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Tight Convex Relaxations for the Expansion

Planning Problem

Ralf Lenz ∗and Felipe Serrano †

February 9, 2021

Abstract

Secure energy transport is considered as highly relevant for the ba-
sic infrastructure of nowadays society and economy. To satisfy increasing
demands and to handle more diverse transport situations, operators of
energy networks regularly expand the capacity of their network by build-
ing new network elements, known as the expansion planning problem. A
key constraint function in expansion planning problems is a nonlinear
and nonconvex potential loss function. In order to improve the algorith-
mic performance of state-of-the-art MINLP solvers, this paper presents an
algebraic description for the convex envelope of this function. Through
a thorough computational study, we show that this tighter relaxation
tremendously improve the performance of the MINLP solver SCIP on a
large test set of practically relevant instances for the expansion planning
problem. In particular, the results show that our achievements lead to an
improvement of the solver performance for a development version by up
to 58%.

1 Introduction

The goal of this paper is to improve the algorithmic performance of the MINLP
solver for the expansion planning problem of energy networks. Given the in-
creasing demands of modern society, these type of problems are becoming more
relevant as well as more challenging. For more details on the problem we con-
sider see Section 2.

The state of the art for solving nonconvex MINLPs to global optimality is
spatial branch-and-bound. Within spatial branch-and-bound one of the most
important ingredients is the construction of tight convex relaxations. For a
nonconvex constraint {x ∈ D | f(x) ≤ 0}, where D ⊆ Rn is convex, the most
common method for constructing a convex relaxation is to compute a convex
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underestimator, that is, a function g : D → R that satisfies g(x) ≤ f(x) for all
x ∈ D. Then, g(x) ≤ 0 yields a convex relaxation of the constraint f(x) ≤ 0.

The best possible convex underestimator of a nonconvex function f over the
domain D is given by the convex envelope vexD(f). For general functions, com-
puting the convex envelope is a difficult task but for specific functions it might
be tractable. Note that constraints can also be of the form f(x) ≥ 0, in which
case concave overestimators are required to build a convex relaxation. In partic-
ular, for equality constraints, both the convex under and concave overestimators
are needed.

In this paper we analytically derive the convex and concave envelope of the
potential loss function f(x, y) = y sgn(x)|x|α with α > 1. This is the only
source of nonlinearity and nonconvexity of the expansion planning problems
that we consider, see Section 2. Thus, the convex relaxations depend on the
convexification of these constraints. As we will see in Section 4.1, the concave
envelope of f can be deduced from the convex envelope of f , thus we concentrate
on the convex envelope in the following. To the best of our knowledge, the
convex envelope of this function is unknown in the literature.

Contributions

i) We derive an explicit description for the convex and concave envelope of
f over a rectangular domain.

ii) We perform an exhaustive computational study, we show that these tighter
relaxations tremendously improve the performance of the MINLP solver
SCIP on a large test set of practically relevant instances that stem from
real-world applications. Our results show that the performance improves
up to 58% percent for hard instances.

Outline The rest of the paper is structured as follows: In Section 3, we in-
troduce preliminary theoretical results from convex analysis that we need to
derive the convex envelope of y sgn(x)|x|α. In Section 4, we present our main
contribution, which is the derivation of a closed-form expression for the convex
envelope of f . In Section 5, we compare the convex envelope with the standard
factorable relaxation for the constraint function f followed by an extensive com-
putational study in Section 6. We test the impact of the convex envelope over
real-world expansion planning problem instances using the MINLP solve SCIP.
To this end, we first study the impact on the dual bound in the root node, and
secondly the overall performance within the spatial branch-and-bound search.
Finally, Section 7 provides conclusions.
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2 Expansion Planning Problem

Transmission system operators of energy networks such as natural gas, hydro-
gen and water networks regularly face both increasing demand and more diverse
transport situations. To deal with these challenges they must expand the capac-
ity of the existing networks without having to resort to the expensive options of
setting up new pipeline corridors or replacing pipelines by larger ones. In prac-
tice, operators preferably build new pipelines parallel to existing ones. This
process is referred to as “looping” in the terminology of the industry. It is
significantly cheaper as, for example, building completely new pipelines, since
existing rights of way can be used simplifying the regulatory and the planning
processes and moreover, the additional encroachment on the environment is
rather moderate.

In the following, we state a model formulation for the loop expansion planning
problem. Let G = (V,A) be a directed and connected graph with node set V and
pipe set A. A balanced demand vector b ∈ R|V| specifies nodal in and outflow
values of the network. Here we deal with a stationary model, this means that
the overall network demand satisfies

∑
v∈V bv = 0. The physical state of the

network is described by flow variables xa ∈ [xa, xa] for all arcs a = (v, w) ∈ A
and non-negative potential variables πv ∈ [πv, πv] at each node v ∈ V. The arc
flows arise from a friction-induced potential difference between the arcs’ adjacent
nodes modeled by Equation (1a). Note that sgn(xa) indicates the direction of
the arc flow. Given that, in general, bi-directional arc flow is possible, we assume
that x < 0 and x > 0. Here, for each pipe a ∈ A, positive variables ya ∈ [ya, ya]
model the physical impact of the expansion on the potential loss along the arc.
The variables ca ≥ 0 represent the corresponding costs of pipe a that can be
assumed as proportional to the pipe length La. We recall from [1], that the
setup of the ya and ca variables enables to split the entire length of the pipeline
to be looped into several segments of variable lengths each of which may have
its own diameter from a discrete set, called split-pipe approach. Note that
in the case that pipe a is not looped, then by construction ya = ya and the
associated costs ca = 0. Otherwise, ya > y and ca > 0. [1] shows that in the
split-pipe setting, the best expansion candidates are determined by the efficient
frontier (Equation (1b)), which is given by ka-many non-dominated points in
the (ya, ca)-system. Finally, as in classical network flow problems, Equation (1c)
models the flow conservation at every network node. Then, the model reads,

min
y,c,x,π

∑
a∈A

Laca

subject to πv − πw = ya sgn(xa)|xa|α ∀a = (v, w) ∈ A, (1a)

ca ≥ sa,iya + ta,i ∀a ∈ A ∀i ∈ [ka − 1], (1b)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V, (1c)

πv ≤ πv ≤ πv ∀ v ∈ V,
xa ≤ xa ≤ xa ∀ a ∈ A,
y
a
≤ ya ≤ ya ∀ a ∈ A,

ca ≥ 0 ∀ a ∈ V.
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In this paper, we compute the convex hull of the constraint (1a), by studying
the convex and concave envelope of the nonlinear function y sgn(x)|x|α.

Finally, let us mention that, in general, these type of optimization problems get
more challenging to solve on networks that have a higher circuit rank, which is
the number |A|− |V|+ 1, because the existence of cycles leads to more complex
patterns of flow directions, see [2] and the references therein.

3 Introduction to Convex Envelopes

In this section, we first introduce some mathematical notation and necessary
theoretical results that are required to derive vexD(f). Afterwards, we give a
brief overview of related literature on convex envelopes. We only consider lower
semicontinuous functions, which we define as follows.

Definition 3.1. Let f : D → R with D ⊆ Rn. The epigraph of f is

epiDf = {(x, µ)| x ∈ D,µ ∈ R, µ ≥ f(x)}.

Definition 3.2. A function f : D → R is lower semicontinuous (l.s.c.) if its
epigraph is closed.

We continue by formally defining the convex envelope of a function.

Definition 3.3. The convex envelope of a function f : D → R over a convex
set D ⊆ Rn is given by the tightest convex underestimator η : D → R of f ,
defined pointwise as

vexD[f ](x) = sup{ η(x) | η(y) ≤ f(y) for all y ∈ D, η convex }.

The concave envelope of a function f : D → R over D ⊆ Rn is given by the
tightest concave overestimator η : D → R of f , defined pointwise as

caveD[f ](x) = inf{ η(x) | η(y) ≤ f(y) for all y ∈ D, η concave }.

A geometrical characterization of the convex envelope is as follows.

Theorem 3.4 ([3], Theorem 5.3). Let E be any convex set in Rn+1 and let

g(x) = inf {µ| (x, µ) ∈ E} .

Then g : Rn → R is a convex function.

The convex envelope of a l.s.c. function f corresponds to the function g, ob-
tained by applying Theorem 3.4 to the convex set conv(epiDf). Therefore, it
follows

vexD[f ](x) = min{µ| (x, µ) ∈ conv(epiDf)}, (2)
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see also [3]. In order to determine the convex envelope of a l.s.c. function f
at point x ∈ D, its representation in (2) leads to the following minimization
problem

vexD[f ](x) = min

n+1∑
k=1

λk f(xk)

n+1∑
k=1

λk xk = x

n+1∑
k=1

λk = 1

λk ≥ 0, xk ∈ D for 1 ≤ k ≤ n+ 1.

(3)

Note that the n+ 1 is justified by Caratheodory’s thm [3, Theorem 17.1]. Prob-
lem (3) is nonconvex and nonlinear as the multipliers λk and the variables xk
are unknown. However, it is possible to reduce the degree of nonlinearity and
nonconvexity of Problem (3) by studying the convex set conv(epiDf) in more
detail. In particular, we reduce the domain D by determining a subset A ⊆ D,
such that conv(epiDf) = conv(epiAf) holds.

Definition 3.5. Let D be compact and convex subset of Rn and let f : D → R
be a l.s.c. function. The generating set of the convex envelope of f is defined
by

GD(f) := {x ∈ D | (x, vexD[f ](x)) is an extreme point of conv (epiDf)}.

Given that a closed convex set with no lines is characterized by the set of its
extreme points and extreme directions ([3, Theorem 18.5]), we have the following
result, see also [4].

Theorem 3.6. Let D be compact and convex subset of Rn, f : D → R be a
l.s.c. function, and A ⊆ D. Then conv (epiDf) = conv (epiAf) if and only if
GD(f) ⊆ A.

Even though there exists no general formula to compute GD(f) of a nonconvex
function f , [4] provide a condition that determines when a point x ∈ D is not in
GD(f). For this we need the relative interior of a convex set D, ri(D) := {x ∈
D : ∀y ∈ D ∃λ < 1 : λx+ (1− λ) y ∈ D}.

Corollary 3.7 ([4], Corollary 7). Let f : D → R be l.s.c. and D ⊆ Rn compact
and convex. If for x ∈ D there exists a line segment l ⊆ D such that x ∈ ri(l)
and f restricted to l is concave, then x /∈ GD(f).

Literature review. In general, the derivation of convex and concave en-
velopes is a challenging task depending on the nonlinear constraint function
and on the domain of the variables involved, see, for example, [5]. It can
be shown that for a l.s.c. function f over a compact and convex domain D,
minx∈D f(x) = minx∈D vexD[f ](x) and hence computing the convex envelope
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is in general NP-hard. Unless P = NP, no efficient method exists to compute
convex envelopes of general nonlinear functions.

In order to build tight convex relaxations, convex envelopes have been widely
studied for particular functions or classes of functions. For example, [6] con-
structs a linear relaxation over a box domain for the bilinear term x y, which is
proven to be the convex envelope by [7]. In the last decade, several approaches
arose to convexify the bilinear term x y over special domains, see, e.g., [8], [9],
[10], [11], and [12]. The convex envelope of the fractional term y/x has been
studied, e.g., in [13], and [14].

Moreover, [14] computes the convex envelope of the function f(x, y) = g(y)x2

over a rectangular domain D ⊆ R2, where g : D → R is convex in x and
concave in y. Even though this function is close to our constraint function
f(x, y) = y sgn(x)|x|α, this approach is not applicable in our setting, given that
our function involves the nonconvex term sgn(x)|x|α instead of x2.

Note that f(x, y) = y sgn(x)|x|α is twice differentiable only for α > 2 and thus
it is not possible to use techniques based on the Hessian, as done, for example,
for (n− 1)-convex functions in [15]. In principle, when f ∈ C2 (i.e., α > 2), we
could generate valid tangential hyperplanes of function f to separate violated
LP solutions without explicitly calculating the convex envelope, as done in [16]
for twice continuously differentiable functions with fixed convexity behavior over
a box. However, our analysis is valid for any α > 1. Furthermore, we note that
for relevant applications the values of α are α = 2 for gas network operations
[17] and α = 1.852 for water network operations, see [18].

4 Computing the Convex Envelope of f(x, y) =
y sgn(x)|x|α

In this section, we show how to compute the convex and concave envelope of
f : D ⊆ R2 → R, with f : (x, y) 7→ y sgn(x)|x|α, where α > 1, over the box
D = [x, x] × [y, y] ⊆ R2. In the remainder of this paper, we assume y > 0,
x < 0, and x > 0, as it typically occurs in practical applications, see Section 2.
For a visualization of the nonconvex function f with α = 2, we refer to Figure 5.

4.1 Preliminaries about the envelopes of f(x, y) = y sgn(x)|x|α

Problem (3) for f(x, y) = y sgn(x)|x|α over the domain D = [x, x]× [y, y] ⊆ R2

reads as

vexD[f ](x, y) = min

3∑
k=1

λk yk sgn(xk)|xk|α,

3∑
k=1

λk xk = x,
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3∑
k=1

λk yk = y,

3∑
k=1

λk = 1,

λk ≥ 0, (xk, yk) ∈ D ∀1 ≤ k ≤ 3.

Note that the above problem has nine variables (xk, yk, λk for 1 ≤ k ≤ 3). In the
next section, we show how to reduce this problem to a one-dimensional problem.

Here, the structure of the function f(x, y) = y sgn(x)|x|α allows us to de-
duce both envelopes from each other, see Figure 1. The function f(x, y) =
y sgn(x)|x|α is odd in x when y is fixed. This allows us to retrieve the concave
envelope from the convex envelope and thus, from now on, we restrict ourselves
to the derivation of the convex envelope.

−x x −x x

gy(x)

fy(x)

caveD[f ](x)
=

−vexDg [gy](−x)

vexDg [gy](x)

Figure 1: Illustration of Proposition 4.1 for the one-dimensional functions fy(x) =
y sgn(x)x2 (blue, dotted) and gy(x) := −fy(−x) = −y sgn(−x)(−x)2 (red, dashed)
with fy : D := [x, x]→ R and gy : Dg := [−x,−x]→ R for fixed y, where vexDf [gy](x)
(red, solid) is the convex envelope of gy and −vexDg [gy](−x) = caveD[f ](x) (blue,
solid) the concave envelope of fy.

Proposition 4.1. Let f : R× [y, y]→ R be an odd function in x, i.e., f(x, y) =
−f(−x, y) and let D := [x, x]×[y, y]. Let Dg := [−x,−x]×[y, y] and g : Dg → R
be given by g(x, y) := −f(−x, y). Then the concave envelope of f over D is given
by caveD[f ](x, y) = −vexDg [g](−x, y).

Proof. By definition of g and vexDg [g](x, y) we have that

vexD[−f ](−x, y) = vexDg [g](x, y) with (x, y) ∈ Dg.

Thus,
caveD[f ](x, y) = −vexDg [g](−x, y) with (x, y) ∈ D.
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4.2 Problem reduction by using the generating set

To simplify Problem (3), we use Corollary 3.7 to find a set A ⊆ D such that
GD(f) ⊆ A for f(x, y) = y sgn(x)|x|α.

First, notice that after fixing x to a value in [x, x], the function f(x, y) is linear
and thus concave over the line segment l = {(x, y) | y ∈ [y, y]}. Then, Corol-
lary 3.7 implies that all points in ri(l) = {(x, y) | y ∈ (y, y)} are not in GD(f).
Thus,

GD(f) ⊆ {(x, y), x ≤ x ≤ x } ∪ {(x, y), x ≤ x ≤ x }.

Let Dy := {(x, y) |x ≤ x ≤ x} and Dy := {(x, y) |x ≤ x ≤ x}. Given that
GD(f) ⊂ Dy ∪Dy, Theorem 3.6 allows us to express the convex hull of epiDf as

conv(epiDf) = conv(epiDy∪Dyf)

= conv(epiDyf ∪ epiDyf)

= conv(conv(epiDyf) ∪ conv(epiDyf)). (4)

The convex hulls conv(epiDyf) and conv(epiDyf) correspond to the epigraphs
of the convex envelopes of the one-dimensional functions fy(x) := f(x, y) and
fy(x) := f(x, y). The following proposition introduces these one-dimensional
convex envelopes, see Figure 2 for an illustration.

Proposition 4.2 ([19], Section 7.5.2). The convex envelope of the function
fy : [x, x] → R given by fy(x) = y sgn(x)|x|α, where x < 0 < x, α > 1, and
y > 0 is given by ϕy : [x, x]→ R, with

ϕy(x) =

{
yxα x ≥ βx
α(βx)α−1xy + (1− α)(βx)αy x < βx,

(5)

where β is the unique negative root of (α− 1)(−β)α + α(−β)α−1 − 1.

Remark 4.3. The function (x, y) 7→ ϕy(x) is not the convex envelope of f(x, y)
as can be seen from Figure 6 (middle). This function is not even convex!

Given that conv(epiDyf) = epiDyϕy and conv(epiDyf) = epiDyϕy, we can fur-
ther rewrite (4) to

conv (epiDf) = conv
(

epiDyϕy ∪ epiDyϕy

)
.

Therefore, we have

vexD[f ](x, y) = min
{
µ| (x, y, µ) ∈ conv

(
epiDyϕy ∪ epiDyϕy

)}
.

Equivalently,

vexD[f ](x, y) = min
x1,x2,λ

(1− λ)ϕy(x1) + λϕy(x2)

8



x βx

fy(x)

ϕy(x)

x

Figure 2: The convex envelope ϕy (red) of the one-dimensional function fy (blue)
depends on the relation of the values βx and x. In the case of βx < x, the convex
envelope is given by the secant between the points (x, fy(x)) and (βx, fy(βx)) for
x ∈ [x, βx] and the function fy(x) itself for x ∈ [βx, x]. Otherwise, if βx > x, then
vex[x,x][fy](x) is given by the secant between (x, fy(x)) and (x, fy(x)).

s.t. (1− λ)x1 + λx2 = x (6a)

(1− λ)y + λy = y (6b)

λ ∈ [0, 1], x1, x2 ∈ [x, x].

Notice that vexD[f ](x, y) = ϕy(x) and vexD[f ](x, y) = ϕy(x). Hence, we just
need to determine the convex envelope of f for y ∈ (y, y). In the following we
assume that y ∈ (y, y).

4.3 Reduction to a one-dimensional optimization problem

We can further reduce the optimization Problem (6) to a one-dimensional prob-
lem.

Firstly, (6b) enables us to fix the multiplier λ

λy := λ =
y − y
y − y

∈ (0, 1).

Given that λ is fixed, we can use (6a) to define x2 in terms of x1. For this we
define the functions tx,y, Tx,y : [x, x]→ R given by

tx,y(z) =
x− (1− λy)z

λy
, and (7)

Tx,y(z) =
x− λyz
1− λy

. (8)
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a b

Tx,y(a) ≤ b b ≤ Tx,y(a)

xx
y

y

Figure 3: An interpretation of function Tx,y on D = [x, x] × (y, y). The set
{(x, y) : Tx,y(a) ≤ b} with x ≤ a ≤ b ≤ x represents the gray shaded region in D,
and {(x, y) : b ≤ Tx,y(a)} corresponds to the region in white in D. Both regions are
separated by the line segment that connects the points (a, y) and (b, y).

These functions satisfy x2 = tx,y(x1) and x1 = Tx,y(x2) for every feasible solu-
tion x1, x2 of Problem (6). Both functions are affine linear, strictly decreasing,
and inverse to each other. For an interpretation of Tx,y, see Figure 3. Note that
tx,y and Tx,y are well-defined, since we assume λy ∈ (0, 1), as described above.

Projecting out x2 in Problem (6) yields a one-dimensional problem, which we
can express with the help of tx,y and Tx,y as

min (1− λy)ϕy(x1) + λyϕy(tx,y(x1))

s.t. max {x, Tx,y(x)} ≤ x1 ≤ min {x, Tx,y(x)} .
(9)

Let x1 := max {x, Tx,y(x)}, x1 := min {x, Tx,y(x)}, and let Fx,y : [x1, x1] → R
be

Fx,y(x1) = (1− λy)ϕy(x1) + λyϕy(tx,y(x1)). (10)

Then, Problem (9) is equivalent to

min Fx,y(x1)

s.t. x1 ≤ x1 ≤ x1.
(11)

Remark 4.4. Problem (11) allows for a geometrical interpretation as illustrated
in Figure 4: For a given point (x, y) ∈ D, Problem (11) corresponds to find-
ing the points (x1, y) and (tx,y(x1), y) such that the line segment between these
points contains (x, y), and the line segment with endpoints (x1, y, ϕy(x1)) and
(tx,y(x1), y, ϕy(tx,y(x1))) has the lowest height at (x, y). Note that the compact
formulation of Problem (11) only contains x1 as a variable, where constraint (7)
allows us to recover x2 = tx,y(x1).

4.4 Properties of the objective function

The objective function of Problem (11), Fx,y, is convex as it is a convex combi-
nation of convex functions. Note that the function ϕy(tx,y(·)) is convex since it
is the composition of a convex (ϕy) with an affine linear function (tx,y).

10



(x2, y)
(x1, y)

(x, y)

Figure 4: A geometrical interpretation of Problem (11) to determine vexD[f ](x, y), as
described in Remark 4.4. The one-dimensional functions in blue fy(x) = y sgn(x)|x|α
and fy(x) = y sgn(x)|x|α are obtained after fixing y to y and y in f(x, y) =
y sgn(x)|x|α. Their corresponding convex envelopes ϕy(x) and ϕy(x) given by (5)
are shown in red, and their epigraphs epiDyϕy and epiDyϕy in gray. Red crosses in
the (x, y)–space correspond to the points (x1, y) and (tx,y(x1), y) with x2 = tx,y(x1),
and red crosses in the (x, y, ϕy(x1))–space correspond to the points (x1, y, ϕy(x1)) and
(tx,y(x1), y, ϕy(tx,y(x1))).

The following proposition characterizes the optimal solution for a large class of
problems of a form similar to Problem (11).

Proposition 4.5. Suppose that a function F : R→ R is convex and has a global
minimum z∗ ∈ R. Then the solution of min{F (z) : a ≤ z ≤ b} is given by

F
(

mid(a, b, z∗)
)
,

where mid(a, b, z∗) selects the middle value between a, b, z∗.

Proof. The claim follows directly by comparing F (a), F (b) and F (z∗). If z∗ is
within the bounds, i.e., a ≤ z∗ ≤ b, then F (mid(a, b, z∗)) = F (z∗). If z∗ ≤ a,
then the convexity of F implies that F is increasing in [z∗,∞) and so F (a) =
F (mid(a, b, z∗)) is the minimum. The argument is analogous for the case z∗ ≥
b.

In order to apply Proposition 4.5 we need to extend Fx,y from x1 ∈ x1 ≤ x1 to
x1 ∈ R and show that it has a global minimum. The extension is immediate,
given that all the functions involved can be evaluated in R. To show that Fx,y
has a global minimum over R we show that the sublevel sets of Fx,y are bounded.
This follows from the following proposition.
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Proposition 4.6. The function Fx,y : R → R, given by Equation (10) with
α > 1, is coercive, i.e., it satisfies

lim
x1→+∞

Fx,y(x1) =∞ and lim
x1→−∞

Fx,y(x1) =∞.

Proof. We compute the limit when x1 goes to +∞. The case when x1 goes to
−∞ is similar. By definition,

Fx,y(x1) = (1− λy)ϕy(x1) + λyϕy(tx,y(x1)).

For every large enough x1 we have x1 ≥ βx and tx,y(x1) < βx. Thus,

Fx,y(x1) = (1− λy) yxα1 + λy

(
α(βx)α−1tx,y(x1)y + (1− α)(βx)αy

)
.

This can be rewritten as axα1 + bx1 + c, where a > 0, b < 0 (since tx,y is strictly
decreasing and linear), and c ∈ R. Given that α > 1, the sign of a determines
the behavior of Fx,y at infinity, hence, lim

x1→∞
Fx,y(x1) =∞.

Figure 5 visualizes function Fx,y(x1) for different pairs of points (x, y).

2000 4000 6000 8000 10000

-100000

100000

200000

F-200,0.1(x1)

F-200,0.5(x1)

F200,0.1(x1)

F200,0.5(x1)

Figure 5: An illustration of function Fx,y(x1) for different pairs of values (x, y) ∈
{−200, 200} × {0.1, 0.5}. The function Fx,y is continuous, convex and coercive.

4.5 Solution to Problem (11)

With these properties of Fx,y, we are ready to compute its global minimum over
R. To this end, we use that Fx,y is differentiable, since ϕy ∈ C1 for α > 1, and
solve F ′x,y(x1) = 0. We have,

F ′x,y(x1) = (1− λy)ϕ′y(x1) + λyϕ
′
y (tx,y(x1)) t′x,y(x1)

(7)
= (1− λy)

(
ϕ′y(x1)− ϕ′y(tx,y(x1))

)
.
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Then, given the piecewise nature of ϕy, see (5), we get

F ′x,y(x1) = (1− λy)


α(βx)α−1y − α(βx)α−1y if x1 ∈ LL
α(βx)α−1y − αtx,y(x1)

α−1
y if x1 ∈ LR

αxα−11 y − α(βx)α−1y if x1 ∈ RL
αxα−11 y − αtx,y(x1)

α−1
y if x1 ∈ RR,

(12)

where

LL = {x1 ∈ R : x1 ≤ βx, tx,y(x1) ≤ βx} ,
LR = {x1 ∈ R : x1 ≤ βx, tx,y(x1) ≥ βx} ,
RL = {x1 ∈ R : x1 ≥ βx, tx,y(x1) ≤ βx} ,
RR = {x1 ∈ R : x1 ≥ βx, tx,y(x1) ≥ βx} .

To solve F ′x,y(x1) = 0, we restrict x1 to be in LL, LR, RL, or RR.

Case x1 ∈ LL: From (12) follows that F ′x,y(x1) = 0 if and only if

α(βx)α−1y = α(βx)α−1y.

Given that y < y, it follows F ′x,y(x1) 6= 0 for all x1 ∈ LL. Thus, the global
minimum is not in LL.

Case x1 ∈ LR: The solution of F ′x,y(x1) = 0 is given by

xlr := Tx,y(βx (y/y)
1

α−1 ).

Note, however, that xlr /∈ LR, as tx,y(xlr) < βx. Thus, the global minimum is
not in LR.

Case x1 ∈ RL: The solution of F ′x,y(x1) = 0 is given by

xrl := βx
(y
y

) 1
α−1

. (13)

The point xrl is in RL if and only if xrl ≥ βx and tx,y(xrl) ≤ βx. Given that
β, x < 0, we have that xrl > βx. Thus, the global minimum is xrl if and only if
tx,y(xrl) ≤ βx. Otherwise, the global minimum must be in the next case.

Case x1 ∈ RR: The solution of F ′x,y(x1) = 0 is given by

xrr := x
y

1
α−1

λyy
1

α−1 + (1− λy)y
1

α−1

. (14)
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From the above case distinction, it follows that the optimal solution is xrl if
tx,y(xrl) ≤ βx, otherwise it is xrr. Therefore, from Proposition 4.5, we conclude
that

vexD[f ](x, y) =

{
Fx,y(mid(x1, x1, xrl)) if tx,y(xrl) ≤ βx
Fx,y(mid(x1, x1, xrr)) else.

(15)

Figure 6 shows a visualization of y sgn(x)|x|α and its convex envelope.

Figure 6: An illustration of the functions f , (x, y) 7→ ϕy(x), and vexD[f ](x, y) over
the domain (x, y) ∈ [−100, 100]× [0.01, 1] for α = 2.

4.6 Simplifying the convex envelope.

We now derive a representation of vexD[f ](x, y) more compact than (15).

Theorem 4.7. The convex envelope of f(x, y) = y sgn(x)|x|α over D = [x, x]×
[y, y] is given by

vexD[f ](x, y) = Fx,y(min {x, Tx,y(x),max{xrl, xrr}}). (16)

Proof. To prove the claim we rewrite (15). We first show that

tx,y(xrl) ≤ βx ⇐⇒ xrl ≥ xrr, (17)

where xrl and xrr are given in (13) and (14). Then, we can rewrite (15) as

vexD[f ](x, y) = Fx,y(mid(x1, x1,max{xrl, xrr})).

Then, we show that
x1 ≤ max{xrl, xrr}. (18)

This implies that mid(x1, x1,max{xrl, xrr}) = min{x1,max{xrl, xrr}} =
min {x, Tx,y(x),max{xrl, xrr}}, which proves the result.

To prove (17) and (18), define Gx,y : R→ R as

Gx,y(z) := z − tx,y(z)
(y
y

) 1
α−1

,

and notice that Gx,y(xrr) = 0 and Gx,y is strictly increasing.

The equivalence (17) follows from the following computation,

xrl ≤ xrr ⇐⇒ Gx,y(xrl) ≤ Gx,y(xrr)

14



⇐⇒ Gx,y(xrl) ≤ 0

⇐⇒ xrl − tx,y(xrl)
(y
y

) 1
α−1 ≤ 0

⇐⇒ xrl ≤ tx,y(xrl)
(y
y

) 1
α−1

⇐⇒ βx ≤ tx,y(xrl).

To prove (18), it is enough to show x1 ≤ xrr. Recall that x1 = max {x, Tx,y(x)}.
The inequality x ≤ xrr follows from the definition of xrr and λy, y, y > 0.

Finally, let us show Tx,y(x) ≤ xrr. This follows from the following computation,

Tx,y(x) ≤ xrr ⇐⇒ Gx,y(Tx,y(x)) ≤ 0

⇐⇒ Tx,y(x) ≤ x
(y
y

) 1
α−1

⇐⇒ x ≤ (1− λy)x
(y
y

) 1
α−1

+ λyx,

and the fact that x ≤ x ≤ (1− λy)x
(
y
y

) 1
α−1 + λyx.

Remark 4.8. From (16) we see that if xrl ≥ x, then

vexD[f ](x, y) = Fx,y(min {x, Tx,y(x)}) = Fx,y(x1).

The condition xrl ≥ x depends only on the bounds, and not on the given point
(x, y). Therefore, if the bounds are such that xrl ≥ x, then we can further reduce
the description of the convex envelope as above.

In summary, we derived an analytic solution for the convex envelope of the
function f(x, y) = y sgn(x)|x|α, with α > 1, which is stated in (16). To evaluate
the convex envelope only requires the computation of the function Fx,y at the
minimum between x1, xrl, and xrr.

5 Convexification of y sgn(x)|x|α in SCIP

In this section we compare the convex underestimator induced by SCIP to
the convex envelope of y sgn(x)|x|α. To this end, consider the epigraph of
y sgn(x)|x|α,

{(x, y, θ) ∈ D × R : θ ≥ y sgn(x)|x|α}. (19)

By virtue of Theorem 3.4, any convex relaxation of (19) induces a convex under-
estimator of y sgn(x)|x|α. Therefore, we construct the convex underestimator
of y sgn(x)|x|α induced by SCIP’s convex relaxation of (19) and compare it to
the convex envelope of y sgn(x)|x|α.

SCIP, as other MINLP solvers, use a standard reformulation procedure that
allows to generate a convex relaxation for factorable MINLPs. The idea is
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to decompose a factorable constraint function into simpler functions for which
convex underestimators or even convex envelopes are known. For general infor-
mation about this reformulation method, we refer to [20], and for a description
of how it works in SCIP to [19].

The decomposition is achieved by introducing additional variables forming, thus,
an extended formulation of the original problem. In our case, SCIP decomposes
the constraint θ ≥ y sgn(x)|x|α by introducing an auxiliary variable z into

z = sgn(x)|x|α,
θ ≥ yz.

Then, SCIP builds a relaxation by computing the convex envelopes of f1(x) =
sgn(x)|x|α and f2(y, z) = y z. Note that by Proposition 4.2, the convex envelope
of f1 is ϕy with y = 1, which we denote by ϕ1. Moreover, the convex envelope
of f2 is given by the well-known McCormick inequalities [6],

ψ(y, z) := max {yz + yz − yz, yz + yz − y z} ,

where z = minx∈[x,x] f1(x) and z = maxx∈[x,x] f1(x).

The convex relaxation of (19) constructed by SCIP is

C = Projx,y,θ {(x, y, z, θ) : z ≥ ϕ1(x), θ ≥ ψ(y, z)} .

Hence, the underestimator induced by C is

φS(x, y) := min
θ,z
{θ : z ≥ ϕ1(x), θ ≥ ψ(y, z)}. (20)

Given that ψ is decreasing with respect to z for every y, an optimal solution of
Problem (20) satisfies z = ϕ1(x). Therefore, the convex underestimator induced
by SCIP is φS(x, y) = ψ(y, ϕ1(x)).

Figure 7 shows the difference between φS and vexD[f ] over D. From the figure
we can see that, for D = [−100, 100] × [0.01, 1], φS and vexD[f ] coincide in
{(x, y) ∈ D : Tx,y(x) ≤ βx}, see also Figure 3. Using D = [−100, 20]× [0.01, 1]
instead would show that φS and vexD[f ] coincide in all of D. The next propo-
sition explains this behavior.

Proposition 5.1. If βx ≥ x, then vexD[f ](x, y) = φS(x, y) for all (x, y) ∈ D.

Proof. Recall that vexD[f ](x, y) = Fx,y(min {x, Tx,y(x),max{xrl, xrr}}) and
Fx,y(x1) = (1−λy)ϕy(x1) +λyϕy(tx,y(x1)). By definition, βx ≤ max{xrl, xrr},
thus vexD[f ](x, y) = Fx,y(min {x, Tx,y(x)}).

As βx ≥ x, we have that min {x, Tx,y(x)} ≤ βx and tx,y(min {x, Tx,y(x)}) ≤ βx.
Therefore, in Fx,y(min {x, Tx,y(x)}) we have that ϕy and ϕy are evaluated on
points smaller than βx, and so they are affine linear.

Assume that min {x, Tx,y(x)} = Tx,y(x). Notice that Tx,y(x) is an affine combi-

nation of x and x as Tx,y(x) = 1
1−λy x+

−λy
1−λy x and 1

1−λy +
−λy
1−λy = 1. As ϕy is
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Figure 7: Difference vexD[f ](x, y) − ψu(y, ϕu(x)) between the convex envelope
vexD[f ](x, y) and the convex underestimator ψu(y, ϕu(x)) over [−100, 100]× [0.01, 1].
The region Au := {(x, y) ∈ D : Tx,y(x) ≤ βx} (highlighted in blue) shows where
vexD[f ](x, y) and ψu(y, ϕu(x)) coincide, cf. Proposition 5.1. In this region, both
vexD[f ](x, y) and ψu(y, ϕu(x)) are linear, while the region in orange illustrates the
nonlinear part of vexD[f ](x, y) that is tighter than ψu(y, ϕu(x)).

affine linear, we have that (1 − λy)ϕy(Tx,y(x)) = ϕy(x) − λyϕy(x). Therefore,
Fx,y(Tx,y(x)) = ϕy(x)− λyϕy(x) + λyϕy(x).

From ϕy(x) = yϕ1(x) and the definition of λy, we obtain

Fx,y(Tx,y(x)) = yϕ1(x) + yϕ1(x)− yϕ1(x).

Notice that z = ϕ1(x) (as ϕ1 is the convex envelope of f1) and so

Fx,y(Tx,y(x)) = yϕ1(x)+yz−yz ≤ max {yz + yϕ1(x)− yz, yz + yϕ1(x)− y z} = φS(x, y).

However, Fx,y(Tx,y(x)) is the convex envelope of y sgn(x)|x|α, while φS(x, y)
is just a convex underestimator, which implies that φS(x, y) ≤ Fx,y(Tx,y(x)).
From here we conclude that φS(x, y) = Fx,y(Tx,y(x)) as we wanted to show.

The case for when min {x, Tx,y(x)} = x follows from a similar argument.

We now explain the behavior from Figure 7.

Proposition 5.2. Assume that βx < x and let A := {(x, y) ∈ D : Tx,y(x) ≤
βx}. Then, for every (x, y) ∈ A,

φS(x, y) = vexD[f ](x, y).

Furthermore, vexD[f ] is linear in A.

Proof. Given that βx < x and Tx,y(x) ≤ βx, we have that min {x, Tx,y(x)} =
Tx,y(x) and tx,y(min {x, Tx,y(x)}) = x ≤ βx. Thus, we can apply the same
reasoning as the one given in the above proof of Proposition 5.1.

Remark 5.3. A similar behavior can be observed between the concave overes-
timator induced by SCIP and the concave envelope of y sgn(x)|x|α.
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6 Computational Study

In this section, we present a computational study that investigates the impact
of the presented convex envelope on the performance of expansion planning
problem (see Section 2). For this, we extend SCIP with the convex envelope
and compare it against default SCIP. We conduct two experiments to answer
the following questions:

1. ROOTGAP : How much gap can be additionally closed in the root node of
the branch-and-bound tree when using the envelopes of y sgn(x)|x|α with
aggressive separation settings?

2. TREE : To which extent do the presented envelopes affect the performance
of SCIP, both in running time and solvability?

6.1 Experimental Setup

In order to measure the impact of the convex envelope over the standard re-
laxation in terms of improving the dual bound, we use an aggressive emphasis
setting for the separation in the ROOTGAP experiment. To reduce the impact of
side effects, we disable restarts1 and all heuristics2.

In contrast to the ROOTGAP experiment, the TREE experiment compares SCIP
default against SCIP with the additional separation routine that generates gra-
dient cuts to the envelopes of f in every local node during the entire tree search.

In both experiments, the gradient cuts for the constraint y sgn(x)|x|2 = πv−πw
using the convex and concave envelope read, respectively,

vexD[f ](x0, y0) +∇vexD[f ](x0, y0)T
(
x− x0
y − y0

)
≤ πv − πw (21)

and

caveD(x0, y0) +∇caveD(x0, y0)T
(
x− x0
y − y0

)
≥ πv − πw. (22)

Test sets. The computational study is carried out on three test sets taken
from [1]: Belgium, GasLib-40 and Circuit rank. These test sets are based upon
the Belgian gas network from the GAMS model library3 and the GasLib-40
network in [22]. As we use gas instances, the exponent α is set to α = 2 in

1In restarts, SCIP aborts the current search after encountering sufficient variable bound
reductions and starts preprocessing the problem again. For more details about restarts in
SCIP, we refer to Section 10.9 in [21].

2We used the following SCIP settings: limits/totalnodes = 1,
separation/emphasis/aggressive = True, limits/restarts = 0 as well as
heuristics/emphasis = Off.

3General Algebraic Modeling System (GAMS) Model Library
https://www.gams.com/modlib/modlib.htm
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Equation (1a). To test the model performance in diverse and severe situations
both Belgium and GasLib-40 instances cover a wide range of possible network
demand vectors b ∈ R|V| and, thus, represent the whole spectrum from “easier”
instances with lower demands up to “harder” instances with higher demands.

To focus also on computational difficulties that arise from more complex pat-
terns of flow directions, the Circuit rank test set includes instances where the
circuit rank is successively increased by adding up to ten new pipelines to the
Belgian network, resulting in five new networks Belgium + (2, 4, 6, 8, 10)
arcs. In total, all test sets contain 6500 instances, with Belgium and GasLib-40
having each 2000 instances, and Circuit rank having 2500 instances.

Implementation. We extended a development version4 of SCIP by a so-called
nonlinear handler, where the separation is applied in the separation and enforce-
ment callbacks. With this handler we add the cuts (21) and (22) in addition to
the cuts that SCIP generates per default (see Section 5).

Given that the considered gas instances tend to be numerically unstable due to
variables in different scales, we observed that many invalid cuts were generated
in some preliminary experiments. To following two measures prevented the
addition of invalid cuts to SCIP.

– We only add the cuts (21) and (22) to SCIP if they are violated at least
by 10−4.

– If the LP solution (x̂, ŷ) satisfies ŷ = y or ŷ = y, then we compute a
slightly weakened gradient cut by considering the envelopes over the en-
larged domain [x, x]× [y − s, y] or [x, x]× [y, y + s], respectively. We take
s = 10−4.

Moreover, Propositions 5.1 and 5.2 give conditions under which φS(x, y) =
vexD[f ](x, y). In those cases, we omit the generation of gradient cuts of vexD[f ](x, y)
because they will be generated in any case by SCIP. Specifically,

– If the variable bound in the current LP relaxation satisfy x < βx, then we
do not generate gradients cuts for vexD[f ](x, y) (Proposition 5.1).

– If the current LP solution satisfies Tx,y(x) < βx and βx < x, i.e., (x, y) ∈
A, then we do not generate gradients cuts for vexD[f ](x, y) (Proposi-
tion 5.2).

Hardware and software. The experiments were conducted on a cluster of
64-bit Intel Xeon CPU E5-2670 v2 CPUs at 2.5 GHz with 25 MB cache and
128 GB main memory. To safeguard against a potential mutual slowdown of
parallel processes, we bind the processes to specific cores and run at most one
job per node at a time. We used a development version of SCIP 6.0.2.4 [23]
with CPLEX 12.7.1.0 as LP solver [24] and Ipopt 3.12.13 as NLP solver [25].

4To be released in SCIP 8.
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6.2 Computational Results

In this section, we present the results for the ROOTGAP and TREE experiments.
In the following, Enabled refers to adding the gradient cuts of the convex and
concave envelopes, as opposed to Disabled, which refers to SCIP default settings.

ROOTGAP Experiment. From the 6500 instances, we do not consider the ones
that that have been detected infeasible, no primal solution is known, or none of
the version could increase the dual bound by more than 10−4. This restriction
results in 3144 instances for the ROOTGAP experiment.

To compare the dual bounds of Enabled and Disabled relative to a given primal
bound, we use the following measure. For an instance let d1 ∈ R be the dual
bound of Enabled, and let d2 ∈ R be the dual bound of Disabled. Furthermore
let p ∈ R be a reference primal bound, for example the optimal or best known
objective value of that instance. The function GC : R3 → [−1, 1] defined as

GC(d1, d2, p) :=


0 if d1 = d2

+1− p−d1
p−d2 if d1 > d2

−1 + p−d2
p−d1 if d1 < d2

measures the improvement of the gap closed when comparing the dual bounds
d1 and d2 relative to p, see also [12]. Note that a positive value GC(d1, d2, p) >
0 implies that the dual bound improved by adding the gradient cuts to the
convex envelope vexD[f ](x, y). Analogously, a negative value GC(d1, d2, p) < 0
indicates that the addition of the gradient cuts deteriorates the performance.

# instances gap closed (%)

3144 0.87
> 0% change 1119 2.44
> 0% better 1033 2.96
> 0% worse 86 3.82
> 2% change 307 6.75
> 2% better 271 8.74
> 2% worse 36 8.19
> 10% change 66 19.69
> 10% better 55 28.87
> 10% worse 11 16.22

Table 1: Aggregated results for the gap closed of the ROOTGAP experiment. The gap
closed values are depicted on average for ALL instances, and for those instances where
Enabled yields an improvement or deterioration of more than 0%, 2% and 10% com-
pared to Disabled, called better or worse. The category change corresponds to the
union of better and worse instances.

Aggregated results for the ROOTGAP experiment are shown in Table 1 and Fig-
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Figure 8: The Gap closed improvement, where each bar on the x-axis represents the
relative improvement with the corresponding number of instances on the y-axis in
logarithmic scale. Positive values on the x-axis represent improved dual bounds for
Enabled, and negative values indicate better dual bounds for Disabled. An instance
having a gap closed value of 0.5 (on the x-axis) implies that the gap could be closed by
50% using Enabled over Disabled. For all 3144 instances under consideration, Enabled
yields better dual bounds on 1033 instances and Disabled on 86 instances.

ure 8. Table 1 shows that the addition of the cuts closes more gap on 1033 out of
the 3144 instances and closes less gap only on 86 instances (for an explanation
see below).

Additionally, the table presents the average gap closed for instances, where
either Enabled improves (better) or deteriorates (worse) by more than 0%, 2%,
or 10%, whereas change encompasses the union of those instances that are
better or worse by more than 0%, 2%, or 10%.

Among all instances, the average gap closed improvement is 0.87%. However,
when one considers all instances for which the gap closed is different, the gap
closed improvement increases to 2.44%. Furthermore, if we consider instances
for which the gap closed differs by 2% and 10%, then the gap closed improvement
increases to 6.75% and 19.69%, respectively.

The presented results show that our convexification of the considered constraint
function has a significant impact on the quality of the relaxation. In theory, the
dual bounds obtained by Enabled should always be at least as good as the one
from Disabled, since we apply the gradient cuts on top of SCIP default.

Nevertheless, as mentioned above, there are 86 where disabling the cuts yields
improved dual bounds. The explanation for this behavior is that some of the
gradient cuts from the convex envelope, increase the computational cost of solv-
ing LPs in the OBBT propagator [26]. As a consequence, the internal limit of
simplex iterations in OBBT are hit faster, which has the side effect that less
genvbounds can be learned. However, less genvbounds reduce the number of
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variable bound reductions, and as a consequence, lead to worse dual bounds.
Indeed, when turning off the propagator genvbounds for Enabled and Disabled
on these 86 instances, then better dual bounds are obtained by Enabled for all,
but 14 out of these 86 instances.

TREE Experiment. Aggregated results for the TREE experiment are shown
in Tables 2 - 4 for the three test sets under consideration. We compare the
number of solved instances and the solver performance when activating the cut
generation for the convex envelope (Enabled) with SCIP using default settings
(Disabled). The number of solved instances and the computation time is split
into different categories: ALL, ALL OPT, [1, tlim], [10, tlim], [100, tlim], and
[1000, tlim]. ALL consists of all instances. ALL OPT consists of the instances that
are solved to optimality or detected to be infeasible by both settings. [t, tlim]
consists of the instances that could be solved by at least one of both settings
Enabled or Disabled, in more than t seconds within the time limit of one hour.
Note that the instances in [t1, tlim] are contained in [t2, tlim] whenever t1 ≥ t2
and that one can consider the instances in [t, tlim] to be harder to solve the
larger t is.

Most importantly, on all test sets, enabling the cut generation for the convex
envelope increases the number of solved instances and decreases the average
solving time compared to SCIP default. Concerning the number of solved in-
stances, Enabled solves 39 more instances on Belgium, 19 more instances on
GasLib-40 and 68 more instances on Circuit rank. From the tables we deduce
that all the extra instances that Enabled solves belong to the groups [1000, tlim].
This means that our separation routine renders these instances solvable but not
trivially solvable.

To compare the total running time between Enabled and Disabled, we use the
shifted geometric mean (sgm) with a shift value of s = 10 for the average solving
time in seconds. For instances that are solved to optimality by both settings (ALL
OPT), we additionally present the sgm for the number of explored branch-and-
bound nodes with a shift value of s = 100. As can be seen in Tables 2 - 4, there is
an improvement in the performance when using Enabled over SCIP default in all
test sets and through all time categories. This improvement increases towards
the more “difficult” instances to a speed-up of up to 58% on Belgium. Even for
ALL OPT, there is throughout a speed-up of 19% (Belgium) and 12% (GasLib-40
and Circuit rank) when using the Enabled separation routine. Likewise, the
number of branch-and-bound nodes significantly decreases by 22%, 25%, and
14% for ALL OPT on these three test sets.

Finally, we remark that the Wilcoxon signed-rank test [27] judges the perfor-
mance improvements on the Belgium, GasLib-40, and Circuit rank test sets as
highly statistical significant being consistently distributed in the shifted geo-
metric mean across all three test sets.5

5In this paper, we test against the null hypothesis, which corresponds to the assumption
that the approach yielding a better performance, is actually not better. For the significance
testing, we use a p-value of 1%, which describes the (approximate) probability that the null
hypothesis holds. Small p-values indicate that the hypothesis was wrong, and we may as-
sert that the difference of the performance values in the shifted geometric mean is indeed
significant.
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Enabled Disabled

# instances # solved # solved time B&B nodes

relative

ALL 2000 1905 1866 1.19 -
ALL OPT 1832 1832 1832 1.19 1.22

[1, tlim] 1635 1601 1562 1.23 -
[10, tlim] 1039 1005 966 1.34 -
[100, tlim] 542 508 469 1.47 -
[1000, tlim] 237 203 164 1.58 -

Table 2: Aggregated results for the TREE experiment on Belgium. The column “rel-
ative” reports the change of solving time and branch-and-bound nodes relative to
Enabled.

Enabled Disabled

# instances # solved # solved time B&B nodes

relative

ALL 2000 1181 1162 1.05 -
ALL OPT 1108 1108 1108 1.12 1.25

[1, tlim] 1146 1092 1073 1.14 -
[10, tlim] 1083 1029 1010 1.15 -
[100, tlim] 719 665 646 1.21 -
[1000, tlim] 293 239 220 1.20 -

Table 3: Aggregated results for the TREE experiment on GasLib-40. The column
“relative” reports the change of solving time and branch-and-bound nodes relative to
Enabled.

Enabled Disabled

# instances # solved # solved time B&B nodes

relative

ALL 2500 1041 973 1.08 -
ALL OPT 766 766 766 1.12 1.14

[1, tlim] 1248 1041 973 1.16 -
[10, tlim] 1248 1041 973 1.16 -
[100, tlim] 1096 889 821 1.18 -
[1000, tlim] 831 624 556 1.16 -

Table 4: Aggregated results for the TREE experiment on Circuit rank. The column
“relative” reports the change of solving time and branch-and-bound nodes relative to
Enabled.

7 Conclusion

In this paper, we derived the convex envelope of the nonconvex and bivariate
function f(x, y) = y sgn(x)|x|α for α > 1. This contribution was motivated by
the fact that strong relaxations of nonconvex constraints play a key component
in solving MINLPs, see [28]. As this function frequently occurs in expansion
planning problems, it is also of significant practical relevance. We performed an
extensive computational study on real-world instances which showed the bene-
fit of the convex envelope over the standard relaxation used in state-of-the-art
solvers. Given that we provide a closed-form expression for the envelopes, our
implementation in the MINLP solver SCIP allows us to calculate and exploit
the envelopes at every node in the branch-and-bound tree, which has a cru-
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cial impact on the solving process. Apart from yielding improved dual bounds
that reduce the gap already in the root node, our procedure drastically boosts
the solving process in the branch-and-bound tree. Our procedure significantly
reduces the solving time on all test sets, for example, by up to 58% for hard
instances on Belgium. Even more important, this tighter relaxation enables to
solve more instances on all test sets.

One possible avenue for further research is to consider the convexification of
multiple constraints simultaneously. In this fashion, [29] already report promis-
ing results for quadratic functions with absolute value terms for gas network
related problems.

8 Acknowledgements*

This work was supported by the Research Campus MODAL (Mathematical Op-
timization and Data Analysis Laboratories) funded by the German Federal Min-
istry of Education and Research (fund number 05M14ZAM).

References

[1] Lenz, R.: Optimization of stationary expansion planning and transient
network control by mixed-integer nonlinear programming. Ph.D. thesis,
Technische Universität Berlin (2021)

[2] Shiono, N., Suzuki, H.: Optimal pipe-sizing problem of tree-shaped gas
distribution networks. European Journal of Operational Research 252(2),
550–560 (2016). DOI 10.1016/j.ejor.2016.01.008

[3] Rockafellar, R.T.: Convex Analysis, Princeton Mathematical Series,
vol. 28. Princeton University Press (1970)

[4] Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes
of lower semi-continuous functions. Mathematical Programming 93, 247–
263 (2002)

[5] Horst, R., Tuy, H.: Global optimization: Deterministic approaches.
Springer-Verlag, Berlin Heidelberg (1990)

[6] McCormick, G.P.: Computability of global solutions to factorable noncon-
vex programs: Part 1 – convex underestimating problems. Mathematical
Programming 10(1), 147–175 (1976)

[7] Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming.
Mathematics of Operations Research 8(2), 273–286 (1983)

[8] Sherali, H.D., Alameddine, A.: An explicit characterization of the convex
envelope of a bivariate bilinear function over special polytopes. Annals of
Operations Research 25(1), 197–209 (1990)

24



[9] Linderoth, J.: A simplicial branch-and-bound algorithm for solving
quadratically constrained quadratic programs. Mathematical Programming
103(2), 251–282 (2005)

[10] Locatelli, M.: Convex envelopes of bivariate functions through the solution
of kkt systems. Journal of Global Optimization pp. 1–27 (2018)

[11] Hijazi, H.: Perspective envelopes for bilinear functions. In: AIP Conference
Proceedings, vol. 2070. AIP Publishing (2019)
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