
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ARIE M.C.A. KOSTER
ADRIAN ZYMOLKA

Linear Programming Lower Bounds for
Minimum Converter Wavelength Assignment

in Optical Networks

ZIB-Report 04–41 (December 2004)

Linear Programming Lower Bounds for

Minimum Converter Wavelength Assignment

in Optical Networks

Arie M. C. A. Koster1,2 Adrian Zymolka1

Abstract

In this paper, we study the conflict-free assignment of wavelengths to lightpaths in
an optical network with the opportunity to place wavelength converters. To benchmark
heuristics for the problem, we develop integer programming formulations and study
their properties. Moreover, we study the computational performance of the column
generation algorithm for solving the linear relaxation of the most promising formulation.
In many cases, a non-zero lower bound on the number of required converters is generated
this way. For several instances, we in fact prove optimality since the lower bound equals
the best known solution value.

1 Introduction

The design of an optical network involves three closely related tasks: dimensioning, routing,
and wavelength assignment. Given is a physical topology of the network as well as, for every
pair of nodes, a demand for a number of lightpaths to be established between these nodes.
Transmission capacity at a link is provided by the installation of fibers and Wavelength
Division Multiplexing (WDM) systems, whereas switching capacity in the nodes is provided
by optical cross connects (OXCs). The network has to be dimensioned and the lightpaths
have to be routed in such a way that the capacity consumption by the lightpaths does not
exceed the transmission and switching capacities of the links and nodes. The routing has
to satisfy various constraints, e.g., survivability requirements. In addition, each lightpath
has to be assigned a wavelength on every link it passes, where the number of times a
wavelength can be assigned is limited by the WDM systems on the link. Two consecutive
links of a lightpath can be assigned a different wavelength only by the placement of a so-
called wavelength converter in the intermediate node. We assume that each wavelength
converter can translate a single optical channel from any wavelength to any other. The cost
of an optical network design consists of the cost of the installed equipment. The optical
network design problem is to find a design that minimizes the total cost.

1Zuse Institute Berlin (ZIB), Takustraße 7, D–14195 Berlin, Germany. Email: {koster,zymolka}@zib.de
2Partially supported by the DFG research group ”Algorithms, Structure, Randomness” (Grant number

GR 883/9-3, GR 883/9-4)
Keywords: Optical Networks, Wavelength Assignment, Integer Programming
Mathematics Subject Classification (2000): 90C10, 90B18, 90C90

1

In the literature, the focus of optical network design has been on routing and wavelength
assignment, whereas the dimensioning was considered less frequently. For incorporation of
all three issues, we have proposed in [13] a decomposition of the problem into a dimensioning
and routing subproblem and a wavelength assignment subproblem. In the first subproblem,
a cost minimal configuration of fibers, WDM systems, and OXCs has to be found together
with an appropriate routing of all lightpaths. In the second subproblem, we have to find a
conflict-free wavelength assignment to the routed lightpaths, which can always be carried
out due to the unlimited availability of wavelength converters. Computational experiments
favor such a decomposition, since the obtained optical network designs typically require
only a small number (often zero) of wavelength converters, cf. [6, 13]. The fraction of
total network cost spent for conversion remains therefore very small. The decomposition
is logical also from a mathematical point of view, as it separates two hard mathematical
problems, an integer multicommodity flow problem (routing) and a generalized coloring
problem (wavelength assignment).

In this paper, we study the subproblem of assigning wavelengths to the routed lightpaths
such as to minimize the number of wavelength converters. In [6], it has been shown that the
problem is NP-hard, and heuristics have been discussed. To benchmark the heuristics, it is
necessary to compute the optimum or, second best, a good lower bound on the number of
converters needed. For this, we present two integer programming formulations and compare
the quality of the lower bounds provided by the linear relaxations to each other and to the
integer optimum. To compute the linear relaxation optimum of the favorite formulation, a
column generation algorithm has been implemented. For several realistic instances, it turns
out that this lower bound equals the best known heuristically computed value, by this
proving optimality. In a computational study, we further compare the effect of different
initialization and column generation strategies on the performance of the algorithm for
solving the linear relaxation.

2 Problem Description

The Minimum Converter Wavelength Assignment Problem (MCWAP) is to assign wave-
lengths to the links of a given set of lightpaths such that the total number of wavelength
converters to be installed in the nodes of the network is minimized. For each lightpath, the
routing path is already specified. Since the specific fiber and WDM system used by a light-
path first become relevant in the wavelength assignment, this decision is part of MCWAP.
Hence, for every link, only the number and type of fibers and WDM systems is given, but
lightpaths are not dedicated to specific equipment. We assume that both lightpaths and the
installed equipment are bidirectionally oriented, i.e., fibers and WDM systems are installed
in pairs, one for each direction, and a lightpath provides a virtual connection in both direc-
tions. The network is dimensioned in such a way that the number of channels consumed by
all lightpaths on a link does not exceed the installed channel capacity. Likewise, we assume
that the OXCs in the nodes are large enough (in terms of switching capacity) to handle all
lightpaths.

From a graph theoretical point of view, MCWAP can be described as follows. Let N =
(N,L) be an undirected graph with N representing the nodes and L the links of the physical

2

topology. The set Λ contains all wavelengths of the available spectrum. At each link
` ∈ L, κλ` defines the number of times wavelength λ ∈ Λ is available by the installed
equipment. Note that different WDM systems can result in different values κλ` for the

diverse wavelengths. In case κλ1
` = κλ2

` for all λ1, λ2 ∈ Λ, we use κ` as notation of the
multiplicity of any wavelength on link ` ∈ L. In total K` =

∑
λ∈Λ κ

λ
` optical channels are

available on link ` ∈ L.

As multiple lightpaths can be routed along the same path, we consider them cumulative.
For a path p in N , we denote with dp the number of lightpaths to be established along this
path. Let N(p) ⊂ N denote the intermediate nodes along the path p (excluding its end
nodes) while L(p) ⊂ L denotes all links along the path p. All lightpaths that have to be
assigned wavelengths are gathered in a multi-set P where each path p is contained dp times
(a multi-set is a set where element repetition is allowed). To differentiate the paths without
multiplicity, the set P1 contains each path just once.

By the assumption that enough transmission capacity is available to establish all connec-
tions, lightpaths of length one can always be assigned a wavelength independently from the
other lightpaths. Therefore, such lightpaths can be handled in a post-processing step and
are left out in our further considerations.

3 Mathematical Formulations

In this section we derive and compare two integer linear programming formulations for
MCWAP. The first formulation can be seen as the straightforward assignment of wave-
lengths. The second formulation is inspired by a column generation approach for the vertex
coloring problem by Mehrotra and Trick [10].

3.1 Assignment Formulation

The standard way to formulate coloring-like problems is by the introduction of decision
variables that represent the color assignments. As the assigned wavelength can differ for
every link of a lightpath, we need variables wλp` to denote the number of times wavelength
λ ∈ Λ is assigned to the lightpaths established along path p ∈ P1 across link ` ∈ L(p). Note
that these variables are integer in general as multiple lightpaths can be routed along path
p and multiple WDM systems can be installed on a link.

To calculate the number of needed converters, a second set of variables zλpv is necessary.
They denote the number of converters needed in intermediate node v ∈ N(p) to convert
lightpaths routed along p ∈ P1 that are incoming in v at wavelength λ ∈ Λ. Now, MCWAP
reads:

zA = min
∑

p∈P1

∑

v∈N(p)

∑

λ∈Λ

zλpv (1)

s.t.
∑

λ∈Λ

wλp` = dp ∀p ∈ P1, ` ∈ L (2)

3

∑

p∈P1

wλp` ≤ κλ` ∀λ ∈ Λ, ` ∈ L (3)

wλpuv − wλpvw ≤ zλpv ∀p ∈ P1, v ∈ N(p), uv, vw ∈ L(p), λ ∈ Λ (4)

wλp`, z
λ
pv ∈ Z+

0 (5)

The constraints (2) model that dp wavelengths have to be assigned to each link ` ∈ L(p) of
the path p. Inequalities (3) limit the use of λ ∈ Λ on ` ∈ L to its availability κλ` .

By assigning values to the variables wλp` such that constraints (2) and (3) are satisfied, the
wavelength assignment is specified. The converter counting requires to look at every path
p and every non-end node v. For modeling purposes only, direct the path in an arbitrary
way. Let uv and vw be respectively two consecutive links along p. If wλpuv = wλpvw for
some wavelength λ ∈ Λ, then none of the corresponding lightpaths needs a converter. If
wλpuv 6= wλpvw, then the difference determines exactly the number of lightpaths that change

from wavelength λ to another wavelength (in case wλpuv > wλpvw) or from another wavelength

to λ (in case wλpuv < wλpvw). Summing up all such differences over all wavelengths in a node
v clearly yields always zero, while the actual number of needed converters is given by accu-
mulating only the positive differences. These differences are determined by inequalities (4)
and summed up in the objective (1). Finally, fractional assignments are prohibited by the
integrality constraints (5).

For uniform wavelength capacities, a major disadvantage of the assignment formulation
is the degeneracy of solutions caused by the symmetry of the spectrum Λ. Not only for
all integer solutions, but also for fractional solutions of linear relaxations (with/without
cutting planes), O(|Λ|!) equivalent solutions exist. For problems with such characteristics
like vertex coloring [11] and frequency assignment [1], cutting plane approaches and branch-
and-bound based on similar assignment formulations have been shown to be computationally
intractable. This motivates to investigate other formulations for the problem at hand.

3.2 Path Packing Formulation

To overcome the color symmetry degeneracy for the vertex coloring problem, Mehrotra and
Trick [10] introduced a column generation approach. Given a graph G, it is well known that
all vertices that can be colored by the same color form a stable set. Thus the chromatic
number χ(G) is given by the minimum number of stable sets needed to cover all vertices. By
introducing a variable for every stable set in the graph, an alternative formulation for vertex
coloring is derived. This successful approach has inspired to derive a similar formulation for
MCWAP. A step-by-step generalization of the formulation for vertex coloring to MCWAP
can be found in [7]. To simplify the explanation, we assume uniform wavelength capacities
in the sequel.

The key to our approach is the observation that consecutive links of a lightpath with the
same wavelength can be gathered to a subpath. In this view, a lightpath consists of a
number of subsequent subpaths (possibly only one) that cover the path. All subpaths that
are assigned the same wavelength within the network can be viewed as a packing of subpaths.
Now, any feasible wavelength assignment decomposes into at most |Λ| subpath packings.

4

Furthermore, the number of converters needed for a lightpath is exactly the number of
subpaths to cover the lightpath minus one. Since the total number of lightpaths is fixed,
the objective of MCWAP is equivalent to minimizing the total number of subpaths involved.

To be able to formulate the above problem statement as an integer program, we have to
characterize the feasible packings of subpaths. We introduce the following notation. For
each p ∈ P1, let Sp denote the set of all subpaths s of p. Note that the same subpath
can be in multiple sets Sp and |Sp| = 1

2 |L(p)|(|L(p)|+ 1). Let S = ∪p∈P1Sp denote the set
of all possible subpaths. Then a path packing φ is a multi-set of items of S such that all
subpaths s ∈ φ can be assigned the same wavelength λ, i.e., for every link ` ∈ L, at most κλ`
subpaths containing link ` are in the set φ. The multiplicity of each subpath s ∈ S in the
path packing φ is denoted by tsφ. The collection of all multi-sets of S that are path packings
is denoted by Φ.

A path packing φ ∈ Φ can be selected more than once, if the multi-set of subpaths to be
assigned the same wavelength is identical for multiple wavelengths. For every path packing
φ ∈ Φ, we therefore introduce a general integer variable xφ denoting the number of times all
subpaths s ∈ φ are assigned the same wavelength. To specify the subpaths that are used to
cover a path p ∈ P1, we introduce a second class of variables ysp which denote the number
of times subpath s is used to cover the lightpaths routed along path p ∈ P1. Now, MCWAP
reads alternatively:

zP = min
∑

p∈P1

∑

s∈Sp
ysp


−

∑

p∈P1

dp


 (6)

s.t.
∑

s∈Sp:`∈L(s)

ysp = dp ∀p ∈ P1, ` ∈ L(p) (7)

∑

φ∈Φ

tsφxφ =
∑

p∈P1:s∈Sp
ysp ∀s ∈ S (8)

∑

φ∈Φ

xφ ≤ |Λ| (9)

ysp, xφ ∈ Z+
0 (10)

As expressed by (6), the number of converters is given by the number of subpaths minus
the total demand sum, the latter stating a fixed value. At every link ` ∈ L, the lightpath
multiplicity for each path p ∈ P1 has to be satisfied, which is enforced by constraints (7).
Constraints (8) model that every subpath s ∈ S is offered by the selected path packings
as often as chosen for covering lightpaths. Finally, constraint (9) restricts the number
of selectable path packings to the size of the available spectrum Λ, and constraints (10)
guarantee integrality.

For non-uniform wavelength spectra, this formulation can be adapted by defining a separate
set of path packing variables for every subset of wavelengths Λk for which κλ1

` = κλ2
` for all

λ1, λ2 ∈ Λk. Typically the number of subsets is limited by the restricted number of different
WDM system types that are installed.

5

23

u

1

(a) Instance

23

u

1

23

u

1

(b) Two path packings with
xφ = 1 in the linear relaxation
of (6)–(10)

(c) Extended network with arbitrar-
ily large difference between the LP
values

Figure 1: Star network with different linear relaxation values

3.3 Comparison

Let z∗A denote the optimal value of the linear relaxation of the assignment formulation (1)–
(5). In case of uniform wavelength capacities, the following observation can be made:

Lemma 1 If κλ` = κ` for all λ ∈ Λ, ` ∈ L, then z∗A = 0.

Proof: Set all variables wλp` = dp/|Λ| and use that κ` = K`/|Λ|. �

Let z∗P denote the value of the linear relaxation of the path packing formulation (6)–(10).
It is easy to verify that every (fractional) solution of (6)–(10) can be transformed to a
(fractional) solution of (1)–(5), which yields:

Lemma 2 The objective value of the linear relaxation of (6)–(10) is not worse than the
objective value of the linear relaxation of (1)–(5), i.e., z∗P ≥ z∗A.

Equivalence of both formulations does not hold, which can be shown by the instance dis-
played in Figure 1(a) with dp = 1 for all paths. In case |Λ| = 2 and κ` = 1 for all links,
one wavelength converter is clearly needed. The linear relaxation of (1)–(5) has the value
zero, whereas the linear relaxation of (6)–(10) has the value one since every path packing
covering all links by subpaths contains single links as subpaths, cf. Figure 1(b). In fact, by
extending the star network as displayed in Figure 1(c), the following result is obtained:

Lemma 3 The difference z∗P − z∗A can be arbitrarily large, even if only two wavelengths are
involved.

For |Λ| > 2, the example of Figure 1(a) can be generalized by setting dp = 1
2 |Λ| for each of

the three lightpath requests. Then zP = z∗P = 1
2 |Λ|, while z∗A = 0 still.

Computational experiments (cf. Section 5) show that in those cases where we know the
optimal solution, the value of the linear relaxation of (6)–(10) equals the optimal value. The
suggestion that this is always the case is however not true. To see this, we carry over some
results for vertex coloring to wavelength assignment. It is well known that in case κ` = 1
for all links ` ∈ L, the question whether there exists a converter-free wavelength assignment
is equivalent to the question whether there exists a vertex coloring with at most |Λ| colors

6

v1

v2 v3 v4

(a) Graph G

n1 n2 n3 n4

pv2

pv1

pv3

pv4

pv3

pv1

pv2

pv4

(b) Resulting network NG with paths pv

Figure 2: Example of the construction of a wavelength assignment instance from a vertex
coloring instance by help of edge coloring

in the so-called path conflict graph. In the path conflict graph GP , we have a vertex vp for
every lightpath p ∈ P and connect two vertices by an edge if the corresponding lightpaths
share at least one link. As we will show, any graph can be obtained by this construction as
conflict graph GP of a MCWAP instance, which directly leads to the NP-completeness of
wavelength assignment.

Given a graph G = (V,E), there are several ways to construct a wavelength assignment
problem with G as its path conflict graph. One such a reverse construction is as follows:
Color the edges of G such that no two edges incident to a vertex obtain the same color.
The minimum number of colors needed for such an edge coloring is the chromatic index
χ′(G), but also a coloring with more colors will do (e.g., for simple graphs a coloring with
∆(G) + 1 can be computed in polynomial time [12]). Let c be the number of colors used,
and let E1, . . . , Ec ⊂ E denote the edge color classes. Now, we construct an optical network
NG = (N,L) with |N | = c+1 nodes. For i = 1, . . . , c, the nodes ni and ni+1 are connected by
multiple (parallel) links (if no parallel links are allowed, this can be avoided by introducing
an intermediate node on each link). For each vertex v ∈ V (G), we define a path pv with
dp = 1 from node n1 to nc+1 traversing all intermediate nodes. The number of paths on
a link is either one or two. The paths pv and pw share a link between ni and ni+1 if and
only if edge vw ∈ Ei. If v ∈ V (G) is not incident to any edge within color class i, then
path pv uses a separate link between ni and ni+1. Thus, the total number of parallel links
between ni and ni+1 is |Ei|+ |V | − 2|Ei| = |V | − |Ei|. See Figure 2 for an example. From
the construction, the following lemma follows directly:

Lemma 4 Let G = (V,E) be a graph. Then there exists a wavelength assignment instance
(NG,P,Λ) with κ` = 1 for all ` ∈ L, such that no conversion is needed if and only if
χ(G) ≤ |Λ|.

Recall that the chromatic number χ(G) of a graph G is the minimum number of stable sets
such that all vertices are covered. If we allow to take stable sets in fractional amounts under
the restriction that the sum of the fractions still covers all vertices, we obtain the fractional
chromatic number χ∗(G). In terms of integer programming, the fractional chromatic number
is the value of the linear relaxation of the stable set formulation for vertex coloring.

Theorem 1 Let G = (V,E) be a graph with χ∗(G) ≤ χ(G) − 1 and (NG,P,Λ) define the
constructed wavelength assignment instance with κ` = 1 for all ` ∈ L. If |Λ| = χ(G) − 1,
then z∗P = 0, whereas zP > 0.

7

Proof: The fractional chromatic number χ∗(G) is attained by a collection B of stable sets
B ⊆ V in G, each one taken with a fractional value 0 < wB ≤ 1. We identify a path
packing in φB for each B ∈ B. Let tsφB = 1 if subpath s = pv for some v ∈ B, and tsφB = 0
otherwise. Now, set xφB = wB for all B ∈ B and ysp = 1 if s = p, otherwise ysp = 0.
Then constraints (7) and (8) are satisfied by construction, and constraint (9) is satisfied by∑

B∈B xφB =
∑

B∈B wB = χ∗(G) ≤ χ(G) − 1. The value of this fractional solution is zero,
hence z∗P = 0, while zP > 0 due to Lemma 4. �

It is easy to find graphs for which χ∗(G) < χ(G), e.g., for an odd cycle C2k+1, k > 0,
χ∗(C2k+1) = 2 + 1/k, whereas χ(C2k+1) = 3. Thus, χ∗(C2k+1) < χ(C2k+1) for k ≥ 2. Also
the Petersen graph has 2.5 = χ∗(G) < χ(G) = 3. However, the gap χ(G) − χ∗(G) for all
these graphs is smaller than one, and thus we cannot apply Theorem 1.

Kneser graphs are a generalization of the Petersen graph. Given two positive integers n
and k, the Kneser graph KGn,k is the graph whose vertices represent the k-subsets of
{1, . . . , n}, and where two vertices are connected if and only if they correspond to disjoint
subsets [9]. KGn,k has

(n
k

)
vertices, each one with degree

(n−k
k

)
(we assume

(n−k
k

)
≡ 0 if

n − k < k). The Petersen graph equals to the case n = 5, k = 2. For n = 3k − 1, it
holds that χ(KG3k−1,k) = k + 1, whereas χ∗(KG3k−1,k) = 3k−1

k < 3. Thus for k ≥ 3,
χ∗(KG3k−1,k) ≤ χ(KG3k−1,k) − 1, and hence we can construct an optical network with
the property of Theorem 1. In particular, for KG8,3 there exists an edge coloring with
∆(G) + 1 = 11 colors, yielding an optical network with 12 nodes and 336 links for which
z∗P = 0 whereas zP > 0.

4 Column Generation Algorithm

The number of columns of the formulation (6)–(10) is tremendously large due to the expo-
nential number of path packings. A size reduction is possible by relaxing constraints (8)
to

∑

φ∈Φ

tsφxφ ≥
∑

p∈P1:s∈Sp
ysp ∀s ∈ S (11)

which allows a subpath to be covered more often by the path packings than the desired
number. In this case, we can restrict to maximal path packings—a significantly smaller
subset of Φ.

Despite the substantial size reduction, the number of columns is still exponentially and
hence too large to be considered explicitly in practice. Therefore, like in Mehrotra and
Trick [10], we propose a column generation approach, where only a subset of the columns is
stored explicitly. After computation of the linear relaxation for this subset, other profitable
columns are generated with a so-called pricing problem. In the pricing problem, a profitable
column is selected based on the values of the dual variables. In case no profitable columns
can be generated anymore, the linear relaxation including all columns has been solved
(cf. [3, 4] for further details). The algorithm can be incorporated within a branch-and-
bound (or branch-and-cut) scheme, resulting in a branch-and-price (or branch-cut-and-
price) algorithm.

8

For MCWAP, we apply column generation for the x variables, whereas all y variables are
considered explicitly. Let Φ ⊂ Φ denote the actual subset of path packings included. To
formulate the pricing problem for MCWAP, we introduce the dual variables πp` , π

s, and πΛ

for the constraints (7), (8), and (9), respectively. From linear programming, we know that
a primal-dual pair ((x, y), π) is optimal for the linear programming relaxation of (6)–(10),
whenever c− ATπ ≤ 0, with c the primal objective function, and A the coefficient matrix.
For a path packing φ ∈ Φ, cφ = 0, and the coefficients of A corresponding to (7) equal zero
as well. So, the optimality condition transforms to

−
∑

s∈S
tsφπ

s ≤ πΛ (12)

Note that πs ≤ 0 by (11), whereas πΛ ≥ 0. If optimality is reached, (12) holds for every
φ ∈ Φ. To verify this, we search for the path packing φ ∈ Φ that maximizes the left hand
side of (12). If the maximum is less than or equal to πΛ, then no improving columns exist
anymore, and the linear relaxation is solved. Otherwise, we have found a path packing
φ ∈ Φ that violates (12) and can be added to the linear program to improve the relaxation.

Maximizing −∑s∈S π
stsφ can be formulated as an optimization problem. We introduce the

integer variables ts for all s ∈ S representing the multiplicity function of a path packing.
Then the pricing problem reads

z = max
∑

s∈S
−πsts (13)

s.t.
∑

s∈S:`∈L(p)

ts ≤ κ` ∀` ∈ L (14)

ts ∈ Z+
0 ∀s ∈ S (15)

In case κ` = 1 for all ` ∈ L, the pricing problem reduces to a maximum weighted set
packing. Hence, the pricing problem is NP-hard in general. However, the pricing problem
needs not to be solved to optimality in every iteration of the algorithm. It suffices to find
a solution with value strictly larger than πΛ, e.g., by heuristics. Only if this fails, we have
to solve (13)–(15) to optimality.

5 Computational Experiments

Since the linear relaxation value of the assignment formulation always equals zero, a compu-
tational evaluation is of no worth and thus is left out. To solve the master problem (6)–(10)
and the pricing problem (13)–(15), we follow the general outline of a column generation al-
gorithm [4]. However, several strategies can be applied to obtain the linear relaxation value
as fast as possible. After explaining the instance generation, we compare in Section 5.2
strategies for the initialization of the algorithm with a small subset of all possible path
packings, whereas Section 5.3 is devoted to strategies to generate new columns. Finally, we
discuss the results.

9

|P| for survivability fraction
p = 0 p = 1

3 p = 2
3 p = 1 total # # non-zero

network |N | |L| “up” “low” “high” “fp” instances best sol.

US 14 21 2710 2710 3166 4655 20 0
Germany 17 26 686 699 836 1193 20 2
Germany ext. 17 28 686 699 796 1122 20 5
Europe 28 41 1008 1148 1480 1855 20 16

(a) network characteristics

average |P1|
p = 0 p = 1

3 p = 2
3 p = 1

network “up” “low” “high” “fp”

Germany - - 75 64
Germany ext. 46.3 82 - 102
Europe 352 752 829.4 840.2

(b) average number of different paths for non-zero instances

Table 1: Instance characteristics (“up” stands for unprotected, “fp” for full protected)

5.1 Instance Generation

The algorithm is tested on a number of instances, derived from three reference scenarios
defined within the MultiTeraNet project [2]. Every scenario consists of a network topol-
ogy and a traffic matrix which specifies the demand for each pair of nodes as number of
lightpaths to establish. The networks represent an US network based on the NSF topology,
a hypothetical German network, and an (also hypothetical) European network. A fourth
scenario has been created by adding two links to the German network as to increase the
connectivity, cf. [8]. For each scenario, we consider four survivability specifications which
differ in the fraction p ∈ [0, 1] of the traffic that has to be protected against any single link
or node failure. We use p = k · 1

3 for k = 0, 1, 2, 3 as protection levels. For a demand of d
lightpaths, dp ·de of them have to be protected by additional establishment of backup light-
paths according to the concept Demand-wise Shared Protection proposed in [8]. In Table 1,
a summary of the instance characteristics is given. With the network optimization engine
OND (Optical Network Design, cf. [13]), a dimensioning and routing can be computed,
given installable devices like fibers, WDM systems, and OXCs. In fact, multiple configura-
tions are generated during the optimization. For each scenario, we have extracted the five
best configurations generated within one hour of computation time. These configurations
form the input for the wavelength assignment subproblem. In all instances, the fibers are
equipped with WDM systems providing |Λ| = 40 wavelengths, while technical properties of
fibers and OXCs are unimportant for studying MCWAP.

An upper bound on the number of wavelength converters for each of these 80 instances

10

is computed by the iterative improvement heuristics as described in [6] (with a maximum
of 6000 CPU seconds running time). The number of non-zero solutions is reported in the
last column of Table 1. From these values, it can be concluded that in many cases a
zero converter solution could be found, and hence 0 ≤ z∗P ≤ zP = 0. The input of our
computational study consists of the remaining instances, which potentially have a non-zero
solution.

The column generation algorithm has been implemented in C++, using CPLEX 9.0 [5]
as (integer) linear programming solver with ILOG’s Concert Technology as interface. All
computations have been carried out on a Linux-operated PC with a 3.2 GHz Pentium IV
processor.

5.2 Initialization Strategies

In every iteration of the column generation algorithm, the set of path packings considered
explicitly is extended. It is however unclear with which columns the algorithm should be
initialized as to minimize the number of iterations (and computation time). In this section,
we describe three strategies that turned out to be most promising in our experiments.

The path packing formulation with (11) instead of (8) allows to initialize the master problem
with a single path packing: For every link, we can take the subpath consisting only of this
single link κ` times. Obviously this path packing is feasible. We refer to this path packing
as the basic column. This column can be taken |Λ| times to obtain a feasible solution in
which every lightpath is converted at every intermediate node. Hence, the solution value is
the worst possible one as every path p contributes (|L(p)| − 1)dp to the objective.

Alternatively, the algorithm can be initialized with a feasible wavelength assignment ob-
tained by any heuristic method. Given such a solution, we have to construct |Λ| path
packings consisting of all subpaths to which the same wavelength is assigned. In the strat-
egy best solution, we initialize the algorithm with the best known solution (cf. Section 5.1)
in addition to the basic column.

Both strategies described above start with a feasible solution consisting of a number of
path packings. A drawback of such an initialization is the necessity to find new columns
that can be combined with the already available columns. To gradually construct a feasible
(fractional) solution from scratch, the algorithm has to be initialized without any path
packing. However, in that case the first master problem is infeasible and typically no dual
information is generated by the linear programming solver, which makes it impossible to
solve the first pricing problem. A remedy lies in the usage of the basic column in a different
way. We add a column to the formulation that is equivalent to the basic column, except
for the objective coefficient and the contribution to the spectrum bound inequality (9).
This so-called feasibility column does not contribute to the left hand side of (9) and has
a huge objective penalty. It guarantees that the first master problem is feasible by taking
the column (at most) |Λ| times. Hence, the first LP value will be very high. In the next
iterations, columns are generated that replace the feasibility column more and more until
a (fractional) solution is found making the feasibility column obsolete. This strategy is
referred to as feasibility column.

11

best basic col. best sol. feas. col.
instance sol. z∗P # col. time # col. time # col. time

europe-up1 7 2 447 66 560 1311 393 54
europe-up2 2 0 352 42 989 3828 334 41
europe-up3 7 5 377 49 859 2181 356 47
europe-up4 5 1 357 48 826 3022 350 50
europe-up5 1 0 344 45 821 2480 347 44

europe-low3 7 0 762 1270 870 19492 725 907

europe-high1 56 0 1558 4290 1377 6260 1228 3062
europe-high2 57 0 1505 4149 1441 7820 1365 3549
europe-high3 31 0 1415 4039 1183 11364 1220 2808
europe-high4 57 0 1591 5337 1360 8152 1322 6180
europe-high5 5 0 1311 3268 1650 124319 998 3355

europe-fp1 13 0 1669 5499 1502 49713 1287 3409
europe-fp2 20 0 1591 4999 1758 35841 1212 4483
europe-fp3 19 0 1555 4813 1445 37878 1193 4193
europe-fp4 29 0 1543 4537 1304 22967 1141 4054
europe-fp5 42 0 1595 4965 1504 13060 1265 4541

germany-high2 4 4 44 0 2 0 42 0

germany-fp1 8 8 34 0 0 0 39 0

germany+-up2 16 16 37 0 2 0 47 0
germany+-up3 12 12 34 0 4 0 49 0
germany+-up5 9 9 24 0 2 0 28 0

germany+-low2 9 9 32 0 5 0 48 0

germany+-fp5 5 5 94 1 3 0 97 2

Table 2: Effect of different initialization strategies on the performance of the column gen-
eration algorithm (CPU times in seconds)

Compared with the basic column strategy, the feasibility column strategy progresses dif-
ferently since (9) is not satisfied with equality in the feasibility column case, whereas it is
in the basic column case. Hence, the dual variables have different values and thus likely
produce different columns to add.

The three different strategies are tested for all instances with a non-zero best solution.
Table 2 shows the results. Besides the value of the best solution and z∗P , we present for each
of the strategies the number of columns generated (# col.) and the CPU time in seconds
(time). For the instance europe-up3, the progress with the number of generated columns
of the LP value (with logarithmic scale) and the accumulating CPU time are displayed in
Figure 3. A discussion of the results is postponed till Section 5.4.

12

(a) LP value (b) CPU time

Figure 3: Iterative progress of LP value (in logarithmic scale) and accumulated CPU time
for instance europe-up3

5.3 Pricing Strategies

As already pointed out in Section 4, the pricing problem has not to be solved to optimality
at each iteration of the algorithm. Only if heuristics fail to find a path packing with value
strictly larger than πΛ, we have to solve (13)–(15) to optimality. In our computations,
the CPLEX integer programming solver is used as an heuristic by limiting the maximum
number of branch-and-bound nodes to 100. Only in case the best solution found after
reaching this limit has value z ≤ πΛ, we continue the branch-and-bound until a solution is
found with value z > πΛ or until it has been proven that no such solution exists. In the
latter case, the linear programming relaxation is solved to optimality.

Note that in case the pricing problem is solved in less than 100 nodes of the branch-and-
bound tree, the heuristic is exact. In fact, our experiments show that typically the more
the algorithm advances, the more pricing problems are solved to optimality within these
100 branch-and-bound nodes, from almost never in the first iterations till almost always in
the last iterations.

One other aspect of the pricing problem on which we can take influence is the multiplicity of
the subpaths in a path packing. In addition to the constraints (14) and (15), we can restrict
the path packings by the following argument. For a subpath s, it does not make sense to
generate path packings with ts > Ds, where Ds :=

∑
p∈P1:s∈Sp dp is the maximum number

of times that the subpath can be used in a wavelength assignment. So, we can bound the
variables ts from above by Ds. This has been carried out in all our computations.

Furthermore, although Ds states a senseful upper bound on the number of times a subpath
can be taken in any path packing, exceeding ds (where ds = 0 if s /∈ P1) directly implies the
placement of converters on some lightpaths. As typically the number of converters is small
in comparison with the number of lightpaths and the lightpaths are partitioned among |Λ|
wavelengths, the number of path packings in a solution with some ts exceeding ds will be
small. In the strategy restricted pricing, we therefore start with the generation of path
packings for which the variables ts are bounded by ds, instead of Ds. As soon as no further

13

with restricted pricing reduction in %
basic col. feas. col. basic col. feas. col.

instance # col. time # col. time # col. time # col. time

europe-up1 252 24 298 56 44% 64% 24% -4%
europe-up2 157 15 210 32 55% 64% 37% 22%
europe-up3 199 17 290 48 47% 65% 19% -2%
europe-up4 239 21 269 45 33% 56% 23% 10%
europe-up5 168 18 282 47 51% 60% 19% -7%

europe-low3 356 346 326 667 53% 73% 55% 26%

europe-high1 570 1158 563 1868 63% 73% 54% 39%
europe-high2 558 1073 573 1884 63% 74% 58% 47%
europe-high3 453 754 478 1504 68% 81% 61% 46%
europe-high4 482 929 582 2049 70% 83% 56% 67%
europe-high5 388 583 392 1463 70% 82% 61% 56%

europe-fp1 534 967 564 1279 68% 82% 56% 62%
europe-fp2 699 1585 458 1992 56% 68% 62% 56%
europe-fp3 481 891 632 2666 69% 81% 47% 36%
europe-fp4 448 794 504 1870 71% 82% 56% 54%
europe-fp5 495 979 629 2600 69% 80% 50% 43%

Table 3: Effect of the restricted pricing strategy on the performance of the column genera-
tion algorithm (CPU times in seconds), compared to the default pricing strategy

restricted path packings can be generated, the upper bound on the variables in the pricing
problem is lifted from ds to Ds.

Table 3 contains the results in number of generated columns and CPU time with restricted
pricing as well as the reduction compared to the default pricing strategy. We left out the
German instances since the values without restricted pricing (cf. Table 2) are too small for
a reasonable comparison. Moreover, we only compare the two most promising strategies for
initialization: basic column and feasibility column.

5.4 Discussion

The first thing that can be observed from the results in Table 2 is the unregular behavior
of the best solution strategy. For the German instances, the computation times and the
number of columns generated can be neglected; for the European instances, the strategy
is outperformed by the other strategies. In particular, the CPU times are not comparable.
This effect can be explained easily. In those cases that the LP value equals the best known
solution value, there cannot exist columns that indeed decrease the value of the initial LP.
This conclusion is drawn by the (best solution strategy) algorithm after a few iterations.
A direct consequence of this is that we know the optimal value for these instances. If in
contrast the best solution value is much higher than the optimal LP value, starting with
such a solution, being forced to improve it step-wise, hampers the progress, compared to
the other strategies which can more simple and direct construct a better LP solution.

14

A closer look at the values discloses that those instances with a small gap between LP and
best solution value are in fact the most time consuming ones in comparison with the other
strategies. This second effect is more difficult to explain, since it is in fact contra-intuitive.
Experiments with less good solutions used as initial columns revealed that they often result
in better CPU times as the best solution. A possible explanation is that the progression
can be more easily achieved if the solution is not that close to the LP value. Figure 3(b)
confirms this, as the slope of the CPU time is far more steep for the best solution strategy
than for the other strategies, indicating that it is more difficult to integrate the new columns
(the CPU time for pricing is typically only marginal in comparison with the reoptimization
of the master LP). First if the LP value starts to drop (cf. Figure 3(a)), the CPU time per
column is comparable to the other strategies, but this usually happens much later.

From the results in Table 2, the feasibility column strategy seems to be most favorable,
closely followed by the basic column strategy. Figure 3(a) shows that after a different start
both strategies follow the same curve.

Using restricted pricing turns out to be a very profitable idea for solving the linear relaxation
more quickly. Reductions in number of columns above 50% are typical, CPU time reductions
of more than 80% not seldom. The best results are now obtained by the basic column
strategy. In case z∗P = 0, no switch to unrestricted pricing is required at all. In case z∗P > 0,
a change to unrestricted pricing is at some point necessary. For the European instances, the
optimal LP value is at this point already reached and less than ten unrestricted columns
are needed to prove optimality. For the German instances, also only a small number of
unrestricted columns is necessary, but the LP value is reduced further by these columns.

Although the computation times decrease significantly by restricted pricing, the times are
still relatively large for solving a linear relaxation. This is reasoned by the LP size: for
example, the instance europe-fp2 has 16,102 y-variables and 5779 rows.

Altogether, we can conclude that the path packing formulation is favorable. The associated
LP relaxation has often a non-zero optimum which states a lower bound and frequently
directly proves optimality of the best known solution generated heuristically. Such a con-
firmation is typically obtained very quickly. In case the best known solution does not equal
the LP value, we have some good strategies for fastly solving the LP. The computational
comparison revealed that the most profitable strategy combination is an initialization with
the basic column with restricted pricing as long as it provides potential columns. Unfortu-
nately, not in all cases the gap between lower and upper bound is reduced by the algorithm
(e.g., for the larger European instances). It is not clear in these cases whether the LP value
is bad or simply the heuristics did not manage to find better solutions (we tend to the latter
claim). In any case, the path packing formulation turns out to be a good instrument to
investigate MCWAP.

6 Concluding Remarks

In this paper, we presented a column generation approach for the minimum converter wave-
length assignment problem in optical networks. We have shown that the lower bound
provided by the linear relaxation of the path packing formulation is both in theory and

15

in practice significantly better than the one by a straightforward assignment formulation.
In fact, for 7 out of 23 non-trivial instances, we could prove optimality of the best known
solution by solving the linear relaxation of the path packing formulation.

A computational comparison of alternative initialization and column generation strategies
for solving the linear relaxation of the path packing formulation revealed that such aspects
have to be chosen carefully. This is of particular importance in the context of the design of
a branch-and-price algorithm to find the optimal solution for MCWAP. Such an algorithm
remains the major challenge to be solved by further research. Except for the initialization
and column generation strategies, it is of equal importance to find good branching strategies.

By recently developed heuristic technique advancements [7], the best known solution could
be improved to the value of the linear relaxation for two more instances, again proving
optimality. Besides further founding the benefit of our approach, this observation also
indicates that the heuristic algorithms are still improvable, stating another direction for
further research.

References

[1] K. I. Aardal, C. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano.
Models and solution techniques for the frequency assignment problem. 4OR, 1(4):261–
317, 2003.

[2] A. Betker, C. Gerlach, R. Hülsermann, M. Jäger, M. Barry, S. Bodamer,
J. Späth, C. Gauger, and M. Köhn. Reference transport network scenar-
ios. Technical report, BMBF MultiTeraNet, July 2003. http://www.ikr.uni-
stuttgart.de/IKRSimLib/Referenz Netze v14 full.pdf.

[3] V. Chvátal. Linear Programming. W.H. Freeman and Company, New York, 1983.

[4] J. Desrosiers and M. E. Lübbecke. A primer in column generation. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation. Kluwer Academic
Publishers, Boston, MA, 2005.

[5] ILOG. CPLEX version 9.0, 2003. http://www.ilog.com/products/cplex.

[6] A. M. C. A. Koster and A. Zymolka. Minimum converter wavelength assignment in
all-optical networks. In Proceedings of ONDM 2004, pages 517–535, Ghent, Belgium,
2004. The 8th IFIP Working Conference on Optical Network Design & Modelling.

[7] A. M. C. A. Koster and A. Zymolka. Provably good solutions for wavelength assignment
in optical networks. In Proceedings of ONDM 2005, Milan, Italy, 2005. The 9th IFIP
Working Conference on Optical Network Design & Modelling.

[8] A. M. C. A. Koster, A. Zymolka, M. Jäger, and R. Hülsermann. Demand-wise shared
protection for meshed optical networks. Journal of Network and Systems Management,
13(1), 2005.

16

[9] L. Lovász. Kneser’s conjecture, chromatic numbers and homotopy. Journal of Combi-
natorial Theory Series A, 25:319–324, 1978.

[10] A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8:344–354, 1996.

[11] P. Pardalos, T. Mavridou, and J. Xue. The graph coloring problem: A bibliographic
survey. In D.-Z. Du and P. Pardalos, editors, Handbook of Combinatorial Optimization,
volume 2, pages 331–395. Kluwer Academic Publishers, 1998.

[12] V. G. Vizing. On an estimate of the chromatic class of a p-graph (Russian). Diskret.
Analiz., 3:25–30, 1964.

[13] A. Zymolka, A. M. C. A. Koster, and R. Wessäly. Transparent optical network design
with sparse wavelength conversion. In Proceedings of ONDM 2003, pages 61–80, Bu-
dapest, Hungary, 2003. The 7th IFIP Working Conference on Optical Network Design
& Modelling.

17

