135 1 3600 3871.17 56 0 5 0 343.78 746.48 45 0
6-0500 3600 3600 5 0 423.29 781.24 45 0
6-0530 135 0 2008.99 2334.06 52 0 135 0 1834.18 2210.58 51 0
6-0600 135 0 2162 2456.16 46 0 135 0 928.07 1209.29 47 0
6-0630 5 0 460.05 650.23 42 1 5 0 384.91 621.17 47 0
6-0700 5 0 2925.01 3250.83 42 0 5 0 337.99 631.76 33 2
6-0730 3600 3600 5 0 162.54 427.62 47 0
6-0800 3600 3628.63 7 1 5 0 619.28 868.84 46 0
6-0830 3600 3600 5 0 403.02 658.92 51 1
6-0900 130 0.96 3600 3950.85 50 0 5 0 182.53 503.37 48 0
6-0930 5 0 1745.26 2037.76 50 0 5 0 147.94 431.44 48 0
6-1000 5 0 517.31 904.9 47 0 5 0 172.34 487.23 44 0
6-1030 5 0 380.84 636.07 46 0 5 0 431.22 678.46 47 0
6-1100 5 0 1530.92 1762.32 56 0 5 0 2891.14 3193.12 49 0
6-1130 5 0 3295.1 3504.76 42 1 5 0 246.85 527.46 55 0
6-1200 0 0 1236.89 1604.46 65 0 0 0 78.82 438.08 66 0
6-1230 120 0 1810.36 2105.61 87 0 210 0.84 3600 3818.67 65 0
6-1300 120 0 3520.22 3854.08 56 0 120 0 184.92 477.78 69 0
6-1330 120 0 2996.05 3280.21 61 1 120 0 156.44 532.34 59 0
6-1400 3600 3600 120 0 630.71 872.7 69 0
6-1430 120 0 1938.03 2284.72 61 0 120 0 1387.14 1600.86 54 1
6-1500 120 0 2044.11 2326.26 53 1 120 0 341.57 573.93 56 0
6-1530 10 0 1516.49 1997.61 95 0 10 0 1594.73 2090.87 60 0
6-1600 0 0 188.42 441.3 93 0 0 0 67.19 353.48 57 0
6-1630 0 0 15.09 285.28 53 0 0 0 23.73 299.96 53 0
6-1700 0 0 11.59 241.43 76 0 0 0 21.6 285.14 51 0
6-1730 0 0 12.23 200.72 63 0 0 0 23.41 245.59 51 0
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6-1800 0 0 12.63 184.97 62 0 0 0 22.04 242.18 52 0
6-1830 105 0 30.04 253.18 53 0 105 0 28.19 217.35 53 0
6-1900 105 0 113.1 275.03 56 0 105 0 28.74 168.74 48 0
6-1930 105 0 24.55 162.25 52 0 105 0 30.25 336.35 113 0
6-2000 160 0 381 526.95 41 1 160 0 182.59 326.53 42 1
6-2030 105 0 24.6 206.29 54 0 105 0 30.56 214.95 56 0
6-2100 105 0 111.63 251.42 53 0 105 0 32.9 203.51 54 0
6-2130 105 0 131.22 289.15 54 0 105 0 95.31 242.89 54 0
6-2200 105 0 118.23 327.28 41 0 105 0 30.05 196.76 39 0
6-2230 105 0 115.56 318.96 62 0 105 0 29.13 198.5 42 0
6-2300 105 0 178.27 333.48 41 0 105 0 29.83 172.77 39 0
6-2330 105 0 219 405.63 39 0 105 0 31.44 185.82 38 0
7-0000 115 0 385.71 592.2 43 0 115 0 46.04 223 43 0
7-0030 115 0 286.23 485.91 38 1 115 0 56.98 203.08 37 1
7-0100 0 0 11.38 229.8 44 0 0 0 20.97 218.6 47 0
7-0130 0 0 13.79 266.62 42 0 0 0 27.9 266.67 61 0
7-0200 0 0 10.88 225.81 50 0 0 0 25.44 219.36 47 0
7-0230 0 0 11.06 208.87 48 0 0 0 41.09 216.97 45 0
7-0300 0 0 13.49 223.38 50 0 0 0 23.18 213.71 48 0
7-0330 0 0 12.28 216.05 51 0 0 0 25.18 231.28 52 0
7-0400 0 0 11.15 204.61 49 0 0 0 21.79 497.3 75 0
7-0430 0 0 13.11 244.61 63 0 0 0 42.55 632.78 104 0
7-0500 0 0 12.48 507.01 79 0 0 0 22.55 512.39 73 0
7-0530 0 0 11.08 551.25 88 0 0 0 22.81 376.79 65 0
7-0600 0 0 11.45 367.69 73 0 0 0 37.47 379.52 65 0
7-0630 0 0 13.1 390.19 74 0 0 0 21.98 271.49 52 0
7-0700 0 0 41.45 361.5 76 0 0 0 21.16 487.76 89 0
7-0730 0 0 11.52 400.81 87 0 0 0 21.69 443.46 98 0
7-0800 0 0 11.14 281 45 0 0 0 31.15 300.44 45 0
7-0830 0 0 12.09 263.23 52 0 0 0 40.3 296.65 43 0
7-0900 0 0 11.94 460.83 38 0 0 0 21.07 236.25 45 0
7-0930 0 0 11.19 389.66 38 0 0 0 21.12 204.68 46 0
7-1000 0 0 18.69 324.58 41 0 0 0 26.11 247.44 46 0
7-1030 0 0 13.76 275.46 48 0 0 0 44.57 264.75 45 0
7-1100 0 0 12.81 381.88 48 0 0 0 33.41 390.7 45 0
7-1130 0 0 25.76 562.52 48 0 0 0 28.36 417.74 55 0
7-1200 0 0 12.94 440.91 46 0 0 0 27.87 422.98 48 0
7-1230 0 0 235.79 741.71 79 1 0 0 71.63 335.89 70 0
7-1300 0 0 47.54 526.41 70 1 0 0 54.77 431.85 51 0
7-1330 0 0 12.08 359.71 57 0 0 0 59.25 403.07 54 0
7-1400 0 0 25 273.36 47 0 0 0 20.53 231.29 53 0
7-1430 85 0 761.41 951.07 47 0 85 0 325.23 589.92 58 0
7-1500 85 0 876.46 1168.02 53 0 85 0 73.89 328.41 48 0
7-1530 85 0 1756.19 2146.46 54 0 85 0 78.21 265.57 42 0
7-1600 120 0 3337.44 3521.73 56 0 120 0 101.14 297.24 55 0
7-1630 3600 3654.25 18 1 120 0 111.83 287.3 55 0
7-1700 120 0 1101.15 1299.68 54 0 120 0 104.34 298.16 55 0
7-1730 120 0 849.85 1026.91 53 0 120 0 94.22 286.12 55 0
7-1800 120 0 3241.61 3408.32 49 0 120 0 104.02 295.41 55 0
7-1830 120 0 1070.46 1273.82 56 0 120 0 129.86 332.25 58 0
7-1900 120 0 291.85 504.83 58 0 120 0 124.72 305.5 56 0
7-1930 120 0 209.13 400.24 53 0 120 0 160.53 329.07 54 0
7-2000 85 0 312.01 616.59 46 0 85 0 326.15 520.63 43 0
7-2030 0 0 11.96 240.67 50 0 0 0 24.21 205.72 42 0
7-2100 0 0 11.55 231.54 41 0 0 0 37.08 249.01 39 0
7-2130 0 0 12.03 253.55 64 0 0 0 21.26 311.16 43 0
7-2200 0 0 12.05 501.45 68 0 0 0 20.84 237.42 51 0
7-2230 3600 3612.98 4 2 3600 3615.93 4 3
7-2300 0 0 160.01 555.43 42 0 0 0 20.63 596.2 60 0
7-2330 0 0 12.74 510.72 60 0 0 0 22.94 566.17 45 0
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8-0000 0 0 12.54 431.94 59 0 0 0 20.02 393.66 56 0
8-0030 0 0 14.16 322.84 67 0 0 0 24.36 348.09 48 0
8-0100 0 0 13.6 228.38 57 0 0 0 24.3 375.52 50 0
8-0130 0 0 12.71 285.17 46 0 0 0 21.86 237.25 63 0
8-0200 0 0 12.31 211.97 54 0 0 0 21.08 339.5 49 0
8-0230 0 0 35.52 257.53 59 0 0 0 19.79 592.2 67 0
8-0300 0 0 12.35 227.02 63 0 0 0 18.75 253.74 60 0
8-0330 0 0 15.8 269.31 52 0 0 0 23.48 343.78 52 0
8-0400 0 0 12.58 264.62 56 0 0 0 23.59 454.84 51 0
8-0430 0 0 12.66 422.48 51 0 0 0 23.14 237.73 49 0
8-0500 0 0 15.33 202.67 49 0 0 0 21.08 373.8 63 0
8-0530 0 0 13.27 242.85 51 0 0 0 20.57 223.4 47 0
8-0600 0 0 11.28 201.32 51 0 0 0 19.78 264.12 47 0
8-0630 0 0 11.04 216.8 47 0 0 0 20.57 214.63 47 0
8-0700 0 0 144.53 369.6 44 1 0 0 19.74 236.69 48 0
8-0730 0 0 102.26 312.58 45 1 0 0 54.24 285.67 47 1
8-0800 0 0 25.16 312.84 78 1 0 0 73.82 340.47 43 1
8-0830 0 0 75.78 306.57 73 1 0 0 20.59 242.4 61 0
8-0900 0 0 178.06 416.84 58 1 0 0 19.87 321.84 60 0
8-0930 0 0 25.59 303.15 42 1 0 0 55.51 471.35 77 1
8-1000 0 0 54.47 432.24 55 1 0 0 57.19 242.46 38 1
8-1030 0 0 292.06 422.87 37 2 0 0 144.24 321.19 34 1
8-1100 0 0 26 325.5 64 1 0 0 21.97 224.77 58 0
8-1130 0 0 10.81 240.02 62 0 0 0 20.82 216.87 66 0
8-1200 0 0 12.25 253 72 0 0 0 22.63 190.99 50 0
8-1230 0 0 11.51 153.45 50 0 0 0 27.74 238.42 71 0
8-1300 0 0 11.88 175.78 54 0 0 0 25.62 214.49 55 0
8-1330 0 0 187.13 377.58 60 0 0 0 208.27 398.94 60 0
8-1400 0 0 12.66 190.35 45 0 0 0 88.46 283.25 62 0
8-1430 0 0 14.65 305.91 49 0 0 0 20.45 255.68 47 0
8-1500 0 0 13.82 312.95 46 0 0 0 20.1 184.6 42 0
8-1530 0 0 13.93 226.24 46 0 0 0 20.6 215.59 43 0
8-1600 0 0 11.83 233.74 52 0 0 0 20.74 246.94 51 0
8-1630 0 0 12.91 194.42 43 0 0 0 20.33 175.53 41 0
8-1700 0 0 12.84 348.89 45 0 0 0 21.51 171.66 42 0
8-1730 0 0 12.02 393.42 39 0 0 0 19.7 169.13 49 0
8-1800 0 0 12.04 283.66 41 0 0 0 19.91 191.79 60 0
8-1830 0 0 11.64 288.64 40 0 0 0 21.61 221.52 40 0
8-1900 0 0 12.67 208.95 43 0 0 0 18.88 205.89 43 0
8-1930 0 0 12.29 162.22 42 0 0 0 20.17 158.72 42 0
8-2000 0 0 39.09 203.99 41 0 0 0 19.09 223.35 44 0
8-2030 0 0 12.96 163.87 39 0 0 0 20.52 188.29 43 0
8-2100 0 0 12.09 274.03 39 0 0 0 17.73 170.16 48 0
8-2130 0 0 11.75 355.86 38 0 0 0 20.59 186.69 40 0
8-2200 0 0 14.32 261.25 39 0 0 0 21.18 199.56 45 0
8-2230 0 0 12.09 334.1 40 0 0 0 21.62 159.42 47 0
8-2300 0 0 13.24 244.29 48 0 0 0 21.81 299.87 38 0
8-2330 0 0 12.78 222.88 39 0 0 0 20.42 214.11 40 0
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9-0000 0 0 13.65 309.57 43 0 0 0 19.48 323.47 43 0
9-0030 0 0 12.67 278.92 45 0 0 0 18.72 307.3 48 0
9-0100 0 0 13.94 296.77 46 0 0 0 23.55 436.77 43 0
9-0130 0 0 15.43 539.44 47 0 0 0 19.52 453.37 49 0
9-0200 0 0 12.18 435.51 47 0 0 0 20.14 393.52 47 0
9-0230 0 0 14.17 388.23 48 0 0 0 20.4 271.1 45 0
9-0300 0 0 14.27 393.66 46 0 0 0 20.02 261.25 46 0
9-0330 0 0 17.09 545.31 50 0 0 0 19.41 426.01 47 0
9-0400 0 0 15.21 441.35 47 0 0 0 19.81 319.63 47 0
9-0430 0 0 21.13 457.47 48 0 0 0 21.39 314.79 47 0
9-0500 0 0 12.94 248.84 47 0 0 0 25.42 358.44 47 0
9-0530 0 0 15.13 403.15 47 0 0 0 21.33 467.63 49 0
9-0600 0 0 16.19 272.61 47 0 0 0 21.02 257.6 48 0
9-0630 0 0 18.99 311.4 46 0 0 0 20.12 339.96 46 0
9-0700 0 0 14.5 325.94 46 0 0 0 20.79 361.05 44 0
9-0730 0 0 16.44 381.39 55 0 0 0 19.82 334.4 45 0
9-0800 0 0 14.35 319.69 43 0 0 0 19.31 421.98 45 0
9-0830 0 0 14.91 367.42 43 0 0 0 97.13 347.54 34 2
9-0900 0 0 14.9 365.14 43 0 0 0 60.66 343.82 39 1
9-0930 0 0 17.45 255.33 45 0 0 0 60.27 268.48 40 1
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