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Abstract

A primal-dual interior point method for optimal control problems with PDE
constraints is considered. The algorithm is directly applied to the infinite
dimensional problem. Existence and convergence of the central path are an-
alyzed. Numerical results from an inexact continuation method applied to a
model problem are shown.
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1 Introduction

This paper extends [6] from ODE constrained optimal control problems to PDE
constraints and adds numerical examples. For a detailed introduction we refer
to [6, 7] and the references therein. In order to ease the presentation, we will
restrict the discussion to a simple model problem. The extension to more general,
possibly nonlinear, elliptic PDE constraints is straightforward along the lines of [6].
On the Lipschitz domain Ω ⊂ Rd, d ∈ {1, 2, 3}, we consider the optimal control
problem

minJ(u, y) =
1
2
‖y − ỹ‖2

L2
+
α

2
‖u‖2

L2
subject to c(u, y) = 0 a.e.

g(u) ≥ 0 a.e.
(1)

with x = (u, y) ∈ L∞(Ω)× (H1
0 (Ω)∩L∞(Ω)), c(x) = ∆y+u, g(u) = (u−u, u−u)T ,

ỹ, u, u ∈ L∞, and α > 0. For the whole paper we will simplify the notation by
omitting Ω from the function spaces.

∗Supported by the DFG Research Center ”Mathematics for key technologies” (FZT 86) in
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The first order necessary conditions for (1) state the existence of Lagrange mul-
tipliers λ and η, such that

J ′(u, y)− c′(u, y)∗λ− g′(u)∗η = 0 (2)
c(u, y) = 0 (3)

g(u) ≥ 0 , η ≥ 0 , 〈η, g(u)〉 = 0 (4)

holds for the solution point (u, y). The function space interior point method dis-
cussed here replaces the complementarity condition (4) by a pointwise application
of the Fischer-Burmeister function ψ(a, b;µ) = a+ b−

√
a2 + b2 + 2µ :

Ψ(g(u), η;µ) = 0 . (5)

As will be shown lateron, performing a homotopy µ → 0 leads to a Kuhn-Tucker
point satisfying the first order necessary conditions. For (5) to be continuously
differentiable we have to assume η ∈ L∞ and λ ∈ H1

0 ∩ L∞.
We define the Lagrangian as L(u, y, λ, η) = J(u, y)− 〈λ, c(u, y)〉 − 〈η, g(u)〉 and

the homotopy in terms of

F (u, y, λ, η;µ) =

 ∂xL(x, λ, η)
−c(x)

Ψ(η, g(x);µ)

 =


(y − ỹ)−∆λ
αu− λ−Gη
−∆y − u

ψ(g(u), η;µ)

 . (6)

2 The central path

We adapt the ODE related Theorems 3.2, 3.8, and 3.9 to the current linear PDE
setting. The main differences are the choice of appropriate function spaces, the way
of establishing the smoothing property of the state equation solution operator ∆−1

from L2 → L∞, and specializing the assumptions to the linear case.

Theorem 2.1. Define Y = H1
0 ∩ L∞, V = Y × L∞ × Y × L∞, R = ∆(Y ) ⊂ H−1

as the image of the Laplace operator applied to Y , and Z = R × L∞ × R × L∞.
Then the complementarity formulation (6) is a continuously differentiable mapping
from V × R+ to Z which satisfies the Lipschitz condition

‖∂vF (v + δv;µ)− ∂vF (v;µ)‖V→Z ≤ c(1 + µ−1/2) ‖δv‖V . (7)

Proof. The image spaces of the adjoint equation w.r.t. u, the state equation and
the complementarity equation are immediately clear. As for the adjoint equation
w.r.t. y we first notice that −∆y = f, y|∂Ω = 0 with f ∈ L∞ implies y ∈ L∞ (see [3,
Thm. 8.16]). Thus we infer that L∞ ⊂ R and hence y − ỹ ∈ R.

As for the Lipschitz condition (7), only the complementarity function Ψ con-
tributes to the difference. The particular value of the Lipschitz constant is due to
the Fischer-Burmeister function, see Theorem 3.2 in [6] for details.
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Next we establish bounded invertibilty of the derivative. Therefore it is neces-
sary to introduce a splitting of the domain into nearly active and nearly inactive
regions.

Definition 2.2. For some ρ > 0 and functions u, η ∈ L∞, define the characteristic
function χA = χA(ξ;u, η) of the nearly active set vector ΩA componentwise as

χA
i (ξ) =

{
1, g̃i(u(ξ)) ≤ ρηi(ξ)
0, otherwise.

The corresponding characteristic function χI of the nearly inactive set vector ΩI is
defined as 1− χA, where 1 ∈ L∞ is the constant function with value 1.

Note that pointwise multiplication with χA defines an orthogonal projector onto
the corresponding L∞ space over the nearly active set vector ΩA.

Theorem 2.3. Suppose there is a constant β > 0, such that u − u ≥ β almost
everywhere. Then there is a constant c > 0 such that ∂vF (v;µ) has an inverse
which is bounded uniformly in the neighborhood U(c) of the central path:

U(c) = {(v, µ) ∈ V × R : ‖v − v(µ)‖V ≤ c
√
µ, 0 ≤ µ ≤ β2/(4ρ)}

Proof. The proof is completely analogous to the one of Theorem 3.8 in [6]. Note
that the essential assumptions — controllability of the state equation, strength-
ened Legendre-Clebsch condition, and positive definiteness of the Hessian on the
nullspace of the state equation — are trivially satisfied in the current setting. On
the central path v(µ) we consider the system

∂vF (v(µ);µ)δv = r

and derive a bound on δv = (δu, δy, δλ, δη)T in terms of r = (a, b, c, d)T . Block
elimination of δy and δλ leads to[

αI + ∆−2 −G∗
∂gΨG ∂ηΨ

] [
δu
δη

]
=

[
a−∆−1(b+ ∆−1c)

d

]
with G = g′(u). Multiplication by ∂gΨ−1 and elimination of only the inactive part
of η allows to use bounds on the derivatives of Ψ which are independent of µ. The
resulting system reads[
αI + ∆−2 +G∗DIG G∗χA

χAG −DA

] [
δu
χAδη

]
=

[
a−∆−1(b+ ∆−1c) +G∗χI∂ηΨ−1d

χA∂gΨ−1d

]
,

where both DI = χI∂ηΨ−1∂gΨ = χI η
g(u) and DA = χA∂gΨ−1∂ηΨ = χA g(u)

η are
nonnegative and bounded independently of µ. Note that due to 4ρµ < β2 in each
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point ξ at most one component of the inequality constraints is active, such that the
following inf-sup-condition is satisfied:

inf
ξ∈L2

sup
u∈L2

〈χAξ,Gu〉
‖χAξ‖L2 ‖u‖L2

≥ β̂ > 0

Using the saddle point lemma from [1], an L2-bound on δu and χAδη can be ob-
tained. Using the smoothing property ∆−2 : L2 → L∞ (see [3, Thm. 8.16]) to move
∆−2δu to the right hand side and pointwise application of the saddle point lemma
then provides an L∞-bound for δu and χAδη. Tracing the elimination chain back
finally yields a constant γ independent of µ such that ‖∂vF (v(µ), µ)−1‖Z→V ≤ γ.

Using Theorem 2.1 we estimate for v 6= v(µ)

‖∂vF (v, µ)−1‖ ≤ ‖∂vF (v, µ)−1(∂vF (v(µ), µ)− ∂vF (v, µ))∂vF (v(µ), µ)−1‖
+ ‖∂vF (v(µ), µ)‖

≤ ‖∂vF (v, µ)−1‖ C√
µ
‖v − v(µ)‖‖∂vF (v(µ), µ)−1‖+ ‖∂vF (v(µ), µ)‖

and hence

‖∂vF (v, µ)−1‖ ≤ ‖∂vF (v(µ), µ)‖
1− C√

µ‖v − v(µ)‖‖∂vF (v(µ), µ)−1‖
≤ C1

1− C√
µc
√
µC2

≤ C3

for sufficiently small c > 0 independently of µ.

The fact that the inverse of ∂vF can be bounded independently of µ limits the
length of the central path and thus ensures convergence.

Theorem 2.4. Suppose the assumptions of Theorem 2.3 hold. Then the central
path v(µ) exists for all 0 < µ < β2/(4ρ) and converges to a Kuhn-Tucker point
v(0):

‖v(µ)− v(0)‖V ≤ const
√
µ

Proof. Via an implicit function theorem, the bounds given by Theorems 2.1 and 2.3
provide local existence of the central path on the interval [σµ, µ/σ] around µ with
a constant σ < 1. Thus the central path v(µ) can be continued up to µ > 0. Its
derivative v′(µ) = −∂vF (v;µ)−1∂µF (v;µ) is bounded by cµ−1/2 for some constant
c. Integrating the derivative gives a bound of c

√
µ for the length of the path, such

that the path converges to some limit point v(0). By continuity of F , v(0) satisfies
the first order necessary conditions (2)–(4).

3 Numerical example

In [6], linear convergence of an exact short step pathfollowing method in function
space has been shown. The result extends naturally to the current PDE setting.
In [5, 7], an inexact continuation method has been developed, which can actually
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be implemented (see Fig. 1). It relies on adaptive mesh refinement when solving
linear KKT operator equations in order to meet the accuracy requirements imposed
by the inexact Newton corrector. This algorithm has been extended to elliptic PDE
constrained optimal control problems and implemented in the FEM code KASKADE
using piecewise linear elements for state and Lagrange multiplier and piecewise
constant elements for the control.

As a numerical example, we present the application

Elements 
Finite 

Convergence

Stepsize
Control

Linear System

MonitorNewton Method
Inexact 

Solver
Error

Homotopy

Estimator

Mesh Refinement

Interior Point Method

Discrete System Solver

Figure 1: Building blocks
of the function space ori-
ented interior point algo-
rithm.

of the algorithm to a simplified problem from regional
hyperthermia treatment planning. Hyperthermia is a
cancer therapy which aims at heating the tumor by
microwave radiation and thus making it more suscep-
tible to an accompanying radio- or chemotherapy [2].
The governing PDE is the stationary bio-heat-transfer
equation [4]

−∇(κ∇y) + (y − 37)w = u in Ω
βy + ∂ny = g on ∂Ω

for the temperature y on the relevant part of the hu-
man body. The control u, assumed to be freely ad-
justable within the bounds 0 ≤ u ≤ umax, is the en-
ergy absorption of the tissue and is directly related to
the amplitude of the time harmonic electric field gen-
erated by the microwave generator. The thermal effect

of perfusion w with arterial blood of 37◦ C from different body regions is accounted
for by the Helmholtz term. Heat flow through the skin is modeled by the Robin
boundary conditions. The aim is to achieve a desired therapeutical temperature
distribution

ỹ =

{
45 in Ωt

37 in Ω\Ωt

that affects only the tumor tissue Ωt ⊂ Ω (see Fig. 2). For this example, the
regularization parameter α has been set to 10−12.

As can be expected, the solution shown in Fig. 3 just deposits almost all the
energy into the tumor region and almost nothing outside. The narrow band of
very steep increase in the control is due to the small regularization parameter.
Similar results are obtained for the case of Dirichlet boundary conditions, which is
completely covered by the theory.
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Figure 2: Cross-section Ω of the pelvic region with different tissue types (left) and
adaptively refined mesh (right).
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Figure 3: Resulting temperature profile (left) and control (right) for µ = 10−6.
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