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On the Maximum Cardinality Search

Lower Bound for Treewidth∗

Hans L. Bodlaender† Arie M. C. A. Koster‡

Abstract

The Maximum Cardinality Search algorithm visits the vertices of a graph in some
order, such that at each step, an unvisited vertex that has the largest number of visited
neighbors becomes visited. An MCS-ordering of a graph is an ordering of the vertices
that can be generated by the Maximum Cardinality Search algorithm. The visited
degree of a vertex v in an MCS-ordering is the number of neighbors of v that are before
v in the ordering. The visited degree of an MCS-ordering ψ of G is the maximum visited
degree over all vertices v in ψ. The maximum visited degree over all MCS-orderings of
graph G is called its maximum visited degree. Lucena [14] showed that the treewidth of
a graph G is at least its maximum visited degree.

We show that the maximum visited degree is of size O(logn) for planar graphs, and
give examples of planar graphs G with maximum visited degree k with O(k!) vertices,
for all k ∈ N. Given a graph G, it is NP-complete to determine if its maximum
visited degree is at least k, for any fixed k ≥ 7. Also, this problem does not have a
polynomial time approximation algorithm with constant ratio, unless P=NP. Variants
of the problem are also shown to be NP-complete.

We also propose and experimentally analysed some heuristics for the problem. Sev-
eral tiebreakers for the MCS algorithm are proposed and evaluated. We also give heuris-
tics that give upper bounds on the value of the maximum visited degree of a graph,
which appear to give results close to optimal on many graphs from real life applications.

1 Introduction

Recent research has shown that the notion of treewidth is not only of theoretical interest,
but can also be used to solve problems arising from real life applications in practice (see
e.g., [11, 13].) One important issue when using treewidth in implementations is the problem
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to find tree decompositions of given graphs of optimal or close to optimal width. Many of
the theoretical solutions to this problem seem not to be applicable in practice, e.g., some
have very large constant factors hidden in the O-notation (like the algorithm from [3], see
[15].) Thus, there is a need for practical algorithms for determining the treewidth and
finding tree decompositions. Recent investigations brought us preprocessing methods (e.g.,
[5, 8, 4]), heuristics that often give close to optimal algorithms (e.g., [1, 7, 10]), lower bound
methods [6, 12, 7, 9], and some exact methods [2, 9]. Still, in many cases, exact methods
are too slow, and there are large gaps between the bounds given by upper bound and lower
bound heuristics. This paper concentrates on the study of a lower bound on the treewidth
that is due to Lucena [14]. We analyse this bound both theoretically and experimentally.

The lower bound on treewidth of Lucena [14] is based on the Maximum Cardinality Search
(or, in short: MCS) algorithm. This algorithm that visits all vertices of a given graph in
order was first proposed in 1984 by Tarjan and Yannakakis for the recognition of chordal
graphs [16]. The order in which the Maximum Cardinality Search algorithm must visit
the vertices of a graph must fulfill the following property: at each point, a vertex must
be visited that has the largest number of visited neighbors among all unvisited vertices.
Call any ordering of the vertices of the graph G = (V,E) that fulfills this property an
MCS-ordering of G. Note that graphs (with more than one vertex) have several different
MCS-orderings: often, there will be more than one vertex with the largest number of visited
neighbors, and the MCS-ordering can visit any of these vertices next. In particular, any
vertex can be the first vertex to visit. The visited degree of a vertex v in an MCS-orderings
is the number of neighbors of v that are before v is the ordering, i.e., the number of visited
neighbors of v at the moment that v is visited. The visited degree of an MCS-ordering ψ of
G is the maximum over all vertices of their visited degree. The maximum visited degree over
all MCS-orderings of G is called its maximum visited degree, and denoted by MCSLB(G).
Lucena [14] showed that for every graph G and MCS-ordering ψ of G, the maximum visited
degree of ψ is at most the treewidth of G.

Thus, Maximum Cardinality Search provides us with a lower bound heuristic for the
treewidth of a given graph. We compare the heuristic with other heuristics for treewidth.
For instance, the degeneracy of a graph (the maximum over all subgraphs of the minimum
degree) is another lower bound of the graph. The degeneracy can be computed faster, but
cannot be larger than the visited degree of an MCS-ordering; in several cases it is smaller.

It is interesting to note that Maximum Cardinality Search also has been used as a heuristic
for obtaining upper bounds on the treewidth; an experimental evaluation has been reported
in [10].

This paper is organised as follows. In Section 2, we give preliminary definitions and results.
In Section 3, we study the value of the maximum visited degree for planar graphs. We
show that this value can be arbitrary large, but also give an O(log n) upper bound on
the maximum visited degree for planar graphs with n vertices. Moreover, the presented
examples allow to compare the maximum visited degree with the degeneracy measure.
Then, we consider the computational complexity to determine the maximum visited degree
of a given graph G. We first show in Section 4 that the problem to decide for a given graph
G and integer k, whether MCSLB(G) ≤ k is NP-complete, even for fixed k ≥ 7. Some
variants of the problem are also shown to be NP-complete, and we show that it is NP-hard
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to approximate the maximum visited degree with a constant approximation ratio. We have
two types of heuristics for the maximum visited degree. In Section 5 some upper bounds
on the maximum visited degree are given. In Section 6, we look at different tiebreakers for
constructing MCS-orderings (and thus lower bounds on the maximum visited degree), and
report on computational experiments using these tiebreakers. Some final remarks are made
in Section 7.

2 Preliminaries

In this section, we give some preliminary definitions and results. All graphs we consider
in this paper are undirected, and without parallel edges or self-loops. A graph is denoted
G = (V,E) with V the set of vertices and E the set of edges. Unless stated otherwise,
n = |V | denotes the number of vertices in the considered graph. The degree of a vertex
v ∈ V in graph G is denoted dG(v) or d(v).

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )), with
{Xi | i ∈ I} a family of subsets of V and T a tree, such that

• ⋃i∈I Xi = V ,

• for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and

• for all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆ Xi1 .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth
of a graph G, tw(G), is the minimum width among all tree decompositions of G.

Consider an ordering ψ = (v1, v2, . . . , vn) of the vertices of a graph G = (V,E). The current

visited degree of vi at time j, denoted cvdψj (vi), is |{{vk, vi} | k < j}|, i.e., the number of
neighbors of vi in the set {v1, . . . , vj−1}. The ordering ψ is an MCS-ordering (‘maximum
cardinality search ordering’) if for each i, vi has the maximum current visited degree at

time i among all vertices in {vi, vi+1, . . . , vn}, i.e., cvdψi (vi) = maxi≤j≤n cvd
ψ
i (vj). The

visited degree of vi is the current visited degree of vi at time i, and the visited degree of the
MCS-ordering ψ, mcslbψ(G), is the maximum over all vertices of their visited degree. The
maximum visited degree of G, or also, MCSLB(G) is the maximum visited degree over all
MCS-orderings of G.

In several proofs, we look at maximum cardinality search in an ‘operational’ way, i.e, we
follow the steps of an algorithm that constructs an MCS-ordering. At a certain point during
the execution of the algorithm, vertices are either already visited, or unvisited (in which
case, the algorithm will visit them later.) The current visited degree of an (unvisited) vertex
is the number of visited neighbors at that point. So, the visited degree of a vertex is the
number of visited neighbors at the moment it is visited. Motivation for our work was the
following result.

Theorem 1 (Lucena [14]) For each graph G, the treewidth of G is at least its maximum
visited degree.
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The following easy lemma is used several times in our proofs.

Lemma 2 Let ψ be an MCS-ordering of G and suppose v has visited degree k in ψ. Then
v has distinct neighbors w1, . . . , wk, such that the visited degree of wi is at least i − 1, and
each wi is visited before v.

Proof: Let wi be the ith visited neighbor of v. Each wi, i ≤ k is visited before v. Just
before wi is visited, v has current visited degree exactly i−1. As the MCS visits wi instead
of v at that point, wi must have visited degree at least i− 1. 2

Corollary 3 Let ψ be an MCS-ordering of G. The visited degree of a vertex is at most the
maximum degree of its neighbors.

Proof: Each neighbor of v that is visited before v has visited degree at most its degree
minus one. Now, use Lemma 2. 2

The degeneracy of a graph G = (V,E) is the maximum over all induced subgraphs H of G
of the minimum degree of a vertex in H and is denoted by δD(G). It is easy to see that the
degeneracy can be computed in linear time, and that it is a lower bound for the treewidth,
see e.g., [10]. In [6], the contraction degeneracy δC(G) of a graph G is introduced as the
maximum over all minors H of G of the minimum degree of a vertex in H. It also holds
that δC(G) ≤ tw(G), but in contrast to the degeneracy it is NP-hard to compute, cf. [6].

3 MCSLB(G) for planar graphs

In this section, we consider the maximum visited degree of planar graphs G. We show that
for each planar graph G with n vertices, MCSLB(G) = O(log n). We also give examples
that show that there are planar graphs with arbitrary large values of MCSLB(G). We start
the section by giving examples of such graphs. After that, we give the proof of the upper
bound. The examples that show that MCSLB(G) can be arbitrarily large can also be used
for a comparison with the contraction degeneracy. At the end of this section the same
examples are used to show that the maximum visited degree is not closed under taking of
induced subgraphs and minors.

3.1 Planar graphs with large MCSLB(G)

Theorem 4 For every k, there is a planar graph Gk, such that

(i). The maximum visited degree of G equals k.

(ii). The treewidth of Gk is k.

(iii). There is a vertex v in Gk such that every MCS-ordering that starts in v has visited
degree 2.
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Figure 1: The construction for Theorem 4 for k = 5

(iv). Gk has 2(k − 1)! · (2 +
∑k−1

j=2
1
j!) + 1 vertices.

Proof: We have k + 1 layers. Number these layers from k to 0. On layer k, there is one
vertex. For i, 1 ≤ i ≤ k − 1, there are 2(k − 1)!/i! vertices on layer i. On layer 0, there are
2(k − 1)! vertices. Hence, Gk has the number of vertices as stated in the theorem.

On each layer, we have a path, connecting all vertices on the layer. The vertex on layer
k is adjacent to both vertices on layer k − 1. Each vertex on a layer i, 0 ≤ i ≤ k − 2 is
adjacent to one vertex on layer i+ 1; each vertex on a layer i, 1 ≤ i ≤ k − 1 is adjacent to
k successive vertices on layer i− 1. An example of the construction is shown in Figure 1.

We can start an MCS with a vertex in layer 0, (e.g., the vertex labeled x in Figure 1) and
then visit the vertices layer by layer. The first visited vertex in layer i has visited degree i,
and each next vertex in layer i has visited degree i+1. As vertices in layer i+1 have current
visited degree at most i+ 1 when we are visiting the vertices in layer i, we can first visit all
vertices in layer i, before going to a vertex in layer i + 1. In this way, we get a maximum
visited degree of k for the second visited vertex in layer k − 1. So, MCSLB(G) ≥ k.

When we start the MCS with the vertex in layer k, labeled v in Figure 1, then any MCS
will give maximum visited degree two. We must visit the vertices layer by layer, but now we
go from higher numbered layers to lower numbered layers. Suppose we visited all vertices
in layer i, k ≥ i > 1. The next step will be a visit to a vertex in layer i− 1. Now, as long
as we did not yet visit all vertices in layer i − 1, there will be at least one vertex in layer
i − 1 with current visited degree two, while all vertices in layer i − 2 have current visited
degree one. So, we first must visit all vertices in layer i − 1, all with visited degree one or
two, before we go to layer i− 2.

The treewidth of the graph is exactly k. The treewidth of Gk is at least k, by Lucena’s
theorem: it has an MCS-ordering with maximum visited degree k. Let G′k be the graph
obtained by removing the vertex on layer k from Gk. As the vertex on layer k is a simplicial
vertex of degree two, the treewidth of Gk is the maximum of two and the treewidth of G′k.
The treewidth of G′k is at most k, as G′k is a minor of an r by k grid for r = 2(k − 1)!, and
the treewidth of such a grid is k. We now have MCSLB(G) = k, using the results proved
above and Theorem 1. 2

Note that the number of vertices in Gk is Θ(k!). Small variations of the construction give
slightly different characteristics. The construction in Figure 2 has somewhat less vertices
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Figure 2: A construction with less vertices with k = 6

Figure 3: A construction with a bipartite planar graph

but the condition that every MCS-ordering starting in v gives a maximum visited degree of
2 must be weakened. In Figure 3, a similar construction is given, but now the graph is also
bipartite. Again, the condition that every MCS-ordering starting in v gives a maximum
bound of 2 must be weakened.

3.2 Planar graphs have MCSLB(G) = O(logn)

We will now give the upper bound proof for planar graphs. A vertex w is said to be the last
successor of a vertex v in an MCS-ordering, if w is a neighbor of v, and w is visited after v
and after every other neighbor of v. Note that each vertex has at most one last successor.

Theorem 5 If G is a planar graph with n vertices with maximum visited degree k ≥ 6,

then n ≥ 2d
k−1

4
e − 1.

Proof: Suppose G is a planar graph, and let π be an MCS-ordering of G with visited degree
k. Without loss of generality, we may suppose that G does not contain a proper subgraph
H with MCSLB(H) ≥ k. Let v be the first vertex visited by π with visited degree k.

Write V = {v1, . . . , vn}, with vi the ith vertex visited by π. Denote G>i as the subgraph,
induced by the vertices {vi+1, . . . , vn}. Similarly, denote G≤i as the subgraph, induced by
vertices {v1, . . . , vi}.

Claim 5.1 For each i, G>i and G≤i are connected.

Proof: Clearly, at each moment i during an MCS, the graph induced by the visited vertices
G≤i is connected.

Suppose G>i is not connected. Take a connected component from G>i that does not contain
v. If we remove all vertices from that connected component from G and from π, we obtain
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Figure 4: Illustration to the upper bound proof for planar graphs

a graph with an MCS-ordering where v still has visited degree k. This contradicts the
minimality of G. �

Claim 5.2 Consider an i, 1 ≤ i ≤ n, with vi a vertex with visited degree ` ≥ 6 in π. There
are two vertices with visited degree at least `− 4 in π for which vi is the last successor.

Proof: Consider a drawing of G, and the induced drawing of G≤i. By Proposition 5.1 there
must be one face in this drawing of G≤i that contains the positions of all vertices of G>i.
Without loss of generality, we may suppose this is the external face.

Consider a neighbor w of vi that is visited before vi. If vi is not the last successor of w,
then w must have a neighbor in G>i, and hence w must lie at the external face of G≤i.

Now, consider the last four neighbors of vi that are visited before vi, and call them w1, w2,
w3, and w4. Just before wi is visited, vi has current visited degree `− 5 + i ≥ 2 (1 ≤ i ≤ 4.)
As in Lemma 2, each wi has visited degree at least `−4. We claim that at most two of these
can be at the external face of G≤i. Suppose three of these are at the external face of G≤i,
cf. Figure 4. Then, for at least one of these, say wj, the edge {vi, wj} is a separator of G≤i.
Just after wj is visited, one component of the graph G≤i−{vi, wj} obtained by removing vi,
wj and incident edges from G≤i does not contain visited vertices. The first visited vertex
in that component must be visited before vi (as it is in G≤i), and it has visited degree one
(as wj is the only visited vertex it can be adjacent to). This contradicts the property of
MCS-ordering, as vi has current visited degree at least two after wj is visited.

So, at most two vertices from {w1, w2, w3, w4} do not have vi as their last successor. As
each of these has visited degree at least `− 4, the proposition follows. �

Now, consider the following directed subgraph of G. For each vertex v ∈ V with a last
successor, we take an arc from v to its last successor. As each vertex has at most one last
successor, these arcs form a forest. Consider the subtree of the forest with v as root. v has
visited degree k, and each vertex with ` ≥ 6 has at least two children with visited degree at
least `− 4. With induction, it follows that if k ∈ {4r− 2, 4r− 1, 4r, 4r+ 1}, r ≥ 1, then the
forest contains at least 2r − 1 vertices. (This holds trivially if k ≤ 5. Otherwise, we have
two disjoint subtrees each with at least 2r−1 − 1 vertices, and the root vertex.)
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As G contains at least as many vertices as a subtree of it, we have that n ≥ 2r − 1 with
r = dk−1

4 e. 2

Thus, we can conclude that the MCS-lower bound for treewidth is O(log n) on planar
graphs. As planar graphs can have treewidth Ω(

√
n), this shows that the MCS-lower bound

may be not very effective for planar graphs. (E.g., an r by r grid has treewidth r, but the
MCS-lower bound will be two for these grids.)

3.3 MCSLB(G) vs. (contraction) degeneracy

It is interesting to compare the degeneracy δD(G) and contraction degeneracy δC(G) of
graphs with the maximum visited degree, as all three are lower bounds for the treewidth.

Theorem 6 (i). For every graph G and every MCS-ordering ψ, the maximum visited
degree of ψ is at least the degeneracy of G, mcslbψ(G) ≥ δD(G).

(ii). For each k, there is a graph G = (V,E) for which each MCS-ordering ψ gives
mcslbψ(G) = 2, but for which δC(G) ≥ k.

(iii). For each k, there is a graph G = (V,E) and a vertex v ∈ V , such that each MCS-
ordering ψ of G starting at vertex v gives mcslbψ(G) = k, but for which δC(G) ≤ 5.

Proof:
(i). Let G be a graph with degeneracy k. Let H be a subgraph of G with minimum vertex

degree k. Let ψ be an MCS-ordering of G. Suppose v is the vertex from H that is last
visited by ψ. v has k neighbors in H that are visited before it, so has visited degree
at least k.

(ii). Let G be obtained by taking a clique with k + 1 vertices and then subdividing each
edge. Hence, the clique on k+ 1 vertices is a minor of G with minimum vertex degree
k, and thus δC(G) ≥ k. It is not hard to see that each MCS-ordering of G has visited
degree two: the neighbors of an unvisited clique vertex can have current visited degree
at most one. Hence, as soon as two of them are visited, the clique vertex must be
visited.

(iii). Suppose we execute the MMD+ algorithm on a planar graph. Contracting edges in
planar graphs gives again a graph that is planar. As each planar graph has a vertex
of degree at most five, δC(G) ≤ 5, see also [6]. So, the result follows when we use the
graph Gk from Theorem 4. 2

3.4 MCSLB(G) and induced subgraphs/minors

The notion maximum visited degree is not closed under taking of induced subgraphs, and
hence also not under taking of minors, as is shown in the following proposition. More
elaborate examples follow from the proof of Theorem 9.

Proposition 7 There are graphs G and H, such that H is an induced subgraph of G, and
the maximum visited degree of G is smaller than the maximum visited degree of H.
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Proof: A possible example is the following. We let H be the graph shown in Figure 1. For
G, we add two vertices, and make these adjacent to all vertices on the lowest and one-but-
highest level. A simple but tedious case analysis shows that G has maximum visited degree
4, while we have argued in Theorem 4 that H has maximum visited degree 5. 2

4 Complexity

In this section, we will show that the problem to decide for a given graph whether its
maximum visited degree is at least k is NP-complete, even for fixed k ≥ 7. A corollary of
the proof is that this problem also does not have a polynomial time constant approximation
algorithm with a fixed ratio, unless P=NP. A variant of the proof shows that the problem
to decide whether there exists an MCS-ordering with a visited degree at most k is also
NP-complete.

4.1 Complexity for MCSLB(G) with prescribed start

We first consider a version of the problem, namely, for the case that the starting ver-
tex is specified. NP-completeness of this version would also directly follow from the NP-
completeness of the problem without starting vertex, but the proof is somewhat simpler
and helpful to prove the unrestricted case. The problem is formally described as:

Max MCS-LB with prescribed start
Instance: Graph G = (V,E), vertex v0 ∈ V , integer k ≤ |V |.
Question: Is there an MCS-ordering ψ starting at v0 with mcslbψ(G) ≥ k?

Theorem 8 Max MCS-LB with prescribed start is NP-complete, even when k is a
constant that is at least 6.

Proof: It is trivial that Max MCS-LB with prescribed start belongs to NP. To proof
NP-hardness, we use a transformation from 3-satisfiability.

Suppose we are given a set of clauses C, each with three literals, over the set of Boolean
variables {x1, . . . , xn}. Suppose also that we are given an integer k ≥ 6. Note that our
construction is exponential in k, so we assume k to be a fixed constant.

We build a graph G′C,k with the property that if the set of clauses C is satisfiable, then
G′C,k has an MCS-ordering ψ starting at specified vertex v0 with mcslbψ(G′C,k) ≥ k. and
if the set of clauses is not satisfiable, then for every MCS-ordering ψ of G′C,k that starts in
v0, mcslbψ(G′C,k) ≤ 5. The construction is not the most efficient one, but a more efficient
one would need an (even) more detailed description.

The graph G′C,k consists of a number of parts. We have a relatively simple start part, given
in Figure 5.

For each variable xi, we have a variable part, which is shown in Figure 6. These variable
parts are put in series, attached to each other at the vertices marked ai,1 and ai,2; the first
variable part is attached to the start part.
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v0

v1

v2

a1,1

a1,2

Figure 5: The start part

to clause parts

represents xi

represents xi

ai,1

ai,2 ai+1,1

ai+1,2

to clause parts

Figure 6: The variable part of variable xi

The variable part can be seen to consist of four subparts: the beginning of the part, with
the attachment to the variable part of the previous variable (or, in case of variable x1, to
the start part), the ending of the part with the attachment to the next variable part (or, in
case of variable xn, to the ‘harvest part’, to be described later); and two long components,
one representing the variable to be set to false, and one representing the variable to be set
to true. Associate the top long component with xi, i.e., the case that xi is true, and the
bottom long component with xi, i.e., the case that xi is false. (In the proof, the component
of a literal set to true will be visited much later than the component of a literal set to false.)

b1
b2

b3

ci,1 ci,2 ci,3 ci,4 ci,5 ci,6

vertices in 1st literal component vertices in 2nd literal component vertices in 3rd literal component

Figure 7: A clause part

A clause part consists of six vertices as shown in Figure 7. Each is adjacent to one vertex
from the set {b1, b2, b3}. These vertices are called the bad vertices: their role will be described
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later.

For each clause we have a clause part. The vertices in the clause part are made adjacent
to vertices in the corresponding literal components, e.g., a clause part of a clause Ci =
{x2, x3, x4} will have edges to vertices in the top part of the variable part of x2, the bottom
part of the variable part of x3, and the top part of the variable part of x4. To each of these
parts, there are six edges, as indicated by the figures. The literal components are made
long enough such that each vertex in the component is adjacent to at most one vertex in
a clause part, and that vertices in the literal component adjacent to a clause part are not
neighboring each other.

The harvest part consists of k+3 layers, numbered layer -1 till layer k+1. Layer -1 contains
two vertices which we call g1 and g2. These are the good vertices: visiting these ‘early’ can
give us a large maximum visited degree for some other vertices by the MCS. Layer k + 1
consists of the three ‘bad’ vertices b1, b2, and b3. As discussed before, these vertices are
adjacent to vertices in clause components.

Layer k contains 16 vertices, and layer k− 1 contains 12 vertices. Layer k− 2 also contains
12 vertices. For i, 1 ≤ i ≤ k − 3, denote αi = 12 · (k − 2)!/i!. Write α0 = 12 · (k − 2)!.
For i, 0 ≤ i ≤ k − 3, layer i contains αi vertices. Note that the number of vertices in layer
i is exactly i + 1 times the number of vertices of layer i + 1. Write αk−1 = 12, αk = 12,
αk+1 = 16. We denote the vertices in layer i as hi,j , 0 ≤ j < αi.

We have several different types of edges in the harvest part. Note that there are only edges
between vertices in the same layer and between vertices in neighboring layers.

clique edges: b1, b2, and b3 form a clique.

top edges: Each vertex in layer k is adjacent to b1, b2, and b3.

b1 b2 b3

hk,0
hk,1

hk,15

hk−1,11

hk−2,11

hk−1,0

hk−2,0

Figure 8: The top four layers of the harvest part)

tree edges: hk−1,11 is adjacent to three vertices in layer k: hk,15, hk,14, and hk,13. hk−1,10

is adjacent to two vertices in layer k; hk,12 and hk,11. hk−1,9 is also adjacent to two
vertices in layer k; hk,10 and hk,9. For j, 0 ≤ j ≤ 8, hk−1,j is adjacent to hk,j.

Moreover, for each j, 0 ≤ j ≤ 11, we have an edge {hk−1,j, hk−2,j}. Figure 8 shows
the graph formed by levels k − 2, k − 1, k, and k + 1.

A third set of tree edges is defined for i, 1 ≤ i ≤ k− 2. We give each vertex in layer i,
i edges to vertices in the layer below, in the following manner. For j, 0 ≤ j ≤ αi − 1,
hi,j has edges to each vertex of the form hi−1,j+αi·β, 0 ≤ β ≤ i − 1. Note that each
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vertex in layers 1 till k − 2 has exactly one incident tree edge to a vertex in the layer
above.

bottom edges: We take edges {g1, h0,0}, {g1, h0,2}, {g2, h0,0}, {g2, h0,2}, cf. Figure 9.

g1 g2

h1,0

h0,0 h0,1 h0,2 h0,3 h0,4 h0,5

h1,1 h1,2 h1,3

an+1,1 an+1,2

Figure 9: The bottom three layers of the harvest part and an+1,1, an+1,2

path edges: For i, 0 ≤ i ≤ k − 1, the vertices in the ith layer are interconnected by a path,
i.e., we have edges {hi,j , hi,j+1} for all i, 0 ≤ i ≤ k − 1 and j, 0 ≤ j < αi − 1.

In addition, for i, 0 ≤ i ≤ k − 2, we have an edge from the last vertex in layer i to
the first vertex of the next layer, i.e., an edge {hi,αi−1, hi+1,0}. All path edges form
together a Hamiltonian path in the subgraph formed by layers 0 till k − 1.

distance three edges: For i, 0 ≤ i ≤ k − 1, vertices in layer i are adjacent to vertices at
distance three in the same layer, i.e., we have edges {hi,j , hi,j+3}, for 0 ≤ j ≤ αi − 4.

We have also some edges that behave similar to the edges of distance three, but are
between vertices in different layers, as follows. For i, 0 ≤ i ≤ k − 2, we have edges
{hi,αi−3, hi+1,0}, {hi,αi−2, hi+1,1}, {hi,αi−1, hi+1,2}. Note that distance three edges are
always between vertices that have distance three on the path formed by the path
edges.

Note that each vertex is adjacent to at most two path edges, at most two distance three
edges, and a number of tree edges. Tree edges go between different levels; a vertex has at
most one tree edge to the layer above it, except for the vertices in layers k and k− 1; it can
have more tree edges to the layer below.

The harvest part can be seen as a modification of the graph of Theorem 4. Where in that
graph we have one tree with edges on levels, we here have 12 trees; in addition, we have
edges from the last vertex of a layer to the first vertex of the next layer, and edges between
vertices at ‘distance three’. This makes that when we have b1, b2, and b3 are visited before
g1 and g2, then we must visit all vertices in the harvest part (except b1 and b2) at visited
degree three. The modifications also play a role in the proof when we allow a start not at
v0; this is discussed in the proof of Theorem 9.

The harvest part has a similar property as the graph of Theorem 4: when we start visiting
it from the vertices g1 and g2, then we can reach a maximum visited degree in some vertices
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in the harvest part of k; while when we start visiting it from the vertices b1, b2, b3, then
the maximum visited degree of all vertices in the harvest part will be bounded by a small
constant.

Finally, we make an+1,1 and an+1,2 adjacent to each of g1 and to g2, as shown in Figure 9.
Let G′C,k be the resulting graph.

Claim 8.1 If there is a truth assignment that satisfies C, then there is an MCS-ordering
ψ of G′C,k that starts at v0 with mcslbψ(G′C,k) ≥ k.

Proof: Suppose we have a truth assignment that satisfies C. We build the requested MCS-
ordering ψ as follows. After v0, we visit v1, v2, a1,1, and a1,2.

Then, for i = 1, . . . , n, we go from ai,1 and ai,2 to ai+1,1, ai+1,2, by going through the ith
variable part. If variable xi is set to true in the satisfying truth assignment, then we visit
all vertices in the bottom literal component and no vertex in the top literal component;
otherwise, we visit all vertices in the top literal component, and no vertices in the bottom
literal component. So, we visit the vertices in the part that corresponds to the false literal.
Each of the vertices that we visit in this phase has visited degree exactly two.

Consider a clause vertex ci,j . As the ith clause contains a true literal, at most two neighbours
of ci,j are visited in this phase of the MCS. Hence, each clause vertex ci,j has current visited
degree at most two: there is no need to visit these vertices during this phase already.

After we have reached an+1,1 and an+1,2, we visit g1 and g2. After this, we visit the vertices
in the harvest part layer by layer. We first visit h0,0, h0,2, h0,1, and h0,3, in that order.
Then we visit all remaining vertices in layer 0, from left to right. Each of these gets visited
degree two: when h0,i is visited, it has visited neighbors h0,i−3 and h0,i−1.

Then we continue visiting the harvest part layer by layer up to layer k − 1, visiting each
layer from left to right. In this way, the vertices in layer i, 1 ≤ i ≤ k− 2, get visited degree
i+2: they have i visited neighbors via tree edges, one visited neighbor via a path edge, and
one visited neighbor via a distance three edge. We can also note that when not all vertices
in layer i have been visited, vertices in layer i+ 1 have current visited degree at most i+ 2,
so we indeed can move through the harvest part with MCS in the layer by layer order.

After the harvest part is visited, we visit all remaining unvisited vertices, in any order
fulfilling the MCS rule. The resulting MCS-ordering has visited degree at least k, as the
vertices in layer k − 2 have visited degree k. �

Claim 8.2 b1, b2, and b3 are visited before each g1 and g2.

Proof: When g1 or g2 is visited, it can have visited neighbors either in the nth variable
part, or in the harvest part. Suppose first, it has only visited neighbors in the harvest part,
i.e., h0,0 and h0,2. As any path from v0 to h0,0 and h0,2, not containing g1 or g2, must use
a vertex in b1, b2, b3, at least one of these is visited. Moreover, after some vertices from
{b1, b2, b3} are visited, the MCS will visit vertices in layer k of the harvest part. Consider
the first visited vertex in the harvest part. It must have visited degree two, so at least
two vertices from {b1, b2, b3} are visited before it. After that, if not all three vertices in
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{b1, b2, b3} are visited, the third one has current visited degree at least three, so will be
visited before g1 and g2. So, in this case, the claim holds.

Now, suppose that when g1 or g2 is visited, it has a visited neighbor in the nth variable
part. With induction, this applies that for each of the variable parts, we must have visited
either the top literal component, or the bottom literal component of each variable part.
Thus, each variable has been set either to true, or to false.

As the set of clauses was not satisfiable, there must be a clause of which all three literals
are set to false. This implies that the vertices in the corresponding clause component have
three visited neighbors in the literal parts before g1 and/or g2 is visited. As visiting g1 or
g2 via the variable parts implies visiting vertices with current visited degree two, whereas
the current visited degree of cij , 1 ≤ j ≤ 6 for some Ci is three, the vertices in the clause
part will all be visited before g1 and g2. After the vertices in the clause part are visited, we
must visit b1, then b2, b3, as each of these has visited degree at least three. This concludes
the proof of the claim. �

Claim 8.3 If there does not exist a truth assignment that satisfies C, then each MCS-
ordering ψ of G′C,k that starts at v0 has mcslbψ(G′C,k) ≤ 5.

Proof: Assume that there does not exist a satisfying truth assignment of C. First, observe
that every vertices in a start, variable, or clause part either has degree at most four, or
only has neighbours of degree at most four. As a consequence, using Corollary 3, none of
these vertices can be have visited degree larger than four. So, if we want to obtain a visited
degree larger than four, this has to happen in the harvest part.

As we will see, it will be necessary to visit the harvest part first at the bad side (i.e., the
top levels, starting at vertices b1, b2, and b3), and this forces us that vertices in the harvest
part are visited with their visited degree bounded by three (see below.)

We make a number of observations about possible MCS-orderings starting at v0. After v0,
we visit v1 and v2, and from that point on till all vertices are visited, there are always
unvisited vertices with current visited degree at least two. So, the only vertices that can be
visited with visited degree less than two are v0, v1, and v2.

Suppose both g1 and g2 are not visited yet. Vertices in variable parts have either only neigh-
bours in variable parts, or one neighbour not in a variable part, but then their neighbours
have only neighbours in variable parts. Thus, it is impossible to ‘enter’ a variable part by
edges only from clause components — that would mean a vertex with visited degree one.
So, one can observe that vertices ai+1,1 and ai+1,2, i > 1 can be visited only after either all
vertices in the top literal component or all vertices in the bottom literal component of the
ith variable part have been visited. Say we have set a variable to true when we have visited
all vertices in the bottom part, and we have set a variable to false when we have visited
all vertices in the top part of the corresponding variable part. So, visiting all vertices of
a literal component corresponds to setting that literal to false. If all literals of Ci are set
false, the current visited degree of cij , 1 ≤ j ≤ 6, equals three and thus these vertices have
to be visited first.
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From Claim 8.2 we know that b1, b2, and b3 are visited before each g1 and g2. We now
consider the MCS from the moment that b1, b2, and b3 are visited. We now look to the way
the layers k till 1 of the harvest part must be visited. The MCS through this part of the
graph can be interleaved with visits to vertices in other parts of the graphs, but we will see
that g1 and g2 cannot be reached from vertices outside the harvest part until all vertices in
layers k till 1 are visited.

A possible manner to go with MCS through layers k till 1 through the harvest part is by
visiting these layer by layer, going through each layer from right to left. In this way, each
vertex in these layers gets visited degree three. While it is possible to vary a little from this
scheme, this is essentially the way that one must visit the harvest part, as we will see now.

First, we note that as long as not all vertices in the layers 1 till k of the harvest part are
visited, there is an unvisited vertex in the harvest part with current visited degree (at least)
three: consider the highest layer i of the harvest part with unvisited vertices, and from this
layer, take the vertex hi,j with largest index j, i.e., we take unvisited vertex hi,j with (i, j)
lexicographically maximal. Simple case analysis shows that hi,j has at least three visited
neighbors. (Usually, it has one visited neighbor via a tree edge, one via a path edge, and
one via a distance three edge.) So, as long as layers 1 till k are not entirely visited, we
cannot visit vertices with current visited degree two. In particular, we cannot visit g1 or g2

until h0,0 or h0,2 are visited.

Consider layer i, 1 ≤ i ≤ k − 1. The only vertex that has three or more neighbors in layer
i + 1 is hi,αi−1, so that this vertex must be the first vertex in the layer that is visited.
After hi,αi−1 is visited, the next vertex on layer i that is visited must be hi,αi−2: it has
two neighbors in layer i+ 1 and one visited neighbor in layer i, while each other vertex in
layer i has current visited degree at most two. With induction, it follows that hi,j is visited
only after all vertices of the form hi,j′ , j

′ > j are visited: so we visit layers from right to
left. If 1 ≤ i ≤ k − 2, then hi,αi−1 must be visited after hi+1,0, as hi+1,0 is one of the three
neighbors of hi,αi−1 in layer i+ 1. As hi+1,0 is the last vertex visited in layer i + 1, layer i
must be visited after all vertices in layer i+1 have been visited. So, we have a fixed order in
which the vertices in layers 1 till k − 1 are visited: we visit the layers from top till bottom,
in order, and each layer from left to right. In this way, each of the vertices in layers 1 till
k − 1 receive visited degree exactly three.

Now we can give a bound on the maximum visited degree that we can obtain on G′C,k in the
case the set of clauses was not satisfiable. For each vertex z in the start part, a variable part,
a clause part, and layers −1, 0, and k of the harvest part, we have that the degree of z is at
most four, or all neighbors of z have degree at most four; so none of these vertices can have
a visited degree larger than four, see Corollary 3. We argued above that vertices in layers 1
till k−1 obtain visited degree three. Finally, b1, b2, and b3 have only two neighbours with a
degree larger than four, so are visited when they have at most five visited neighbours. This
completes the proof of Claim 8.3. �

From Claim 8.1 and 8.3 and the fact that G′C,k can be constructed in polynomial time for
fixed k and given set of clauses C, we can conclude the NP-completeness. 2
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4.2 Complexity for MCSLB(G) with free start

We now modify the proof of Theorem 8 to obtain an NP-completeness result for the case
that the starting vertex is not fixed.

Max MCS-LB
Instance: Graph G = (V,E), integer k ≤ |V |.
Question: Is there an MCS-ordering for G with mcslbψ(G) ≥ k?

Theorem 9 Max MCS-LB is NP-complete, even when k is a constant that is at least 7.

Proof: The problem clearly also belongs to NP. The NP-completeness proof uses a modi-
fication of the method used to proof Theorem 8. We do not repeat the description of that
proof here, but instead describe the differences and modifications.

Suppose we are given a set of clauses C, each with three literals, over the set of Boolean
variables {x1, . . . , xn}. Suppose also that we are given an integer k ≥ 7.

First, build the graph G′C,k as in the proof of Theorem 8. In contrast to the case with
prescribed start, we have to avoid that the MCSLB starts with an arbitrary vertex, e.g., at
the bottom of the harvest part, by this obtaining a high bound. Therefore, we modify the
graph by adding a punishment part for every edge e in G′C,k except for the edges {v0, v1},
{v0, v2}, {b1, b2}, {b1, b3}, and {b2, b3}, and edges between a vertex in {b1, b2, b3} and a
vertex in layer k of the harvest part. Note that an edge with a punishment part does not
belong to a triangle in G′C,k.

Such a punishment part consists of 15 new vertices with edges as shown in Figure 10. The
punishment part is at one side connected to its edge {v, w}, and at the other side to the
‘bad’ vertices b1, b2, and b3. The idea behind this structure is to make sure that when we
do not start at v0 (or v1 or v2), then we must go via a punishment part to b1, b2, and b3

and then visit the vertices in the harvest part giving each vertex in the harvest part a small
visited degree.

Consider the punishment part of edge e = {v, w}. We say an MCS-ordering enters the
punishment part at the e-side, when the first visited vertex in the punishment part is a
neighbor of v and/or w, i.e., pe1 , pe,2, or pe,3, and that vertex is visited after v or w. The
MCS-ordering enters the punishment part at the b-side, when the first visited vertex is a
neighbor of b1, b2, or b3, i.e., pe,j, 12 ≤ j ≤ 15, this vertex visited after its neighbor in
{b1, b2, b3}. Exactly one of the following cases holds for each punishment part: it is entered
at the e-side, it is entered at the b-side, or the MCS-ordering started with a vertex in this
part.

Let GC,k be the resulting graph. Note that G′C,k is the subgraph of GC,k, induced by the
vertices that do not belong to a punishment part only.

Claim 9.1 If there is a truth assignment that satisfies C, then there is an MCS-ordering
ψ of GC,k that starts at v0 with mcslbψ(G′C,k) ≥ k.
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Figure 10: The punishment part for edge e = {v, w}

Proof: We can start an MCS of GC,k similar as in Claim 8.1. Note that we do not need to
visit vertices in punishment parts after we have reached a vertex in the harvest part with
visited degree k (in layer k− 2), as vertices in punishment parts have current visited degree
at most two during this initial part of the MCS. �

To prove the ‘reverse’ claim, we need a sequence of claims on the maximum visited degree
of the vertices in the various parts.

Claim 9.2 A vertex in a punishment part has visited degree at most six.

Proof: All vertices pe,j with 4 ≤ j ≤ 15 have degree at most four or have only neighbours
with degree at most three, so these vertices cannot have visited degree larger than four.

pe,1, pe,2, and pe,3 have degree eight, but a case analysis reveals that we cannot get a visited
degree larger than six at these vertices. Write A = {v, w, pe,1, pe,2, pe,3}; note A forms a
clique. Write B = {pe,4, pe,5, pe,6, pe,7}. Consider the first three vertices visited in A∪B. It
cannot be the case that all three belong to B: after two vertices are visited in B, vertices in
A have two visited neighbours, while unvisited vertices in B can have at most one visited
neighbour. Indeed, when two vertices in B are visited, pe,1, pe,2, and pe,3 will have more
visited neighbours than vertices in B, so each of these will be visited with at most two
visited neighbours in B, so with a visited degree of at most six. �

A more refined case analysis shows that we even cannot get a vertex with visited degree
larger than five in a punishment part, but this is not needed for our proof.

Claim 9.3 b1, b2, and b3 have visited degree at most five.

Proof: b1, b2, and b3 have two neighbors of degree larger than three. Now use Lemma 2. �

Claim 9.4 After at least two vertices from {b1, b2, b3} are visited, no vertex will be visited
with visited degree at most one.

Proof: After at least two vertices from {b1, b2, b3} are visited, and as long as not all vertices
in G′C,k (i.e., outside punishment parts) are visited, there will be an unvisited vertex in G ′C,k
with current visited degree at least two. (This can be seen by inspection of G ′C,k.)
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After both endpoints of an edge e are visited, and while not all vertices in the punishment
part of e are visited, there will be an unvisited vertex in this punishment part of current
visited degree at least two. �

Claim 9.4 implies that after two vertices from {b1, b2, b3} are visited, no punishment part
will be entered at the b-side, as entering a punishment part at the b-side implies visiting a
vertex with visited degree one.

Claim 9.5 Let v be a vertex in G′C,k, v 6∈ {b1, b2, b3}. Suppose v is visited after a neighbor
of v in the punishment part of edge e = {v, w}. Then v has at most two visited neighbors
outside the punishment part when it is visited.

Proof: We consider three cases. In the first two cases, v can have only one such neighbor,
namely w.

First, suppose the MCS enters the punishment part from e from the e-side. Then, after w is
visited, a vertex pe,j, j = 1, 2, 3 is visited with visited degree one. After that, the remaining
unvisited vertices in {v, pe,1, pe,2, pe,3} will have maximum visited degree and will be visited.
When v is visited, it cannot have a visited neighbor outside the punishment part of e, as
then it would have current visited degree two at the moment that the first vertex in the
punishment part was visited (with visited degree one.)

Second, suppose the MCS enters the punishment part from the b-side. This must happen
before two vertices from {b1, b2, b3} are visited, by Claim 9.4. Note that we cannot move the
MCS through a punishment part from the b-side, and reach a vertex in {pe,4, pe,5, pe,6, pe,7}:
after pe,8 or pe,9, and pe,10 or pe,11 are reached, we have that {pe,j | 8 ≤ j ≤ 15} will either
have only visited vertices, or an unvisited vertex of current visited degree at least two.
Thus, before a vertex in {pe,4, pe,5, pe,6, pe,7} can be reached with a path from the b-side,
we must have visited the second vertex from {b1, b2, b3}, and then Claim 9.4 applies. In
particular, the neighbor of v in the punishment part that was visited before v must have
been reached via w. Again, this neighbor has visited degree one, so at the time of this visit,
v is not adjacent to another visited vertex except w. Simple case analysis shows again that
the MCS can only visit vertices of the form pe,j, 1 ≤ j ≤ 7 before it visits v, which shows
that the claim holds in this case.

In the third case, we assume the MCS starts inside the punishment part. Let the first two
vertices visited be pe,j1 and pe,j2 . If j1 ≥ 8 and j2 ≥ 8, then one can see that we cannot
visit a vertex in {pe,4, pe,5, pe,6, pe,7} before two of {b1, b2, b3} are visited (using the MCS
rule and case analysis), and then Claim 9.4 applies, hence v is visited before its neighbors
in the punishment part. If j1 ≤ 7 and j2 ≤ 7, then case analysis shows that we visit v
and w before pe,8 and pe,9, and hence, before any other vertex outside the punishment part.
Consider the remaining case. Without loss of generality suppose j1 ≤ 7 and j2 ≥ 8. We
look to the third visited vertex pe,j3 . If j3 ≤ 7, the analysis is as in the second case. If
j3 ≥ 8, then as in the first case, the MCS will visit two vertices from {b1, b2, b3} before any
other vertex outside the punishment part. After these two vertices are visited, Claim 9.4
applies. Thus, the only way a vertex in {pe,j | 1 ≤ j ≤ 7} can now be chosen is when it
has two visited neighbors. One of these is pe,j1, the other must be w. After that, the other
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vertices in {pe,1, pe,2, pe,3, v} must be selected (observe their current visited degrees). At the
moment the first vertex in {pe,1, pe,2, pe,3} is visited, v has current visited degree at most
two (with w one of its visited neighbors), and so the claim applies. �

Claim 9.6 Vertices in start, variable, and clause parts receive visited degree at most six.

Proof: Let v be a vertex in a start, variable, or clause part. Suppose v has d neighbors in
G′C,k. If v has one or more visited neighbors in punishment parts at the time it is visited, its
visited degree is at most five: at most two visited neighbors outside the punishment part,
and at most three inside the part. If v has no visited neighbors in punishment parts, then
either d ≤ 4, and hence v has visited degree at most four, or all neighbors of v have degree
in G′d,k at most four, hence visited degree at most five, and hence v has visited degree at
most six. �

Analysing the visited degree of vertices in the harvest part is harder, mainly because the
first two visited vertices can belong to a harvest part, thus enabling that the MCS goes
through the harvest part in a manner different from that in the proof of Claim 8.3.

Claim 9.7 Vertices in the harvest part receive visted degree at most six.

Proof: The analysis of the visited degree of vertices in the harvest part depends on how the
MCS is started. We consider a number of different cases. By an argument, similar to the
one used for start, variable, and clause parts, we see that vertices in layer -1 in the harvest
part cannot have visited degree more than six.

Case 1. The first two vertices visited by the MCS are v0 and a neighbor of v0.
As long as the MCS does not use vertices in punishment parts, we have an MCS starting
in v0, and moving in G′C,k, which gives, by Claim 8.3, a visited degree of at most five.

Using punishment parts cannot help to get a visited degree larger than six. We can go
via a punishment part from an edge in a start, variable, or clause part to the bad vertices
b1, b2, or b3. Doing so would also give that the MCS visits the harvest part from top to
bottom, with the vertices in this part getting visited degree at most three, as in the proof
of Claim 8.3.

Case 2. The first two visited vertices belong to {b1, b2, b3} or layer k of the harvest
part. Each MCS starts with visiting the vertices from some maximal clique of the graph.
In this case, this means that b1, b2, and b3 are among the first four visited vertices.

One can now note that as long as not all vertices in layers 0 till k of the harvest part are
visited, there is an unvisited vertex in a harvest part with current visited degree at least
three. All vertices outside the harvest part will have visited degree at most two. So, we
first visit the vertices in the harvest part.

As in the proof of Theorem 8, the MCS visits the harvest part layer by layer, from top to
bottom, till layer 0, with the vertices receiving visited degree three.
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Case 3. The first two visited vertices are endpoint of an edge with a punishment
part. Suppose the first two vertices visited are v, w, and e = {v, w} has a punishment
part. Now pe,1 and pe,2 have two visited neighbours.

By construction, e is not part of a triangle in G′C,k. (All edges that are part of a triangle in
G′C,k are without a punishment part. A start at the endpoint of such an edge is handled in
Case 2.)

This implies that pe,1, pe,2, and pe,3 are the only vertices with visited degree (at least) two.
So, we must visit pe,1, pe,2, and pe,3, in some order. After these are visited, pe,4 till pe,7 have
three visited neighbours, and are visited; then we must visit pe,8 and pe,9, etc. Until we
visit b1, all vertices outside the punishment part, except possibly b1, have current visited
degree at most one, while there is at least one vertex that is in the punishment part or is
b1 with visited degree two or more. So, we will visit vertices in the punishment part of e
until we visit b1. We then must visit possibly pe,12 or pe,15 and then b2 or b3.

We have seen that starting at the endpoints of an edge with a punishment part quickly
leads to a visit of b1, b2, and b3. This seems to imply that we must go through the harvest
part in the same way as in the proof of Claim 8.3. However, the difference with that proof
is that v and w are already visited, and thus we need a further case distinction depending
on to what part of the graph v and w belong.

Case 3a. v and w belong to start or variable parts and do not have a neighbour
in common with b1, b2, or b3. After two vertices from {b1, b2, b3} have been visited, we
can visit more vertices in the punishment part of e, the third vertex from {b1, b2, b3}, or
vertices of the type hk,i. After a vertex hk,i has been visited, we must visit the remaining
vertex from {b1, b2, b3} when it has not yet been visited. Then, after b1, b2, b3 are visited,
we must visit the vertices of the harvest part, in the same way as in the proof of Claim 8.3,
layer by layer, from top to bottom. The vertices in layers k − 1 till 0 thus receive visited
degree three.

Case 3b. v and w belong to the the harvest part. As we assumed that the
edge {v, w} has a punishment part, v and w cannot be b1, b2, or b3. Suppose {v, w} =
{hi0,j0 , hi1 ,j1}, with i0 ≤ i1, and if i0 = i1, then j0 < j1.

Notice that as long as not all vertices in layers 0 till k are visited, some unvisited vertices
in the harvest part have current visited degree three or more. So, all vertices in these layers
of the harvest part must be visited with visited degree at least three. This fact will be used
a number of times to show that their visited degree is at most six.

Consider first the vertices in layers i0− 1 and below, till layer 0. The argument used in the
proof of Claim 8.3 that these layers must be visited from top to bottom, right to left, still
applies for these layers. So, vertices in these layers get visited degree three.

Again, Claim 9.5 holds in this case, for all edges except for the edge {v, w}. We consider a
number of subcases.
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Case 3b-I. v and w belong to layer k or k − 1 of the harvest part. As shown
above, vertices in layers k − 2 till 0 are still visited with visited degree three. Vertices in
layer k and k− 1 have at most six neighbors in G′C,k, and are visited before their neighbors
in punishment parts, so we cannot get a vertex in the harvest part of visited degree larger
than six.

Case 3b-II. Edge {v, w} is in between layer k − 1 and k − 2. So, one of v and w
belongs to layer k − 2, and one of v and w belongs to layer k − 1. Vertices in layers 0 till
k − 3 get visited degree three, as shown above. Vertices in layer k − 1 and k have at most
six neighbors outside punishment parts. Vertices in layer k − 2 still must be visited before
any vertex in layer k− 3 is visited. As vertices in layer k− 2 have at most five neighbors in
layers k − 2 and k − 1, they get visited degree at most five.

Case 3b-III. v and w belong to layers 0 till k− 2. We consider the MCS while going
through layers k till 0 in the harvest part. Consider the set S of visited vertices that belong
to layers k till 0 at a certain point in the MCS. We call the set S normal, when there is an
i′, j′ with S consisting of v, w, and all vertices hi′′,j′′ with i′′ > i′ or i′ = i′′ and j′′ ≥ j′,
an i.e., apart from v and w, we have visited a number of consecutive layers, and from the
lowest layer we visited a vertex and all vertices right of it.

Note that, as there are no triangles in layers k till 0 in the harvest part, no vertex in the
harvest part is adjacent to both v and w.

A visit to a vertex in the harvest part is called specific, when the set of visited vertices in
the harvest part is normal before the visit but is not normal after the visit. In other words,
while we ‘usually’ visit the vertices layer by layer, each layer from right to left, in a specific
visit, we deviate from this scheme.

If there are no specific visits, then all vertices in layers k till 0 have visited degree at most
four (to visited neighbors we can have one tree edge, one path edge, one distance three
edge, and v or w can be a visited neighbors). Also, visits that lead from a normal set to a
normal set give visited degree at most four for the visited vertex.

Consider a specific visit, say to a vertex hi′,j′ . For ease of presentation, we assume that
3 ≤ j′ ≤ αi′ − 5. If this does not hold, then the arguments are the same, but we wrap to
the next level. (E.g., if j = αi′−1, then read hi′,j+3 as hi′+1,2. The path and distance three
edges between different levels are used in such cases.)

hi′,j′ has visited degree at least three. Consider the moment that hi′,j′ is visited. Because
the visit to hi′,j′ is specific, hi′,j′−3, hi′,j′−1, and hi′,j′+1 are not visited. hi′,j′ can have one
visited neighbor via a tree edge to layer i′+ 1. So, hi′,j′ must be adjacent to v or to w, and
hi′,j′+3 (and hence all vertices in layer i′ + 1 and all vertices hi′,j′′ with j′′ > j′ + 3) must
be visited.

Suppose without loss of generality, that hi′,j′ is adjacent to v. There now are again a few
different cases.

21



Case 3b-III-a. The edge from hi′,j′ to v is a tree edge. In this case, v is in layer
i′ − 1. We note that the vertices hi′,j′′ with j′ − 3 ≤ j′′ ≤ j′ + 3, j′′ 6= j′ cannot be adjacent
to v or w, by construction. The first case has two subcases, again.

Case 3b-III-a.1. hi′,j′+2 is not yet visited. We claim that hi′,j′+2 must be the next
visited vertex. Note that it has current visited degree at least three: it is the only vertex
with this property. Let x be the next visited vertex. x can be adjacent to v or w, to one
other visited vertex via a tree edge, so must be adjacent to a visited vertex (not v or w) via
a path or distance three edge. So, x must be one of the vertices hi′,j′−3, hi′,j′−1, hi′,j′+1,
or hi′,j′+2. However, due to the construction of the harvest part, none of these vertices can
be adjacent to v and w. (This follows, using that hi′,j′ is adjacent to v or w.) So, the only
vertex of current visited degree three or more is hi′,j′+2 and it is visited next. The next
visited vertex must be hi′,j′+1: this vertex has current visited degree four after the visit to
hi′,j′+2, and it is the only vertex with current visited degree at least four. After the visit to
hi′,j′+1, the set of visited vertices in the harvest part is again normal.

Case 3b-III-a.1. hi′,j′+2 is visited before hi′,j′. Recall that the edge from v to hi′,j′

is also a tree edge in the case we handle. Now, hi′,j′+1 must be the next visited vertex, as
it is again the only vertex of current visited degree four (or more.) After this visit, we are
again in a situation with a normal set of visited vertices.

Case 3b-III-b. v is adjacent to hi′,j′ through a path or distance three edge, and
the edge {v, w} is a tree edge. Now, the vertices hi′,j′′ with j′−3 ≤ j′′ ≤ j′+3, j′′ 6= j′

cannot be adjacent to w, by construction. Simple case analysis reveal that the next vertices
to be visited are hi′,j′+1 and hi′,j′+2, if these weren’t visited yet; these receive visited degree
at most five.

Case 3b-III-c. v is adjacent to hi′,j′ through a path or distance three edge, and
the edge {v, w} is a path or distance three edge. The case analysis here is again
simple, but tedious. In each of the cases, after a small number of visits (at most four), we
have again a normal set of visited vertices, and the maximum visited degree of one of these
vertices is at most five.

So, the visited degree in the layers 0 till k of the harvest part is bounded by five.

Case 3b-IV. v or w belongs to layer -1 of the harvest part. This analysis of this
case is similar to Case 3b-III. Note that there cannot be specific visits until most vertices
in layer 2 are visited. An easy but somewhat tedious case analysis shows again the desired
bound on the visited degree in the lower layers of the harvest part.

Case 3c. v and w belong to a variable or clause part and v or w has a neighbour
in common with b1, b2, or b3. In this case, after we reached b1, b2, or b3 via the
punishment part, we possibly can visit vertices that are a neighbour to a vertex in {b1, b2, b3}
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and neighbour to v or w. Observing the construction of clause and variable parts, there
is at most one such vertex. Visiting that vertex does not increase the number of visited
neighbours of unvisited vertices in start, clause, or variable parts to two. So, after this visit,
we must visit vertices with current visited degree two or more in the punishment part of e,
or b1, b2, b3, or vertices in the harvest part, and then must go through the harvest part in
the same manner as in previous cases, with most vertices in the harvest part getting visited
degree three.

Case 4. At least one of the first two visited vertices belongs to a punishment
part. Suppose we visit vertices in the clause punishment part of edge e = {v, w}.
Consider the first vertex, visited outside the punishment part that are unequal to v or w.
Note that {v, w} does not belong to a triangle. Thus, when v or w is reached, and as
long as not all vertices in the punishment are visited, there is an unvisited vertex in the
punishment part with current visited degree two or more. So, this first vertex outside the
part and {v, w} must belong to {b1, b2, b3}. Moreover, the next vertex of this type must be
a neighbor of this first vertex. We arrive now in a case analysis, similar to Case 3, and we
get that the maximum visited degree is six. �

Claim 9.8 If there does not exist a truth assignment that satisfies C, then each MCS-
ordering ψ of GC,k that starts at v0 has mcslbψ(G′C,k) ≤ 6.

Proof: We have now shown for all types of vertices that the maximum visited degree is at
most six. This ends the proof of Claim 9.8. �

The NP-completeness result now follows directly from Claim 9.1 and Claim 9.8. 2

Corollary 10 For each constant c > 1, there is no polynomial time approximation algo-
rithm for Max MCS-LB and Max MCS-LB with prescribed start with approximation
ratio at most c, unless P=NP.

Proof: This is a consequence of the proofs of Theorems 8 and 9. From these proofs, we see
that it is NP-hard to distinguish the cases that the maximum visited degree is five (six) or
that we can get a visited degree of k, for some free to choose constant k. 2

The constant of 7 in Theorem 9 possibly can be lowered to 6 with a more refined analysis.
We conjecture the problem to be also NP-complete for k = 4, k = 5, and k = 6. The
case k = 3 is also open, but a polynomial time algorithm for that case may be a better
conjecture. Max MCS-LB is trivial in the case that k = 2 by the following easy result.

Proposition 11 The following statements are equivalent.

(i). G is a forest.

(ii). There is an MCS-ordering that gives maximum visited degree 1 on G.

(iii). Every MCS-ordering gives maximum visited degree 1 on G.
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As the construction in the proofs of Theorems 8 and 9 is exponential in k, an approximation
algorithm with a logarithmic performance ratio still may be a possibility.

Similar proofs can give NP-completeness results for related problems. We define the prob-
lems, but give the results without the proofs.

Max MCS-LB-v
Instance: Graph G = (V,E), vertex v ∈ V , integer k ≤ |V |.
Question: Is there an MCS-ordering of G in which v has at least k visited

neighbours.

We also can look to the minimisation variants, in which we ask for MCS-orderings whose
maximum visited degree is at most some given integer k.

Theorem 12 Max MCS-LB-v, Min MCS-LB-v, Min MCS-LB, and Min MCS-LB
with prescribed start are NP-complete. For each of these problems, and each constant
c > 0, there is no polynomial time approximation algorithm with approximation ratio at
most c, unless P=NP.

5 Upper bounds on the maximum visited degree

From the results in the previous section, it appears that we must resort to heuristics for
obtaining good bounds for the maximum visited degree for given graphs G. With the
application to compute lower bounds for treewidth in mind, most interesting are lower
bounds for MCSLB(G). These will be looked at in the next section. In this section, we
propose some upper bound methods. These can inform us on the quality of the heuristics
for lower bounds for the maximum visited degree.

In order to obtain an upper bound on the maximum visited degree of a given graph G =
(V,E), we compute for each vertex v ∈ V an upper bound on the maximum visited degree
of v over all MCS-orderings of G. I.e., we let mcslbmax(G, v) be the maximum over all
MCS-orderings ψ of G of the visited degree of v in ψ. The maximum of mcslbmax(G, v)
taken over all vertices is an upper bound on the maximum visited degree of G.

Our first heuristic maintains for each v ∈ V an upper bound u(v) for mcslbmax(G, v), and
tries to improve (decrease) these upper bounds stepwise. The algorithm has the following
invariant:

mcslbmax(G, v) ≤ u(v) (1)

We initialise for each vertex v, u(v) to be the degree of v, d(v). Clearly, mcslbmax(G, v)
cannot be larger than d(v), so the invariant holds trivially.

Procedure 1 (ImproveMCSLBMAXv) states a subroutine that tries to improve the value
u(v) for some vertex v. The subroutine can decrease the value u(v), and outputs true if
and only if u(v) has been changed. The procedure starts by sorting the values u(w) for the

24



Procedure 1 ImproveMCSLBMAXv (Graph G, Vertex v)

1: Compute UN(v) = {u(w) | {v, w} ∈ E}, and sort UN(v).
2: Suppose UN(v) = {u1, u2, . . . , ud}, with u1 ≤ u2 ≤ · · · ≤ ud.
3: count = 0;
4: for j = 1 to u(v) do
5: if (ud−u(v)+j ≥ count) then
6: count ++.
7: end if
8: end for
9: if (count < u(v)) then

10: u(v) = count; return true
11: else
12: return false
13: end if

set of neighbors of v. Next, as many vertices as possible that satisfy the condition stated
in Lemma 2 are selected. This number then defines the new u(v) and we return true on
improvement.

Proposition 13 The procedure ImproveMCSLBMAXv maintains invariant (1).

Proof: Suppose mcslbmax(G, v) = k. By Lemma 2, v has neighbors w1, . . . , wk, with
i− 1 ≤ mcslbmax(G,wi) ≤ u(wi) for all i, 1 ≤ i ≤ k.

We claim that with induction, for each i, 0 ≤ i ≤ k, the value of count after the u(v)−k+ith
iteration is at least i. This trivially holds for i = 0. Suppose it holds for i − 1, 1 ≤ i ≤ k.
As for each i′ ∈ {i, . . . , k}, u(wi′) ≥ i− 1, the k − i+ 1 neighbors of v with largest u-value
each have an u-value that is at least i − 1, and hence ud−k+i ≥ i − 1, with ud−k+i as in
the procedure. If before the u(v) − k + ith iteration, count is at least i, the induction
hypothesis trivially holds. Otherwise, count equals i− 1 before the u(v)− k+ ith iteration.
Now, ud−u(v)+(u(v)−k+i) = ud−k+i ≥ i − 1, and hence count is increased by one in the
u(v)− k + ith iteration, hence equals i after this iteration.

In particular, after the last u(v)th iteration, count is at least k = mcslbmax(G, v). So, after
running ImproveMCSLBMAXv(G, v), we still have u(v) ≥ mcslbmax(G, v). 2

Observe that the procedure ImproveMCSLBMAXv never increases values u(v). When it
returns true, then u(v) has been changed. Possibly, this can cause that neighbors of v can
decrease their value of u(v) with another run of ImproveMCSLBMAXv. This gives rise to
the simple scheme of Procedure 2 (MCSLBMAX). The set S can be implemented with e.g.,
a queue or stack, with an additional mechanic (e.g., Boolean array) that prevents a vertex
to be added for a second time to S when it already belongs to S.

The largest value of u(v) over all v ∈ V is an upper bound on MCSLB(G). In Section 6,
we report on the upper bounds obtained with the MCSLBMAX heuristic for several graphs
from applications. To improve the running time of the procedure, we always extract the
vertex with minimum value of u(v).

It is possible to give a variant of the procedure that gives in some cases better bounds. In
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Procedure 2 MCSLBMAX (Graph G)

1: for all v ∈ V do
2: u(v) = dG(v).
3: end for
4: S = V .
5: while S 6= ∅ do
6: Extract vertex v from S.
7: change = ImproveMCSLBMAXv(G,v).
8: if change then
9: Add to S all neighbors of v that are not in S.

10: end if
11: end while

this variant, we distinguish between the cases that a vertex is visited after all its neighbors
or not. Define mcslb′max(G, v) as the maximum over all MCS-orderings of G where v has at
least one neighbor that is visited after v of the number of visited neighbors of v when v is
visited.

We have a variable u′(v) for each vertex v ∈ V . We initialise u′(v) to dG(v) − 1. u′(v)
must be an upperbound on mcslb′max(G, v), i.e., we want that our procedure maintains the
following invariant:

∀v ∈ V : mcslb′max(G, v) ≤ u′(v) (2)

Similar as above, we have a procedure ImproveMCSLBMAXv2 that attempts to decrease
the values u′(v), and returns true when this value is changed. The code is identical to
ImproveMCSLBMAXv, except that we have

UN(v) = {u′(w) | {v, w} ∈ E}

Similar to the proof of Proposition 13, one can show:

Proposition 14 The procedure ImproveMCSLBMAXv2 maintains invariant (2).

Procedure 3 (MCSLBMAX2) is similar to MCSLBMAX. We initialise u′(v) to dG(v) − 1
for each v ∈ V , and carry out then the same steps as in MCSLBMAX, but now with
variables u′(v), and calls to ImproveMCSLBMAXv2. After this, each variable u′(v) still
is an upper bound to mcslb′max(G, v), and these variables cannot be improved by the use
of ImproveMCSLBMAXv2. After this, we compute upper bounds u(v) on mcslbmax(G, v)
with help of the values u′(v) for all vertices v ∈ V . Hereto, we can run a variant of
ImproveMCSLBMAXv, once for each vertex, as follows:

As in the proof of Proposition 13, one can show that after running MCSLBMAX2, for all
v ∈ V , mcslbmax(G, v) ≤ u(v).

Our third upper bound heuristic gives a further refinement by looking at which neighbor of
v is visited after v. Define for each pair of adjacent vertices v, w, mcslbmax(G, v,w) as the
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Procedure 3 MCSLBMAX2 (Graph G)

1: Run MCSLBMAX2(G).
2: for all v ∈ V do
3: Compute UN ′(v) = {u′(v) | {v, x} ∈ E}, and sort UN ′(v).
4: Suppose UN ′(v) = {u′1, u′2, . . . , u′d}, with u′1 ≤ u′2 ≤ · · · ≤ u′d.
5: count = 0;
6: for j = 1 to d do
7: if (u′j ≥ count) then
8: count ++.
9: end if

10: end for
11: u(v) = count.
12: end for
13: return u(v) for all v ∈ V

maximum of the visited degree of v over all MCS-orderings of G where v is visited before
w. For each ordered pair of adjacent vertices v, w, we have a variable u(v, w). We want
that these values of these variables maintain the following invariant.

mcslbmax(G, v,w) ≤ u(v, w) (3)

Procedure 4 (ImproveMCSLBMAXe) tries to decrease an value u(v, w), and returns true
when the value has been changed.

Procedure 4 ImproveMCSLBMAXe (Graph G, Vertex v, Vertex w)

1: Compute UN(v, w) = {u(x, v) | {v, x} ∈ E, x 6= w}, and sort UN(v, w).
2: Suppose UN(v, w) = {u1, u2, . . . , ud}, with u1 ≤ u2 ≤ · · · ≤ ud.
3: count = 0;
4: for j = 1 to u(v, w) do
5: if (ud−u(v,w)+j ≥ count) then
6: count ++.
7: end if
8: end for
9: if (count < u(v, w)) then

10: u(v, w) = count; return true
11: else
12: return false
13: end if

Proposition 15 The procedure ImproveMCSLBMAXe maintains invariant (3).

Procedure 5 (MCSLBMAXe) runs ImproveMCSLBMAXe until no improvements are possi-
ble, and then computes a value u(v) for each v ∈ V . As before, we can show that u(v) is an
upper bound on mcslbmax(G, v). The largest value of u(v) over all v ∈ V is again an upper
bound on the visited degree of G. Our experiments, discussed in Section 6 show that this
third heuristic gives sometimes additional improvements on the upper bound.
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Procedure 5 MCSLBMAXe (Graph G)

1: Initialise set S to be the set of all ordered pairs (v, w) with {v, w} ∈ E.
2: while S 6= ∅ do
3: Extract a pair (v, w) from S.
4: change = ImproveMCSLBMAXe(G,v,w).
5: if change then
6: Add to S all pairs (w, x) with x neighbor of w, not in S.
7: end if
8: end while
9: for all v ∈ V do

10: Compute UN(v) = {u(x, v) | {v, x} ∈ E}, and sort UN(v).
11: Suppose UN(v) = {u1, u2, . . . , ud}, with u1 ≤ u2 ≤ · · · ≤ ud.
12: count = 0;
13: for j = 1 to d do
14: if (uj ≥ count) then
15: count ++.
16: end if
17: end for
18: u(v) = count.
19: end for
20: return u(v) for all v ∈ V

6 Computational results

In this section, we perform an experimental evaluation of the heuristics for the maximum vis-
ited degree, and compare these with the degeneracy and an upper bound for the treewidth.
All algorithms have been tested on a large number of graphs from various application areas
such as probabilistic networks, frequency assignment, travelling salesman problem and ver-
tex colouring (see e.g. [6] for details). All algorithms have been written in C++, and the
computations have been carried out on a Linux operated PC with a 3.0 GHz Intel Pentium
4 processor. All reported CPU times are in seconds. In the tables below, we present the
results for some selected instances only. The result of these representative instances reflect
typical behaviour for the whole set of instances. The results for the other instances can be
viewed at TreewidthLIB [17].

Our experiments are divided in two parts. First, we examine the value of the visited degree
of MCS-orderings obtained by different start vertices and tiebreaking rules. Second, we
report on upper bounds on the maximum visited degree.

6.1 Start vertices and tiebreakers

Each MCS-ordering ψ provides a lower bound for treewidth. The start vertex of an MCS-
ordering influences the final ordering directly. Computational experiments however have
shown that the outcome varies only marginally depending on the start vertex. Typically,
an overwhelming majority of the start vertices results in the same visited degree, with a
few exceptions to lower and/or higher values.

During the ordering process, multiple vertices can have the highest visited degree, e.g., after
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δD(G) MCS-LB MCS-UB
default max-degree min-degree

instance |V | |E| LB CPU LB CPU LB CPU LB CPU UB CPU

link 724 1738 4 0.01 5 3.35 4 7.22 5 7.88 25 25.13
munin1 189 366 4 0.00 4 0.21 4 0.42 4 0.40 20 1.42
munin3 1044 1745 3 0.01 4 6.28 3 13.43 4 14.24 12 33.36
pignet2 3032 7264 4 0.04 5 67.59 4 144.42 5 164.38 255 10977.05
celar06 100 350 10 0.01 11 0.06 10 0.15 10 0.14 11 0.10
celar07pp 162 764 11 0.01 12 0.18 11 0.47 12 0.41 18 0.68
graph04 200 734 6 0.01 8 0.28 6 0.61 7 0.60 57 13.77
rl5934-pp 904 1800 3 0.01 4 5.31 4 11.13 4 10.69 32 79.04
school1 385 19095 73 0.04 85 5.22 85 30.80 85 26.99 264 277.46
school1-nsh 352 14612 61 0.02 72 4.22 72 19.14 72 17.02 224 212.19
zeroin.i.1 126 4100 48 0.00 50 0.39 48 3.56 50 2.74 52 3.77

Table 1: Treewidth lower and upper bounds for selected instances

the start vertex is fixed all neighbors have the same visited degree and can be ordered next.
To select the next vertex various tiebreakers can be applied.

In Table 1 we compare three different tiebreakers for selecting the next vertex among all
vertices of highest visited degree. For each tiebreaker we report the largest visited degree
taken over all possible start vertices. The CPU times are the sum over all possible start
vertices. The column ‘default’ present the results without a specific tiebreaker, i.e., the first
vertex with highest current visited degree is selected. The ‘max-degree’ tiebreaker selects
the vertex with maximum degree among the vertices with highest visited degree, whereas
the ‘min-degree’ tiebreaker selects the vertex with minimum degree. The idea behind the
maximum degree strategy is to push the visited degree for as much vertices as possible. On
the other hand, the minimum degree strategy tries to keep a vertex of high degree as long
as possible unvisited such that more and more neighbors are visited before it, and thus, its
visited degree increases.

The figures in Table 1 as well as for the remaining instances show that the ‘default’ tiebreaker
outperforms the other tiebreakers with 162 times the best value (out of 165 instances). The
‘min-degree’ tiebreaker is second best with 141 times the best value, whereas the ‘max-
degree’ obtains only 82 times this value.

For comparison, the degeneracy δD(G) is also included in the table as well as the treewidth
upper bound computed by the MCS heuristic [10]. As proved in Theorem 6, the visited
degree for any MCS-ordering is always at least as good as the degeneracy. The experiments
show that in almost half the cases the best visited degree that is obtained is one better than
the degeneracy, cf. Figure 11. The computation times of the MCS-LB heuristics are larger
than those for the degeneracy, but still very small.
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MCSLBMAX MCSLBMAX2 MCSLBMAXe best
instance |V | |E| ∆(G) value CPU value CPU value CPU MCSLB TW-UB

link 724 1738 31 11 0.01 10 0.01 10 0.03 5 13
munin1 189 366 18 10 0.00 9 0.00 8 0.01 4 11
munin3 1044 1745 73 12 0.00 11 0.01 10 0.05 4 7
pignet2 3032 7264 232 17 0.03 16 0.03 14 3.26 5 135
celar06 100 350 31 17 0.00 16 0.00 16 0.01 11 11
celar07pp 162 764 39 26 0.01 25 0.00 24 0.02 12 18
graph04 200 734 15 13 0.00 12 0.00 11 0.01 8 55
rl5934-pp 904 1800 7 7 0.01 6 0.00 6 0.02 4 23
school1 385 19095 282 172 0.02 171 0.04 170 9.53 85 188
school1-nsh 352 14612 232 142 0.01 141 0.02 140 2.69 72 162
zeroin.i.1 126 4100 111 105 0.01 104 0.00 104 0.61 50 50

Table 2: Upper bounds on the MCSLB for selected instances

In some cases the MCS-bound equals the best treewidth upper bound (bold values, cf.
Table 2 if MCS-UB is larger) and thus the reported value is the treewidth of those graphs.
In total 30 instances could be solved to optimality by this lower bound, wheres with the
degeneracy only 15 instances could be solved to optimality. In other cases the gap between
lower and upper bound is still large, e.g., for instance ‘pignet2’. As stated in Proposition 7,
MCSLB(G) is not closed under taking subgraphs or minors. In two recent studies on the
impact of edge contraction on treewidth lower bounds, we showed that the MCSLB lower
bound as well as other lower bounds can be improved substantially by computing them over
selected minors [6, 12].

6.2 Upper bounds on MCSLB

In Section 5 we have reported on three ways to compute an upper bound on the maximum
visited degree. All three methods as well as the maximum degree ∆(G), the actual best
value achieved (cf. Table 1) and the best treewidth upper bound for selected instances are
reported in Table 2. The maximum degree of each graph is reported since the algorithm
to compute u(v) is initialised with the degree dG(v). Table 2 shows that in several cases
the final maximum of u(v) over all vertices is significantly smaller than the maximum
degree. Only in cases where the maximum degree is close to the treewidth, only minor
improvement could be achieved. If we sum over all 165 instances the maximum degree
equals 9678, whereas MCSLBMAX gives an summed upper bound of 5099, MCSLBMAX2
4965, and MCSLBMAXe 4896. The difference between the first and second improvement
step is at most one, whereas between the second and third improvement step the difference
is two in exceptional cases, e.g., instance ‘pignet2’.

Compared to the actually computed visited degrees, there is either space for increasing the
maximum visited degree or the upper bounds are not tight. Where MCSLBMAXe sums
up to 4896, the MCSLB values sum up to only 2551. For some instances, the non-tightness
of the upper bounds is supported by the upper bounds for treewidth. For about half the
instances this is true.

Regardless whether or not these upper bounds for MCSLB are tight, the results show
that they have limited explanatory power. For those probabilistic networks where the gap
between lower and upper bound is large, it cannot be closed by computing the best visited
degree over all MCS-orderings. For the frequency assignment graphs this could be the case,
but the values are in fact useless since they are larger than the treewidth upper bound.

30



7 Conclusions

In this paper, we analysed the lower bound on the treewidth, introduced by Lucena [14],
based on Maximum Cardinality Search. While computing the MCS-ordering with a max-
imum visited degree is NP-hard, we see that in practice, an arbitrary MCS-ordering gives
reasonable results. A method to obtain upper bounds on the maximum visited degree shows
that in several cases, an arbitrary MCS-ordering gives a visited degree that is not far from
that of the best MCS-ordering.

Comparing the visited degree lower bound with other lower bounds for treewidth, we see
that it gives bounds that are at least as good as the degeneracy (termed MMD in some
papers), while it still can be computed very fast. In [6], we combine the method with
contracting edges, giving a further improvement of the bound. Still, on many graphs, there
are large differences between the lower bounds that can be obtained in this way and the
actual treewidth: for instance, on planar graphs, the treewidth can be Ω(

√
n) while an

MCS-ordering has visited degree bounded by O(log n). So, the search for further lower
bound heuristics for treewidth remains important and interesting.

Several interesting theoretical questions are left open in this paper. We mention a few. What
is the complexity of Max MCSLB when k is 3, 4, 5, or 6? (We conjecture NP-completeness
when k = 4, k = 5, and k = 6, and polynomial time solvability when k = 3.) Can we find
an approximation algorithm for Max MCSLB with performance ratio O(log n)? Can we
solve the Max MCSLB problem exactly on interesting graph classes, like planar graphs or
permutation graphs?
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