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Abstract

The benefits of cutting planes based on the perspective function are
well known for many specific classes of mixed-integer nonlinear programs
with on/off structures. However, we are not aware of any empirical stud-
ies that evaluate their applicability and computational impact over large,
heterogeneous test sets in general-purpose solvers. This paper provides a
detailed computational study of perspective cuts within a linear program-
ming based branch-and-cut solver for general mixed-integer nonlinear pro-
grams. Within this study, we extend the applicability of perspective cuts
from convex to nonconvex nonlinearities. This generalization is achieved
by applying a perspective strengthening to valid linear inequalities which
separate solutions of linear relaxations. The resulting method can be ap-
plied to any constraint where all variables appearing in nonlinear terms
are semi-continuous and depend on at least one common indicator vari-
able. Our computational experiments show that adding perspective cuts
for convex constraints yields a consistent improvement of performance,
and adding perspective cuts for nonconvex constraints reduces branch-
and-bound tree sizes and strengthens the root node relaxation, but has
no significant impact on the overall mean time.

1 Introduction
Consider a mixed-integer nonlinear program (MINLP) with semi-continuous
variables:

min 〈c, px,y, zq〉 (1a)
s.t. gpx,y, zq ¤ 0, (1b)

py
j
� y0

j qzk ¤ yj � y0
j ¤ pyj � y0

j qzk, @j P Sk, @k P I, (1c)

x P Rn, y P Rp, z P t0, 1uq. (1d)
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Here, 〈c, px,y, zq〉 is the linear objective function given by a scalar product of
a constant vector c P Rn�p�q and the vectors of continuous variables x, semi-
continuous variables y and binary variables z. Constraints (1b) are given by
inequalities gpx,y, zq ¤ 0, where g : Rn�Rp�r0, 1sq Ñ Rm is a vector function
and some of its elements gi are nonlinear.

The set Sk � t1, . . . , pu shall contain the indices of semi-continuous variables
controlled by the indicator variable zk, and I � t1, . . . , qu is the set of indices
of all indicator variables. Constraints (1c) ensure that for each j P Sk, the value
of yj belongs to the domain ry

j
, yjs when the indicator variable zk is equal to 1

and has a fixed value y0
j when zk is equal to 0. Semi-continuous variables are

typically used to model “on” and “off” states of a process and can be found in
such problems as optimal line switching in electrical networks [7], blending [24]
and production planning [3], to name but a few.

In order to simplify the notation, in the rest of the paper the subscript k
will be omitted and we will be referring to a vector of semi-continuous variables
y P Rp controlled by the indicator variable z P t0, 1u. The semi-continuity
relation is then defined by the inequality py � y0qz ¤ y � y0 ¤ py � y0qz.

Without loss of generality, we consider constraints of the form

gpx,yq � fpyq � x` ¤ 0 (2)

for some ` P t1, . . . , nu. The continuous variable x` represents the linear non-
semi-continuous part and the same arguments as presented in this paper can
be directly adapted for a more general linear part. When z � 0, function f
is reduced to a fixed value fpy0q. A common example of such constraints are
on/off constraints which become redundant when the corresponding indicator
variable is set to 0.

Many state-of-the-art algorithms for the solution of MINLP (1) make use of
nonlinear and linear programming relaxations where the condition z P t0, 1u is
replaced with z P r0, 1s. However, for a constraint of the form (2), simply drop-
ping the integrality condition generally does not produce the tightest possible
continuous relaxation. The reason for this is that the dependence of the bounds
on y on the indicator variable z is not exploited by a straightforward continuous
relaxation. Consequently, the same applies for the linearization of Constraint
(2) via gradient cuts [16], that is, inequalities

fpŷq � 〈∇fpŷq,y � ŷ〉 ¤ x`, (3)

where ŷ is the point at which f is linearized.
The strongest continuous relaxation of the set described by Constraint (2),

given that y is semi-continuous, can be achieved by applying the perspective re-
formulation [9]. Linearizing this reformulation provides valid linear inequalities
known as perspective cuts.

In this paper we present a computational study of perspective cuts within
SCIP [12], a general-purpose solver that implements an LP-based branch-and-
cut algorithm to solve mixed-integer nonlinear programs to global optimality.
Section 2 provides the theoretical background for this study and a review of
applications that can be found in existing literature. In Section 3, we describe
our approach to creating perspective cuts and show that for convex instances,
it is equivalent to linearizing the perspective formulation via gradient cuts. Sec-
tion 4 gives an outline of our implementation of perspective cuts in SCIP, which
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includes detection of suitable structures and separation and strengthening of
perspective cuts. Finally, in Section 5 the results of computational experiments
on instances from MINLPLib1 [4] are presented.

2 Perspective Formulations for Convex Nonlin-
earities

This section gives a review of the existing literature on theoretical and compu-
tational results related to perspective formulations for convex nonlinearities.

2.1 Theoretical background
Let F denote the feasible region defined by Constraint (2) and the semi-continuity
constraints (1c) for an indicator z. F can be written as a union of two sets F 0

and F 1 corresponding to values 0 and 1 of z, respectively:

F 0 � tpx`,y, zq | x` ¥ fpy0q, y � y0, z � 0u, (4)
F 1 � tpx`,y, zq | x` ¥ fpyq, y P ry,ys, z � 1u. (5)

The tightest possible convex relaxation of F is its convex hull. Ceria and
Soares [5] studied convex hull formulations for unions of convex sets and their
applications to disjunctive programming. Stubbs and Mehrotra [21] described
the convex hull of the feasible set of a convex 0-1 program and developed a
procedure for generating cutting planes. Grossmann and Lee [13] extended the
convex hull results to generalized disjunctive programs (GDPs). Similarly to
disjunctive programming, feasible sets of GDPs are given as unions of convex
sets, but more general logical relations are also allowed. These works used the
perspective function, which is defined as follows:

Definition 1. [18] For a given convex function f : Rp Ñ R, its perspective
function f̃ : Rn�1 Ñ pRY t�8uq is defined as:

f̃py, zq �

#
zfpy{zq, if z ¡ 0,
�8, otherwise,

where y P Rp, z P R.

These early results are applicable to convex sets with few non-restrictive
conditions and utilize an extended variable space. Frangioni and Gentile [9]
proposed a reformulation in the original space for a special case. Considering
a semi-continuous vector y, an indicator variable z, and a convex function f
depending only on y such that y0 � p0, . . . , 0q and fp0q � 0, they capture the
disjunctive structure by defining a new nonconvex function fd:

fdpy, zq �

$'&
'%
fpyq if z � 1, y P ry,ys,
0 if y � z � 0,
�8 otherwise.

1https://www.minlplib.org

3

https://www.minlplib.org


The function fd is directly related to the set F : the latter can be described
as the set of all points px`,y, zq such that fdpy, zq is finite and fdpy, zq ¤ x`.
Frangioni and Gentile describe the convex envelope of fd:

cofdpy, zq �

$'&
'%
f̃py, zq if z P p0, 1s,
0 if z � 0,
�8 otherwise.

In a related work, Günlük and Linderoth [14] show that the convex hull of
F is given by

convpF q � tpx`,y, zq | cofdpy, zq ¤ x`,

py � y0qz ¤ y � y0 ¤ py � y0qz, z P r0, 1su. (6)

Therefore, replacing f with cofd in Constraint (2) results in a reformulation
with the tightest possible continuous relaxation: the perspective reformulation.
This is a valid reformulation since f � cofd for z P t0, 1u.

(a) the mixed-integer set (b) the continuous relaxations

Figure 1: Example of a disjunctive set and its convex hull

Figure 1 shows an example of a disjunctive set and compares its contin-
uous relaxations. The disjunctive set (shown in Figure 1a) consists of the
ray tpx`, y, zq | x` ¥ 0, y � 0, z � 0u and the convex set tpx`, y, zq | x` ¥
fpyq, z � 1u, where fpyq � y2. The convex hull, shown in Figure 1b, is the
closure of the set of all points above the dark gray surface defined by x` � y2{z,
z P p0, 1s. This equation is obtained by applying the perspective operator to f :
f̃py, zq � zfpy{zq � y2{z. For comparison, the boundary of the straightforward
continuous relaxation given by x` � y2, z P r0, 1s, is shown in Figure 1b in light
gray color.

Due to the division by z in the perspective function, the perspective reformu-
lation (6) is non-differentiable at z � 0. In some special cases, formulation (6)
can be written as a second-order cone (SOC) constraint [22, 1, 14, 10]. In
particular, this is possible when Constraint (2) itself is SOC-representable.

Frangioni and Gentile [11, 8] introduced projection approaches for additively
separable closed convex functions. In the projected perspective reformulation
(P2R) [11], the perspective function is projected into the space of continuous
variables and rewritten as a piecewise-convex function. This technique avoids
the numerical issues associated with the perspective functions while yielding
strong bounds, but at the cost of using piecewise-continuous functions which
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cannot be directly passed to off-the-shelf solvers. The approximated projected
perspective reformulation (AP2R) method [8] lifts the P2R formulation back into
the original space by reintroducing the indicator variables. AP2R can be solved
by general-purpose solvers and, if y0 ¤ y, has the same number of variables and
constraints as the original problem. The bound provided by AP2R is, however,
generally weaker than the one from P2R.

Alternatively, the perspective reformulation (6) can be represented by an
infinite number of linear outer approximations which are then dynamically
separated. Suppose that we have a point px̂`, ŷ, ẑq such that ẑ P p0, 1q and
x̂`   f̃pŷ, ẑq. By performing first-order analysis of the convex envelope cofd,
Frangioni and Gentile [9] derive cuts that separate px̂`, ŷ, ẑq from the convex
hull of F , referred to as perspective cuts:

〈∇fpy�q,y〉� pfpy�q � 〈∇fpy�q,y�〉q z ¤ x`, (7)

where y� � ŷ{ẑ.
It is easy to adjust the perspective reformulation and the inequalities (7) for

the case of nonzero y0 and fpy0q:〈
∇fpy�q,y � y0〉

� pfpy�q � fpy0q �
〈
∇fpy�q,y� � y0〉

qz � fpy0q ¤ x`, (8)

where y� � pŷ � y0q{ẑ � y0. We refer to (8) as the perspective cut at y�.

2.2 Existing applications and computational results
Perspective cuts and reformulations were tested on several applications which
contain convex functions of semi-continuous variables.

Frangioni and Gentile [9] applied perspective cuts (8) to the thermal unit
commitment problem. In order to avoid the technical difficulties of incorpo-
rating perspective cuts into a general-purpose solver, the authors implemented
their own NLP-based branch-and-cut algorithm. Perspective cuts are applied to
the objective function via a specialized separation procedure, which replaces a
univariate term with its perspective linearization if the perspective linearization
is tighter at the current relaxation solution. The linearization is represented by
an auxiliary variable, and as more perspective cuts are added for the term, the
variable is set to be equal to the maximum of all linearizations. Perspective cuts
were shown to have a considerable impact on the performance. The geometric
mean of the running time of the best performing setting was smaller than that
for the algorithm with the straightforward continuous relaxation by a factor of
60.

Perspective reformulations were studied by Günlük and Linderoth [14, 15].
Their key observation is that for some problems, the perspective reformulation
can be written with the use of second-order cone constraints. The applications
studied in this paper are:

• Separable quadratic uncapacitated facility location on a testset consisting
of 16 instances. With the perspective reformulation, 50% more instances
are solved within the time limit of 8 hours and on the instances that are
solved with both formulations, the perspective formulation is faster by a
factor of 8 when comparing the geometric mean.

5



• Network design with congestion constraints on a testset consisting of 35
instances. The perspective formulation is solved for 29 instances within
the time limit of 4 hours, as opposed to only 2 instances with the standard
formulation.

• Mean-variance optimization (portfolio optimization) on a testset consisting
of 20 instances. Although none of the instances are solved within the
time limit of 10,000 CPU seconds, perspective reformulation significantly
improves the gap. For example, the final gap between the best found lower
and upper bounds is reduced from 185.1% with the standard formulation
to 4.2% with the perspective reformulation on instances of smaller size,
and from 490.0% to 5.9% on instances of larger size.

Atamtürk and Gómez [2] applied the perspective-based conic reformulation
to the image segmentation problem, testing it on 4 instances of different sizes.
On the one instance that was solved within a time limit of 1 hour, the running
time was reduced by a factor of 18 when compared to the standard formulation.
On the three remaining instances, using the perspective formulation resulted in
a 45-55% decrease of the remaining gap at time limit.

Aktürk et al. [1] presented a perspective-based conic reformulation of the
machine-job assignment problem with controllable processing times. The tests
were conducted on 180 randomly generated instances of varying sizes with
quadratic and cubic objectives. For problems with a quadratic objective, 91%
of the 90 instances were solved when using the strengthened conic formulation,
whereas at most 36% of instances were solved when using non-perspective for-
mulations. For problems with a cubic objective, 88% of the 90 instances were
solved with the perspective formulation and at most 27% were solved with non-
perspective formulations.

A comparison between SOC-based perspective formulations and perspec-
tive cutting planes was performed by Frangioni and Gentile [10]. Using the
CPLEX-11 solver, they test the two approaches on two sets of mixed-integer
quadratic problems, namely, the Markowitz mean-variance model and the unit
commitment problem. The difference between the two formulations is particu-
larly significant with the setup used in the paper [10] since by default, CPLEX
obtains dual bounds by solving nonlinear relaxations. The results favor the cut-
ting planes approach, with the difference being larger for the Markowitz mean-
variance problem. The authors observe that the advantage of perspective cuts
stems mostly from efficient reoptimization of linear programs. They add that
the perspective conic reformulation is more competitive for problems that are
larger, more nonlinear (i.e., have more nonlinear constraints or non-quadratic
nonlinear constraints) or have richer structure.

Frangioni and Gentile [11, 8] tested the projected perspective reformulation
(P2R) and the approximated perspective projected reformulation (AP2R) on
sensor placement, nonlinear network design, mean-variance portfolio and unit
commitment problems. P2R was implemented as part of a specialized branch-
and-bound algorithm and AP2R was solved directly with CPLEX 12. Both
approaches were compared to perspective cuts implemented as a callback in
CPLEX. Computational results show that P2R is the best performing method
for problems that have a well-suited structure and require little or no branching.
For problems with more complex structures, AP2R is competitive with the per-
spective cut approach. When there are constraints linking indicator variables
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and few linear approximations provide a good estimate of the original nonlinear
function, perspective cuts tend to be the best performing method.

Salgado et al. [19] studied the alternating current optimal power flow problem
with activation/deactivation of generators (ACOPFG) using 8 test instances.
They tested two perspective-based reformulations of the objective function. The
first uses four perspective cuts of the form (8); the other is obtained by applying
AP2R [8]. Although the results of enhancing the standard ACOPFG model
with perspective reformulations are inconclusive, an outer approximation [20]
of the problem significantly benefits from both perspective cuts and AP2R.
The perspective cuts approach performs best, solving one more instance than
the standard formulation within the time limit of 1 hour and taking less than
4 seconds on all the remaining instances, whereas the standard formulation
requires over 1000 seconds on most instances.

3 Generalized perspective cuts
If f is non-convex, neither the gradient cuts (3) nor the perspective cuts (8) are
guaranteed to be valid. However, the perspective reformulation can be applied
to a convex underestimator of f , from which the perspective cuts (8) can be
derived. Alternatively, any linear inequality φpyq ¤ x` that is valid for the ‘on’
set F 1 can be adjusted for the ‘off’ set F 0.

In the following, we propose a cut extension procedure that ensures that the
generated inequality is equivalent to φpyq ¤ x` when the indicator is equal to 1
and holds with equality at the point px`,y, zq � pfpy0q,y0, 0q.

Theorem 1 (Generalized perspective cuts). Consider a vector of semi-continuous
variables y P Rp with an indicator z P t0, 1u, such that y � y0 if z � 0, and a
linear inequality φpyq ¤ x` that is valid for the set

F 1 � tpx`,y, zq | x` ¥ fpyq, y P ry,ys, z � 1u.

Let
φ̃py, zq � φpyq �

�
fpy0q � φpy0q

�
p1� zq.

Then the linear inequality φ̃py, zq ¤ x` is valid for the set F 0 Y F 1, where

F 0 � tpx`,y, zq | x` ¥ fpy0q, y � y0, z � 0u.

Proof. It is sufficient to check the validity for each possible value of z P t0, 1u.
By substituting z � 1 and z � 0 in φ̃py, zq, we immediately obtain

1. φ̃py, 1q � φpyq @y P Rp and

2. φ̃py0, 0q � fpy0q,

respectively. Therefore, φ̃py, zq ¤ x` is a valid inequality.

If the cut φpyq ¤ x` is already valid for F 0, then the described above ad-
justment always produces a cut that is at least as strong as the original cut.
Since φpyq ¤ x` is in this case implied by fpyq ¤ x` for px`,yq P F 0, we have
φpy0q ¤ fpy0q. Hence the coefficient of p1� zq in φ̃py, zq is nonnegative and

φ̃py, zq ¥ φpyq, @z P r0, 1s, @y P Rp.
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If additionally φpy0q   fpy0q, i.e., the original cut is not tight at y0, then the
new cut is also stronger. Otherwise, if φpyq ¤ x` does not hold for F 0 (that is,
if φpy0q ¡ fpy0q), then the adjustment is necessary to obtain a cut that is valid
for F 0 Y F 1.

This cut extension procedure has two main advantages:

1. It does not depend on the convexity of f and requires no assumptions on
the cut except for its validity for F 1.

2. In the case where y0 R ry,ys, variable bounds for F 1 are tighter than
those for F 0 Y F 1. This is useful for non-convex constraints since the
tightness of their relaxations depends on variable bounds, and therefore
cuts constructed for y P ry,ys will generally be stronger than those for
y P rminty0,yu,maxty0,yus.

When the cut strengthening is applied to the convex setting, the result is
equivalent to the well-known perspective cuts:

Theorem 2 (Alternative derivation of perspective cuts). Suppose that f : Rp Ñ
R is convex and px̂`, ŷ, ẑq R convpF q as defined in Section 2.1. Consider the
gradient cut (3) at point y� � pŷ � y0q{ẑ � y0 for Constraint (2):

φpyq � fpy�q � 〈∇fpy�q,y � y�〉 ¤ x`.

Let φ̃py, zq be the linear function obtained from φpyq by following the strength-
ening procedure in Theorem 1. Then φ̃py, zq is written as follows:

φ̃py, zq �
〈
∇fpy�q,y � y0〉

� pfpy�q � fpy0q �
〈
∇fpy�q,y� � y0〉

qz � fpy0q

and the cut φ̃py, zq ¤ x` is equivalent to the perspective cut (8) at point pŷ, ẑq.

Proof. The coefficient of p1� zq in φ̃py, zq is

α � fpy0q � φpy0q � fpy0q � fpy�q �
〈
∇fpy�q,y0 � y�

〉
.

Adding αp1 � zq to the left hand side of the gradient cut produces the
perspective cut (8):

φ̃py, zq � φpyq � αp1� zq �〈
∇fpy�q,y � y0〉

� pfpy�q � fpy0q �
〈
∇fpy�q,y� � y0〉

qz � fpy0q.

To paraphrase, for a convex function f the perspective cut at a solution
px̂`, ŷ, ẑq of the LP relaxation can equivalently be obtained by first generating a
gradient cut for f at the modified point y� and then applying the strengthening
procedure from Theorem 1.

Let us consider an example to illustrate the cut extension method.

Example 1. Consider a constraint fpyq � �y3 � y ¤ x`. The boundary of
the feasible region is shown in Figure 2 by the dark gray nonlinear surface, and
the feasible points are located above it. Let 0.5z ¤ y ¤ z, where y is a scalar,
semi-continuous variable modeled using the binary variable z P t0, 1u.
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(a) original cut valid for z � 1, y P r0.5, 1s (b) generalized perspective cut

Figure 2: Example of cut extension

First we find an underestimator of fpyq valid for z � 1. In this case, y is
constrained to belong to the interval r0.5, 1s. Since fpyq is concave on r0.5, 1s,
the underestimator is the secant through points p0.5, fp0.5qq and p1, fp1qq:

fsecpyq � �0.75y � 0.75.

The cut fsec ¤ x` (shown in Figure 2a) is not valid for the whole feasible set.
In particular, a feasible point py, z, x`q � p0, 0, 0q violates the cut: fsecp0, 0q �
0.75 ¡ 0 � x`.

Now we extend the cut so that to ensure validity at z � 0. By Theorem 1,
the new cut is written as:

f̃sec � fsec � pfpy0q � fsecpy0qqp1� zq � �0.75y � 0.75z.

This cut, shown in Figure 2b, is valid for the whole feasible set given by the
cubic constraint and the semi-continuity condition.

4 Implementation of perspective cuts
An effective implementation of perspective cuts within a general-purpose solver
requires providing methods for detecting suitable structures in a general problem
and generating the cuts during the solution process. In the following, we describe
our implementation within SCIP, but many considerations discussed here will
be applicable to MINLP solvers in general.

4.1 Organization of nonlinear constraints in SCIP
SCIP builds a relaxation for the MINLP (1) by means of an extended formu-
lation, where auxiliary variables w are introduced for the subexpressions that
constitute the constraint functions gpx,y, zq. Without loss of generality, we can
assume that (1b) has been replaced by a new system

hipx,y, w1, . . . , wi�1, zq ¾ wi, i � 1, . . . ,m1,

w` ¤ w ¤ wu,
(9)
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where wl and wu denote global lower and upper bounds on w.
The handling of nonlinear constraints in the version of SCIP used for this

work is performed by modules called “nonlinearity handlers”. Each nonlinearity
handler works on a specific structure (e.g. quadratic, convex, etc.) and provides
callback methods. For the purposes of this paper, three types of callbacks are
relevant:

• Detection callbacks receive an expression and determine whether it is suit-
able for the nonlinearity handler.

• Estimation callbacks provide linear under- and overestimators given an
expression and a point at which to linearize it.

• Enforcement callbacks enforce a given violated constraint by adding cut-
ting planes, tightening bounds, detecting infeasibility, etc.

Our addition of generalized perspective cuts is implemented via a specialized
perspective nonlinearity handler.

4.2 Structure detection
The detection algorithm identifies constraints of the form (9), where hi is nonlin-
ear and at least one other nonlinearity handler provides an estimation callback
for it. All variables that hi depends on must be semi-continuous with at least one
common indicator variable. If several binary variables satisfying this condition
are found, all such variables are stored for use in cut generation.

A special case is that of hi being a sum. Here, only the variables appearing
in nonlinear terms of the sum are required to be semi-continuous.

To determine whether a variable yj is semi-continuous, the detection callback
of the perspective nonlinearity handler searches for pairs of implied bounds on
yj with the same indicator zk:

yj ¤ αpuqzk � βpuq,

yj ¥ αp`qzk � βp`q.

If βpuq � βp`q, then yj is a semi-continuous variable and y0
j � βpuq, y

j
�

αp`q � βp`q and yj � αpuq � βpuq.
This information can be obtained either directly from linear constraints in

yj and zk, or by finding implicit relations between yj and zk. Such relations can
be detected by probing, which fixes zk to its possible values and propagates all
constraints in the problem, thus detecting implications of zk � 0 and zk � 1.
SCIP stores the implied bounds in a globally available data structure.

In addition, the perspective nonlinearity handler detects semi-continuous
auxiliary variables, that is, variables wi that were introduced to express the ex-
tended formulation (9). Given hipy, w1, . . . , wi�1q ¾ wi, where y, w1, . . . , wi�1
are semi-continuous variables depending on the same indicator zk, the auxiliary
variable wi is semi-continuous with w0

i � hipy0, w0
1, . . . , w

0
i�1q and rwi, wis �

hipry0,y0s, rw1, w1s, . . . , rwi�1, wi�1sq computed by interval arithmetics.
According to Theorem 1, the constraint must have the form

wi ¥ hipy, w1, . . . , wi�1q,
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where all variables y, w1, . . . , wi�1 are semi-continuous with respect to the same
indicator zk. In our implementation we allow a more general form:

hipx,y, w1, . . . , wi�1, zq � hsc
i,kpy, w1, . . . , wrq (10)

� hnsc
i,k px, wr�1, . . . , wi�1, zq ¾ wi,

where the variables are assumed to be sorted so that semi-continuous auxiliary
variables w1, . . . , wr come before the non-semi-continuous auxiliary variables
wr�1, . . . , wi�1 and the auxiliary variable wi representing hi.

Thus, for each suitable indicator zk the function hi is split up into the
semi-continuous part hsc

i,k, which can depend only on variables that are semi-
continuous with respect to indicator zk, and a non-semi-continuous part hnsc

i,k ,
which depends on non-semi-continuous variables. The non-semi-continuous part
must be linear. If the sum has a constant term, the constant is considered to
be part of hsc

i,k.

4.3 Separation and strengthening of generalized perspec-
tive cuts

During the cut generation loop, generalized perspective cuts as in Theorem 1
are constructed for constraints of the form (10).

In the following, let v denote the vector of all problem variables: v �
px,y,w, zq, and let F 1

i,k and F 0
i,k be the sets of points satisfying a constraint of

the form (10) for a given i P t1, . . . ,m1u together with implied variable bounds
for zk � 1 and zk � 0, respectively. For simplicity, we fix the inequality sign
and consider “less than or equal to” constraints:

F 1
i �tv |hipx,y, w1, . . . , wi�1, zq ¤ wi,y P ry,ys,w P rw,ws, zk � 1u,
F 0

i �tv |hipx,y, w1, . . . , wi�1, zq ¤ wi,y � y0,w � w0, zk � 0u.

Suppose that the point v̂ violates the nonlinear constraint:

hipx̂, ŷ, ŵ1, . . . , ŵi�1, ẑq ¡ ŵi.

If hi is nonconvex and its estimators depend on variable bounds, the enforcement
callback first performs probing for zk � 1 in order to tighten the implied bounds
ry,ys and rwj , wjs for j ¤ r.

Estimation callbacks of non-perspective nonlinearity handlers are called in
order to find valid cuts that separate v̂ from F 1

i,k, which are then modified
according to Theorem 1. For a constraint of the generalized form hi � hsc

i,k �
hnsc

i,k ¤ wi, which is described in Section 4.2, an estimation callback will provide
an underestimator of hi:

hi � hsc
i,k � hnsc

i,k .

This underestimator consists of an underestimator of the semi-continuous
part hsc

i,k and the non-semi-continuous part hnsc
i,k , which remains unchanged since

it is already linear and shares none of the variables with the semi-continuous
part. The extension procedure from Theorem 1 is applied only to hsc

i,k to obtain
h̃

sc

i,k. Since hsc
i,k depends only on semi-continuous variables, similar arguments to
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Section 3 hold for feasibility and tightness of the strengthened underestimator
h̃

sc

i,k. The strengthened underestimator of hi is then written as

h̃i,k � h̃
sc

i,k � hnsc
i,k .

If v̂ violates the cut h̃i,k ¤ wi, the cut is passed to the SCIP core where it will
be considered for addition to the LP relaxation.

Let us consider an example of generalized perspective cut separation by
extending Example 1.

Example 2. The extended formulation of the constraint from Example 1 is
written as:

hpxl, yq � �y3 � y � xl ¤ w ¤ 0.

The semi-continuous part of h is hscpyq � �y3 � y, and the non-semi-
continuous part is hnscpxlq � �xl. The perspective underestimator of h is
hpxl, y, zq � �0.75y � 0.75z � xl and the perspective cut is written as follows:

�0.75y � 0.75z � xl ¤ w.

Suppose that the point to be separated is px̂l, ŷ, ẑ, ŵq � p0, 0.4, 0.7, 0q. Sub-
stituting the variables with their values at this point in the perspective cut, we
get a violated inequality 0.225 ¤ 0. Therefore the cut is violated and will be
considered for addition to the LP relaxation.

5 Computational results
This section presents the results of computational experiments. A development
version of SCIP (githash f0ee1d793d) was used, together with the linear solver
SoPlex 5.0.1.3 [12] and the nonlinear solver Ipopt 3.12.13 [23]. All the experi-
ments were run on a cluster of 3.60GHz Intel Xeon E5-2680 processors with 64
GB memory per node. The time limit was set to one hour and the optimality
gap limit to 0.01%.

Throughout the section, we analyze the following settings, each defined by
the types of constraints for which perspective cuts are added:

• Off : perspective cuts are disabled;

• Convex: perspective cuts are enabled only for convex constraints;

• Full: perspective cuts are enabled for both convex and nonconvex con-
straints.

5.1 Detection of suitable structures
Out of the 1703 instances of MINLPLib, suitable constraints of the extended
form (10) were detected for 186 instances. Table 1 shows the numbers of in-
stances where at least one such constraint was detected, when counting: all
instances, instances where detection succeeded for convex constraints only, in-
stances where detection succeeded both for convex and nonconvex constraints
and instances where detection succeeded for nonconvex constraints only.
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Table 1: Detection results

All Convex Both Nonconvex

186 89 53 44

Only those instances were counted for Table 1 where suitable constraints
were detected in the main problem. Additionally, sometimes a constraint can
only be detected by the perspective nonlinearity handler in a subproblem. A
typical example of this is a heuristic creating a subproblem to represent a re-
stricted version of the main problem. This often involves fixing some variables or
modifying bounds, which can result in new semi-continuous variables and thus
new suitable constraints. In our test set there are 3 instances where suitable con-
straints were found only in subproblems. However, subproblem detections are
not guaranteed to have an impact on performance. Because of this, subproblem
detections are not counted in Table 1.

5.2 Overall performance impact
This subsection evaluates the overall impact of perspective cuts on the perfor-
mance of SCIP. Its purpose is to give an overview of how the three major settings
compare against each other before moving onto more detailed comparisons in
the next subsection.

In order to robustify our results against the effects of performance variabil-
ity [17], four different permutations of the order of variables and constraints
were applied to each of the 186 instances, for which suitable structures were de-
tected. Each permutation is treated as a separate instance, and together with
the instances without any permutation they comprise a test set of 930 instances.
In our analysis, we exclude instances where one of the solver settings encoun-
tered numerical troubles or where the numerical results of the different solver
settings are inconsistent.

Table 2: Overview of solved instances

Off Convex Full

Solved 741 764 759
Limit 175 154 154
Fails 14 12 17

Table 2 provides an overview of the number of instances solved to global
optimality by each setting. The row Limit contains the count of instances where
the time limit was reached. The row Fails reports the number of instances where
numerical troubles were encountered. The largest number of instances solved
with a given setting was 764, yielded by setting Convex, which had both the
smallest number of numerical fails and time outs. It is followed by Full, which
solved 759 instances. The setting Off solved the least number of instances
overall.

Table 3 shows the shifted geometric mean of the running time in seconds
(with a shift of 1 second) and the shifted geometric mean of the number of
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Table 3: Overall results on the subset of 672 affected instances

Off Convex Full

Time 13.79 11.23 11.27
Relative time 1.00 0.81 0.82

Nodes 620 479 472
Relative nodes 1.00 0.77 0.76

branch-and-bound nodes (with a shift of 100 nodes). All numbers in the table
are computed for the subset of 672 affected instances: all instances where at
least two of the three settings yielded a different solving path (judged by a
different number of linear programming iterations), where the solver failed with
none of the settings, and solved the instance to optimality with at least one
setting.

From Table 3 one can see that a significant improvement is achieved when
enabling perspective cuts for convex constraints. The results with the settings
Convex and Full, however, are almost identical.

5.3 Detailed comparisons
In this subsection we provide a more detailed analysis of the performance results
by comparing pairs of settings, in order to evaluate the impact of each major
feature more thoroughly.

First, we present the numbers of relevant and affected instances in Table 4.
It has the following rows:

• Relevant: the number of instances where more expressions are detected
with the second setting than with the first setting;

• Affected: the number of instances which were solved with at least one
of the two settings, where the number of linear programming iterations
differs between the two settings and the solver failed with none of the two
settings.

From Table 4 we can see that while nonconvex structures can be found on
more than half of the test set, applying generalized perspective cuts to noncon-
vex functions affects the solving path less often than applying perspective cuts
to convex functions.

Table 4: Relevant and affected instances

Off vs Convex Convex vs Full

Relevant 710 485
Affected 544 205

Table 5 summarizes the effect of perspective cuts on the dual bound at the
end of the root node. It reports the numbers of instances of the subset Relevant
where the dual bound was better with the corresponding setting by a percentage
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that is specified in the first column, as well as the numbers of instances where
the dual bound change was less than 5%.

Table 5: Root node dual bound differences

Off Convex Convex Full

better by ¡ 50% 16 46 0 31
better by 5–50% 25 39 14 11
same within 5% 584 429

A significant difference in root node dual bound can be observed only for a
relatively small number of instances. The comparison between Off and Convex
is consistent with the results in the above tables, with Convex improving more
dual bounds than Off. The comparison between Convex and Full deserves a
closer look. When inspecting medium dual bound changes (5–50%), Convex
yields a better bound than Full slightly more often than the other way round.
However, when considering only large improvements (¡ 50%), we observe that
those were always due to setting Full. From this we conclude that, overall,
enabling perspective cuts for nonconvex constraints improves the quality of dual
bounds in the root node.

Table 6 compares the running time when considering pairs of settings and
the corresponding subsets of affected instances. It has the following rows:

• Time: shifted geometric mean of the running time in seconds (with a shift
of 1 second);

• Relative time: shifted geometric mean of the running time relative to the
first of the two settings;

• Faster: the number of instances where SCIP was faster with the given
setting than with the other setting by at least 25%.

In order to analyze the impact on subsets of increasingly hard instances, these
rows repeat for three subsets of instances given by time brackets rt, 3600s, which
contain the instances that were solved to optimality with both settings and took
at least t seconds by at least one setting.

The results shown in Table 6 strongly confirm that enabling perspective cuts
for convex constraints decreases the mean running time. This effect becomes
more pronounced as the difficulty of the instances increases. On instances that
took at least 100 seconds to solve, setting Convex was faster almost by a factor
of 3. The additional activation of perspective cuts for nonconvex constraints,
however, rather had a detrimental effect on performance, especially as instances
become more difficult. This is despite the fact that there are more speed-
ups than slow-downs when switching from setting Convex to setting Full, as
seen from the rows Faster. Hence, the increase in the mean time is due to
significant slow-downs on a few challenging instances. However, these observed
slow-downs should not be overestimated since the size of the subsets r100, 3600s
and r1000, 3600s are comparatively small.

A comparison of branch-and-bound tree sizes is given in Table 7. Again,
a consistent improvement is observed when enabling perspective cuts for con-
vex expressions. This improvement becomes more pronounced as the instances
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Table 6: Time on subsets of affected instances

Off Convex Convex Full

Instances in r0, 3600s: 544 205
Time 12.53 9.70 24.30 24.82
Relative time 1.00 0.77 1.00 1.02
Faster 95 193 43 51

Instances in r10, 3600s: 276 149
Time 70.96 45.27 57.47 59.12
Relative time 1.00 0.64 1.00 1.03
Faster 50 122 29 35

Instances in r100, 3600s: 100 49
Time 506.17 183.90 263.57 285.85
Relative time 1.00 0.36 1.00 1.08
Faster 18 64 13 15

Instances in r1000, 3600s: 45 14
Time 1444.28 425.60 814.18 1034.83
Relative time 1.00 0.29 1.00 1.27
Faster 10 32 5 5

become more challenging. Here we also observe an overall improvement when
enabling perspective cuts for nonconvex constraints. However, on the harder
subsets r100, 3600s and r1000, 3600s, Convex still remains the best setting.

Table 7: Number of nodes on subsets of affected instances

Off Convex Convex Full

Nodes on r0, 3600s 775 567 619 590
Relative 1.00 0.73 1.00 0.95

Nodes on r10, 3600s 4289 2436 1188 1170
Relative 1.00 0.57 1.00 0.98

Nodes on r100, 3600s 24924 7819 14891 15503
Relative 1.00 0.31 1.00 1.04

Nodes on r1000, 3600s 46517 15638 166889 199558
Relative 1.00 0.34 1.00 1.20

Figures 3 and 4 show performance profiles [6] for running time and number of
nodes with settings Off and Convex and settings Convex and Full, respectively.
Let ti,s denote the running time for instance i with setting s. The virtual best
setting used for the running time performance profiles, denoted by index vb,
is defined as a setting whose running time for each instance is equal to the
minimum of the running times with the two settings that are being compared:
ti,vb � minstti,su. The horizontal axis represents the maximum allowed ratios to
the time with the virtual best setting, denoted by τ . The vertical axis represents
the fraction of instances solved within the maximum allowed fraction of time of
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Figure 3: Performance profiles comparing Off and Convex

the virtual best, denoted as pspτq:

pspτq �
number of instances i s.t.: ti,s ¤ τ � ti,vb

total number of instances .

Performance profiles for the number of nodes in the branch-and-bound tree are
constructed similarly, the only difference being that t.,. is replaced everywhere
with n.,., which represents the number of nodes per instance and setting.

From Figure 3 we see that setting Convex dominates setting Off. With
Convex, over 55% of instances are solved faster or as fast as with setting Off.
It is able to solve around 80% of instances within a factor of 4 of the best time,
and the curve approaches approximately 82% in the limit, i.e., Convex is able
to solve around 82% of the instances. The respective numbers for Off lie at
around 10% lower than those for Convex. A very similar picture is observed for
the number of nodes.

Figure 4: Performance profiles comparing Convex and Full

According to Figure 4, the setting Full is roughly on par with Convex in
terms of running time if the ratio we are interested in is below 3. As the ratio
increases, Convex becomes the better setting, which reflects the fact that it
solves slightly more instances than Full. When looking at the number of nodes,
Full yields the best result for around 74% of instances, as opposed to around
70% yielded by Convex. For ratios above 16, Convex is better than Full, which,
again, is due to it solving more instances.
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5.4 Feature evaluation: bound tightening
As explained in Section 4.3, if the constraint is nonconvex and its relaxation
depends on variable bounds, then the indicator variable is first set to 1 and
bound tightening is performed. A cut is then computed for this possibly tighter
set F 1

i and strengthened according to Theorem 1. In this subsection we evaluate
the usefulness of this feature.

To this end, we introduce the setting Full-noBT. It is equivalent to Full
except that the bound tightening feature is disabled. Table 8 compares settings
Full-noBT and Full for the 68 affected instances.

Table 8: Comparison between Full-noBT and Full

Fails Limit Solved RootImpr
¡ 50%

Time Nodes

Full-noBT 16 153 761 4 34.45 2910
Full 17 154 759 25 33.68 2618

When bound tightening is disabled, two more instances are solved due to
one less fail and one less time out. Enabling it, on the other hand, leads to
large (¡ 50%) root node dual bounds improvements on 25 out of 68 affected
instances and a comparable weakening of root node dual bounds only on 4
instances. Enabling bound tightening also yields a small decrease in the mean
time (2.2%) and a moderate decrease in the number of nodes (10%). According
to these results, the two settings are very close in performance, Full-noBT being
the slightly more reliable setting and Full yielding smaller branch-and-bound
trees and slightly better solving times.

Figure 5: Performance profiles comparing Full-noBT and Full

Performance profiles comparing Full-noBT and Full are shown in Figure 5.
The curves are very close since there are few affected instances. The setting
Full performed slightly better than Full-noBT both in terms of running times
and tree sizes, and the two settings are nearly identical in the limit.
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6 Conclusion
In this paper we introduced a general method to construct perspective cuts not
only for convex constraints as previously proposed in the literature, but also for
nonconvex constraints, for which linear underestimators are readily available.
We conducted a computational study of perspective cuts for convex and noncon-
vex constraints. Relevant structures were detected in about 10% of MINLPLib
instances. The computational results indicate that adding perspective cuts for
convex constraints reduces the mean running times and tree sizes by over 20%.
Adding perspective cuts for nonconvex constraints can be detrimental to per-
formance on challenging instances and can lead to an increased amount of nu-
merical issues, which is reflected in a small decrease in the number of solved
instances. Despite this, perspective cuts for nonconvex constraints reduce the
geometric mean of the number of nodes of the branch-and-bound tree by 5%
and improve dual bounds at the root node.

These results indicate that perspective cuts improve performance of gene-
ral-purpose solvers. However, in order to efficiently utilize perspective cuts for
nonconvex structures, careful implementation and tuning is necessary.

One direction for future work is developing more sophisticated detection
algorithms. Some problems contain constraints that do not satisfy the re-
quirements in our current implementation, but with more careful analysis of
the problem structure can be revealed to be suitable for applying perspective
cuts. Another direction for future research is generalizing the cut strengthening
method to on/off variables whose “off” domain is a non-singleton interval, as
well as to more general types of on/off sets. Unlike the case considered in this
paper, there is no single best choice of how to strengthen a given valid cut in
such a setting. Moreover, increased complexity of the set makes developing a
computationally efficient cut strengthening method a more challenging task.
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