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ON PDE SOLUTION IN TRANSIENT OPTIMIZATION OF GAS NETWORKS

MARC C. STEINBACH

ABSTRACT. Operative planning in gas distribution networks leads to large-scale mixed-
integer optimization problems involving a hyperbolic PDE defined on a graph. We consider
the NLP obtained under prescribed combinatorial decisions—or as relaxation in a branch
and bound framework, addressing in particular the KKT systems arising in primal-dual
interior methods. We propose a custom solution algorithm using sparse local projections,
based on the KKT systems’ structural properties induced by the discretized gas flow equa-
tions in combination with the underlying network topology. The numerical efficiency and
accuracy of the algorithm are investigated, and detailed computational comparisons with a
control space method and with the multifrontal solverMA27 are provided.

1. INTRODUCTION

The topic of this paper is operative planning, or transient technical optimization (TTO),
in gas networks. This planning level addresses the task of controlling the network load
distribution over the next24 to 48 hours to satisfy the actual demand subject to physical,
technical, and contractual constraints as well as target values for gas production, storage,
purchase, and sale determined by the mid-term planning. The objective is to minimize the
variable operating costs, which are dominated by the cost for the gas transport, that is, the
fuel consumption of compressors. Due to reliable temperature forecasts we can neglect de-
mand uncertainty and hence use a deterministic model, but the operative planning problem
involves PDE constraints (gas flow) as well as substantial combinatorial aspects (start-up
and shut-down of compressors, opening or closing of valves, possibly the direction of flow
on some lines), leading to a currently intractable PDE constrained mixed-integer optimiza-
tion problem.

Typical subjects of the early literature include dynamic programming techniques for
steady-state optimization (in tree-structured networks) [38], later surveyed in [7], or se-
quential linearization for nonlinear mixed-integer models on more general network topolo-
gies [28]. The papers [3, 6, 8] study the technical difficulties as well as criteria for the
comparison and evaluation of compressor optimization based on mixed-integer models.
Related topics include optimization of single compressor stations by simulated anneal-
ing [39], or optimization of gas networks by Nash equilibria [27]. Probably the most
intensively studied subject is transient network simulation: commercial simulation tools
such asSIMONE [40] are available for this purpose, based on highly detailed physical
models of gas dynamics and compressor behavior [21, 22, 23, 24]. The authors of this
system also propose a gradient method for transient network optimization under given bi-
nary decisions [19, 20, 35]. More recently, an extended simplex method was developed for
a quasi-stationary model [9]. First approaches for the mixed-integer TTO problem, with
rather coarse approximations of nonlinearities, are developed in [31, 32] and later in [17].
To address the full TTO problem, our own work aims at a future integration with linear
mixed-integer approaches that are currently being developed [25, 26]. In the same context,
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stochastic models for mid-term planning are investigated in [18, 36]. For basic texts on gas
dynamics we refer to [30, 37].

As in [13, 14], we focus on the nonlinear aspects in this paper, assuming that combina-
torial decisions are externally given—ideally by an enclosing mixed-integer optimization
framework such as branch and bound. In [13] we have developed a suitable NLP model
and validated it on a small test network using the general purpose SQP codeSNOPT [16].
The highly structured NLP model is characterized by an underlying network providing the
coupling between

• the gas flow in pipes governed by a (discretized) PDE,
• the compressors as nonlinear control elements,
• further active and passive linear elements.

As the majority of network elements are pipes, the PDE defined on the network graph is
largely responsible for the overall complexity. Our goal here is the construction of KKT
solvers for interior methods that are sufficiently fast to act as standalone decision sup-
port tool in operative planning, or as subproblem solvers for the NLP relaxations within
a mixed-integer optimization framework. Although iterative solvers are well-studied both
for KKT systems in PDE constrained optimization and for classical (linear) network flow
problems, the situation at hand appears to be mostly unexplored. No preconditioners are
known for this problem type. On the other hand, efficient direct algorithms can be con-
structed for tree-structured networks. Real gas distribution networks are more complex but
do not have too many loops on the large scale. This suggests to investigate direct KKT
solvers that exploit the specific problem structure, which is the approach pursued in the
following.

The material is organized as follows. In Section 2 we summarize the overall network
model developed in [13], then formulate the complete NLP model and highlight its struc-
tural properties. The KKT systems obtained in primal-dual interior methods are presented
in Section 3. In Section 4 we discuss two direct solution algorithms that exploit the struc-
tural characteristics of the discretized PDE and network topology by different projection
techniques. The new recursive algorithm with sparse local projections developed here, in
particular, achieves linear complexity in the number of timesteps. An extensive compu-
tational study comparing the two solvers with each other and with the well-known mul-
tifrontal codeMA27 is then provided in Section 5, addressing runtime and memory re-
quirements as well as solution accuracy. We conclude the paper by discussing promising
directions of future research.

2. NLP MODEL

The model consists of discretized dynamic equations for the network elements, a termi-
nal condition, simple bounds on all variables, and a linear objective. Details are given in
[13]; here we summarize the overall model with some slight modifications to ease presen-
tation.

2.1. Network Topology and Planning Horizon. The network is modeled as a directed
graphG = (N ,A) whose vertex set consists of provider nodesN+ (sources), customer
nodesN− (sinks), and interior nodesN0 (junctions),

N = N+ ∪N− ∪N0. (1)

The arc set consists of pipesApi, connectionsAcn, compressorsAcs, valvesAvl , and regu-
latorsArg,

A = Api ∪ Acn︸ ︷︷ ︸
passive

∪Acs∪ Avl ∪ Arg︸ ︷︷ ︸
active(controlled)

. (2)

Individual arcs will be denoted asa ∈ A or, using the tail and headi, j ∈ N , asij ∈ A.
The flow is directed fromi to j.
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We consider a uniform time gridt = 0, 1, . . . , te on the finite horizonI = [0, te].
SubintervalIt = (t − 1, t) is referred to as periodt and has physical length∆t.

Basic state variables are the node pressurespjt and the arc inflows and outflowsqin
at, q

out
at

at time instancest = 1, . . . , te. Fixed initial states are given att = 0. When considering
a single arca = ij ∈ A, we write qit, qjt instead ofqin

at, q
out
at. Control variables are

the pressure changes∆pat at regulators and compressors; they are constant in each period
t = 1, . . . , te.

2.2. Model Equations. The node and arc equations in the following are valid for all
t ∈ {1, . . . , te}, where we assume that all discrete decisions are externally prescribed
(compressors: on/off, valves and regulators: open/closed). Each constraint is given a name
for later reference.

Standard flow balance equations hold at every internal nodej ∈ N0,

cflow
jt =

∑

i: ij∈A
qout

ijt −
∑

k: jk∈A
qin

jkt = 0. (3)

At the customer nodesj ∈ N− we have to include the predicted demandsDjt,

cflow
jt =

∑

i: ij∈A
qout

ijt −
∑

k: jk∈A
qin

jkt − Djt = 0. (4)

Interior nodes could thus be modeled as customer nodes with zero demand. We keep the
distinction since, in contrast to water distribution networks [4, 5], the number of customer
nodes in gas networks is typically small.

At the provider nodesj ∈ N+ we consider the pressures to be given,

c
press
jt = pjt − p̂jt = 0, (5)

typically specified as hourly profiles according to contractual agreements.
The pipesa = ij ∈ Api have nonlinear pressure and flow relations obtained from

implicit Euler discretizations in space and time [13],

ccont
at =

ρjt − ρjt−

∆t
+

qjt − qit

La
= 0, (6)

closs
at = Aa

pjt − pit

La
+ g

hj − hi

La
ρjt +

λ(qjt)

2Da

q2
jt

ρjt
= 0, (7)

cstate
at = pjt − γ(Tjt)z(pjt, Tjt)ρjt = 0. (8)

Here we abbreviatet− = t − 1 and, as mentioned above,qit = qin
at, qjt = qout

at. The
friction coefficientλ and the compressibility factorz are given empirically.

Connectionsa = ij ∈ Acn are short pipes with a constant relative pressure lossca ∈
(0, 1] and no change in the flow rate,

c
press
at = pjt − capit = 0, cflow

at = qjt − qit = 0. (9)

The valvesa = ij ∈ Avl are control elements that can be either open or closed,

c
press
at = pjt − pit = 0, cflow

at = qjt − qit = 0 (open), (10)

c
press
at = qit = 0, cflow

at = qjt = 0 (closed). (11)

Regulators (or control valves)a = ij ∈ Arg reduce the pressure by a controlled positive
amount∆pat ∈ [∆p−

a , ∆p+
a ] ⊂ R+,

c
press
at = pjt − pit + ∆pjt = 0, cflow

at = qjt − qit = 0 (open), (12)

c
press
at = qit = 0, cflow

at = qjt = 0 (closed). (13)
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In order to move the gas, compressors increase the pressure by a controlled nonnegative
amount∆pat, taking their fuelBat from the inflow,

c
press
at = pjt − pit − ∆pjt = 0,

cflow
at = qjt − qit + Bat = 0,

cfuel
at = βa(pit, pjt, qjt) − Bat = 0 (on), (14)

c
press
at = pjt − pit = 0,

cflow
at = qjt − qit = 0,

cfuel
at = Bat = 0 (off). (15)

The fuel consumption depends nonlinearly on the pressures and throughput,

βa(pit, pjt, qjt) = CaNat = Catqjtz(pit, Tit)

[(
pjt

pit

)κ−1
κ

− 1

]
,

whereNat is the compressor’s power consumption andCa, Cat are products of several
constants [13].

The objective is to minimize the overall fuel cost,

φ =

te∑

t=1

φt =
∑

a∈Acs

ca

te∑

t=1

Bat− + Bat

2
∆t → min . (16)

Finally we have a terminal constraint on the total network gas content,

ce =
∑

ij∈Api

Lij
ρite + ρjte

2
− mmin = 0. (17)

Actually mmin is a lower bound on the gas mass, but the inequality constraint is always
active and therefore formulated as an equality.

2.3. NLP Formulation and Structure. The vector of all NLP variables is denoted

y = (y1, . . . , yte) (18)

and the initial states arez0 where

yt = (ut, zt), zt = (pt, qt, st), t = 0, . . . , te. (19)

Stateszt consist of node pressurespt = (pit)i∈N , arc flowsqt = (qin
at, q

out
at)a∈A, and

further states in pipes and compressors,st = (sat)a∈A. Controls are the pressure changes
ut = (uat)a∈A in compressors and regulators (constant onIt):

sijt = ρjt, ij ∈ Api, uat = ∆pat, a ∈ Acs,

sat = Bat, a ∈ Acs, uat = ∆pat, a ∈ Arg.
(20)

In the remaining arc types,sat and uat are empty. All variables have simple bounds
modeling technical or contractual restrictions,y ∈ Y = [y−, y+].

Thus we can write the NLP in the separable form

minimize
y∈Y

te∑

t=1

φt(zt)

subject to ct(zt−1, ut, zt) = 0, t = 1, . . . , te,

ce(zte) = 0,



ON PDE SOLUTION IN TRANSIENT OPTIMIZATION OF GAS NETWORKS 5

whereφt andce denote the periodt cost (16) and the terminal constraint (17), respectively,
andct collects the equality constraints of periodt,

ct(zt−1, ut, zt) =




{cflow
at (zt)}a∈N−∪N0

{c
press
at (zt)}a∈N+

{ccont
at (zt−1, zt), c

loss
at (zt), c

state
at (zt)}a∈Api

{c
press
at (zt), c

flow
at (zt)}a∈Acn∪Avl

{c
press
at (ut, zt), c

flow
at (zt)}a∈Arg∪Acs

{cfuel
at (zt)}a∈Acs




.

Observing that almost all constraints depend on the current statezt only while the previ-
ous statezt−1 and the controlut enter linearly, the periodt equality constraints can be
rewritten

ct(zt−1, ut, zt) = Ltzt−1 + Btut + c̃t(zt), t = 1, . . . , te,

yielding the linearized primal constraints system



B1 A1

L2 B2 A2

. . .
.. .

. ..

Lte Bte Ate

Fte







∆u1

∆z1

...
∆ute

∆zte




=




h1

h2

...
hte

e




,

where

At = ∇c̃t(zt) = ∇ztct(zt−1, ut, zt), ht = −ct(zt−1, ut, zt),

Fte = ∇ce(zte), e = −ce(zte).

Thus we obtain the separable Lagrangian

L(u, z, λ, η) =

te∑

t=1

Lt(zt−1, ut, zt, λt) + Le(zte , η),

Lt(zt−1ut, zt, λt) = φt(zt) − λ∗tct(zt−1, ut, zt),

Le(zte , η) = η∗ce(zte),

and the dual feasibility system




0

H1

.. .

0

Hte







∆u1

∆z1

...
∆ute

∆zte




−




B∗1
A∗1 L∗2

B∗2
. . .

A∗2
. . . L∗te. . . B∗te

A∗te
F∗te







∆λ1

∆λ2

...
∆λte

∆η




=




d1

f1

...
dte

fte




,

where

Ht = ∇ztztL(u, z, λ, η) = ∇ztztLt(zt−1, ut, zt, λt) = −∇ztzt [c̃t(zt)
∗λt],

dt = −∇utL(u, z, λ, η) = −∇utLt(zt−1, ut, zt, λt) = B∗tλt,

ft = −∇ztL(u, z, λ, η)

= −∇zt [Lt(zt−1, ut, zt, λt) + Lt+1(zt, ut+1, zt+1, λt+1) + Le(zte , η)]

= −∇φt(zt) + A∗tλt + L∗t+1λt+1 + δtteF∗te
η.
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FIGURE 1. Unnatural subnetwork creating a structural singularity:
flows in the four connections are not uniquely determined by the inlet
and outlet flows

3. KKT SYSTEMS

First computational experiments with our optimization model [13] have been conducted
with the general purpose SQP softwareSNOPT/SnadiOpt [16, 15]. The present work
aims at specialized KKT solvers to be employed within primal-dual interior methods. In
what follows, we reorder the variables as

y = (z, u) ∈ RN, z = (z1, . . . , zte) ∈ RNz , u = (u1, . . . , ute) ∈ RNu ,

whereNz = nzte, Nu = nute, andN = Nz +Nu. Since all NLP inequalities are simple
bounds, the (reduced) KKT system then takes the form




H + Φz A∗ F∗

Φu B∗

A B

F







∆z

∆u

−∆λ

−∆η


 = −




f

d

h

e


 ∈ RNz+Nu+Nz+1. (21)

Here Φz,Φu are positive diagonal matrices containing state and control barrier terms,
respectively, the HessianH and control operatorB are block-diagonal, the state operatorA

is block-bidiagonal because of the implicit Euler scheme in time, andF corresponds to the
single linear terminal constraint,

A =




A1

L2 A2. . .
. ..

Lte Ate


 ,

H = Diag(H1, . . . , Hte),

B = Diag(B1, . . . , Bte),

F = (0, . . . , 0, Fte).

(22)

It can be shown that the local state operatorsAt ∈ Rnz×nz are nonsingular under natural
assumptions on the network composition. (A simple “counterexample” is shown in Fig. 1.)
Thus, in particular, every subset of rows has full row rank. The full KKT system is also
nonsingular sinceΦz,Φu are positive. These facts will be exploited in constructing direct
solvers for the large and sparse system (21).

4. KKT SOLUTION

4.1. Control Space Projection. A first structured KKT solver has been presented in [14],
which generalizes the classical control space projection (condensing recursion) [2] to the
sparse implicit state equation of interest,A∆z+B∆u = h. This algorithm employs sparse
factorizations ofAt obtained withMA28 [10, 11] to construct factorizations ofA andA∗

as forward and backward recursions over time. The factors are then used to eliminate∆z

and∆λ, yielding the control space KKT system
[

S F̄∗

F̄

] [
∆u

−∆η

]
=

[
d̄

ē

]
∈ RNu+1.

Here the projected Hessian and the projected terminal constraint matrix are

S = Φu + B̄∗(H + Φz)B̄ and F̄ = FB̄ with B̄ = A−1B.

Block rows of the block lower triangular transformation̄B are calculated during the factor-
ization to accumulateS forward in time, whereas matrix-vector products withA−1B and
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B∗A−∗ are calculated during forward and backward substitution. The projected system is
solved by a dense Cholesky factorization ofS. This way the algorithm needs storage only
for S and for the factors ofAt, plus workspace to hold twice the largest block row ofB̄

(2nzNu elements).
A key ingredient of this approach is the cheap factorization ofAt. For tree-structured

networks it can actually be achieved in complexityO(|A|) which may, however, be unsta-
ble. UsingMA28, we obtain a stable factorization at comparable effort even for realistic
networks (depending on the topology). This is confirmed by the empirical observation that
the required storage always remains below twice the number of original entries in our tests.
Memory and runtime complexity of the algorithm are thereforeO(N2

u) andO(N3
u). As-

sembling and factorizingS with O(N3
u) dominates the computational effort (> 99.5% on

all instances considered below). Thus, since factorizingAt is inexpensive and the control
space dimensionNu is independent of the space discretization and comparatively small,
the algorithm is well suited for networks with a moderate number of compressors and
regulators under coarse time discretizations but possibly fine space discretizations.

To handle larger networks, the idea was initially to replace the expensive operations
with S by a conjugate gradients method using some natural preconditioner, such as the
diagonal blocks ofS or some wider band about the diagonal. It turned out, however, thatS

is diagonally non-dominant with slowly decaying off-diagonal entries, and that the eigen-
values are not well clustered. This led us to investigate alternative approaches, resulting in
the algorithm described below.

4.2. Local Projection Algorithm. A much faster solution algorithm featuring essentially
the same stability properties is based on theimplicit tree-sparse recursiondeveloped in
[33, 34], in combination withsparse local projections. We drop the distinction of state
and control variables and split the rows ofLt∆zt−1 + Bt∆ut + At∆zt = ht into lo-
cal constraintsandtransition equations. The latter are derived from the continuity equa-
tion ccont

at (zt−1, zt) and provide the complete coupling between time steps; they consist
precisely of the rows that have nonzero entries inLt. In the notation of [33, 34], these
transition equations take the implicit form

Gt∆yt−1 = Pt∆yt + ht. (23)

The remaining rows do not involvezt−1 (but do include the terminal constraint att = te)
and constitute the local constraints

F
y
t ∆yt = e

y
t . (24)

Dual feasibility conditions complete the KKT system:

(Ht + Φt)∆yt + P∗t∆λt − G∗t+1∆λt+1 − F
y∗
t ∆µ

y
t = ft. (25)

Here∆λt, ∆µ
y
t are the dual variables associated with transition equations and local con-

straints, respectively, andHt + Φt now denotes the barrier Hessian with respect toyt

rather than justzt. In what follows we absorbΦt into Ht. The respective dimensions of
(23), (24), and (25) are

lt = |Api|, l
y
t = |N | + 2|A| + |Acs| + δtte , nt = nzt + nut.

The full system now takes the form



H G∗ Fy∗

G

Fy







y

−λ

−µy


 =




f

h

ey


 , (26)

with appropriately defined matricesH,G, Fy (for details see [33, 34]).
Note that the number of transition equations and the null space dimension ofF

y
t are

both small compared to the number of local constraints,lt ¿ l
y
t andnt − l

y
t ¿ l

y
t . This

allows us todecouple space and time. The local constraints (spatial coupling) are handled
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independently in each timestep, in that a basis of their null space is constructed. The
transition equations (temporal coupling) are then projected into that null space and solved
by a recursion over time, yielding a direct KKT solution algorithm whose computational
complexity is linear in the number of timesteps. Such an approach is generally infeasible
in PDE constrained optimization because of prohibitively expensive projections. In our
context, however, the specific structure admits local projections at reasonable cost.

The sparse projection can be executed parallel in time and works as follows. Fort =
1, . . . , te we first factorize

F
y
t = L

y
t

(
I 0

)
Ut ∈ Rly

t×nt , (27)

whereL
y
t ∈ Rly

t×ly
t andUt ∈ Rnt×nt are nonsingular withLy

t lower triangular; for
further details see Section 4.3. Next, the dense projected constraint matrices (null space
operators) are calculated as

Gt2 = GtU
−1
t−1

(
0

I

)
,

Pt2 = PtU
−1
t

(
0

I

)
, Ht22 =

(
0 I

)
U−∗

t HtU
−1
t

(
0

I

)
. (28)

In contrast to the dense version of [33], however, we do not explicitly form the operators
associated with the large complement of the null space,

Gt1 = GtU
−1
t−1

(
I

0

)
,

Pt1 = PtU
−1
t

(
I

0

)
,

(
Ht11

Ht12

)
= U−∗

t HtU
−1
t

(
I

0

)
.

The latter are only required in form of sparse matrix-vector products during forward and
backward substitution, as follows. Fort = 1, . . . , te we first calculate

∆yt1 = (Ly
t )−1e

y
t ,

f̄t = U−∗
t

[
ft − HtU

−1
t

(
I

0

)
∆yt1

]
,

h̄t = ht − GtU
−1
t−1

(
I

0

)
∆yt−1,1 + PtU

−1
t

(
I

0

)
∆yt1. (29)

Here∆yt1 is the primal solution vector corresponding to the complement of the null space,
andf̄t, h̄t are transformed right-hand sides entering the projected KKT system. Backward
and forward recursions on the projected system yield the primal null space solution com-
ponents∆yt2 and multipliers∆λt [33], from which∆yt and∆µ

y
t are finally obtained for

t = te, . . . , 1:

∆µ̄
y
t = f̄t1 −

(
I 0

)
U−∗

t

[
P∗t∆λt − G∗t+1∆λt+1 + HtU

−1
t

(
0

I

)
∆yt2

]
,

∆µ
y
t = −(Ly

t )−∗∆µ̄
y
t ,

∆yt = U−1
t

(
∆yt1

∆yt2

)
. (30)

The projection reduces the full KKT system (26) to
[

H22 G∗2
G2

] [
y2

−λ

]
=

[
f̄2

h̄

]
, (31)
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with local representation fort = 1, . . . , te:

Ht22∆yt2 + P∗t2∆λt − G∗t+1,2∆λt+1 = f̄t2

Gt2∆yt−1,2 = Pt2∆yt2 + h̄t.

Except for the missing local constraints, this is identical to the original system and can
be interpreted as an implicit version of the linear-quadratic regulator problem. The small
dimension thus enables the fast recursive solution. Again, we refer to [33] for more details.

4.3. Implementation. Our current (preliminary) implementation stores and factorizesF
y
t

in dense form using the LQ factorizationDGELQF from theLAPACK linear algebra li-
brary [1]. DGELQF calculates a factorization of the form (27) whereUt is an orthogonal
matrix,

F
y
t = L

y
t

(
I 0

)
Ut, U∗tUt = I ∈ Rnt×nt .

No pivoting is performed (or required) here, and the orthogonal projection is inherently
stable. Alternatively, one could apply a Gauss factorization with pivoting, in which case
Ut is a column-permuted upper triangular matrix (and(I 0) Ut a column-permuted upper
trapezoidal matrix),

Ut =

(
Rt Vt

I

)
Πt,

(
I 0

)
Ut =

(
Rt Vt

)
Πt.

Eventually we intend to use a sparse factorization ofF
y
t , requiring a code where the fac-

tors L
y
t andUt are individually accessible for the subsequent operations (28), (29), and

(30). The latter are implemented using sparse multiplications withHt, Gt, Pt on dense
operands. To this end, the forward substitution (29) is rewritten in the form

∆yt1 = (Ly
t )−1e

y
t ,

wt = U−1
t

(
I

0

)
∆yt1, f̄t = U−∗

t [ft − Htwt], h̄t = ht − Gtwt−1 + Ptwt,

and the operations are rearranged such that a single workspacew suffices to hold each
vectorwt in turn. For the factorization we use two workspace matrices

W1 = U−1
t

(
0

I

)
, W2 = HtW1,

to calculateHt22 = W∗
1W2. This is faster than accumulatingHt22 as sum of symmetric

rank-1 and rank-2 products with rows ofW1.
Observe finally that, after calculating∆yt, we may alternatively obtain the local multi-

pliers as

∆µ
y
t = −(Ly

t )−∗ (
I 0

)
U−∗

t

[
ft − Ht∆yt − P∗t∆λt + G∗t+1∆λt+1

]
.

This requires separate storage for the vectorsf̄t2 in the projected system but can be useful
to achieve higher accuracy; cf. Section 5.5.

5. NUMERICAL RESULTS

Here we compare the performance of three direct algorithms for the symmetric indef-
inite KKT system: the public domain multifrontal solverMA27 [12] from theHSL nu-
merical software library, the control space projection algorithm [14], and the new locally
projecting recursive algorithm presented above. The comparison includes:

• runtimes (CPU) for factorizing the KKT matrix,
• memory requirements for the inverse: factors and floating-point workspace (but

not the bookkeeping overhead),
• profiles of solution accuracies.
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FIGURE 2. Test network T120

TABLE 1. Data of networks used in computations.Lmin, Lmax: min-
imum and maximum pipe lengths;N+,N−,N0,N : node numbers;
Acs,Arg,Avl ,Acn,Api,A: arc numbers

Name Lmin Lmax N+ N− N0 N Acs Arg Avl Acn Api A
T120 50.0 120.0 2 3 10 15 3 1 1 1 11 17
T40 25.0 40.0 2 3 27 32 3 1 1 1 28 34
T10 10.0 10.0 2 3 91 96 3 1 1 1 93 99
R235 11.5 235.2 7 10 46 63 13 6 4 12 29 64
R80 11.5 80.0 7 10 60 77 13 6 4 12 43 78
R40 11.5 40.0 7 10 86 103 13 6 4 12 69 104

All computations are performed in core on a3 GHz Linux PC workstation with2 GB pri-
mary storage.

One difficulty arises in the comparisons: forMA27, neither the memory for the factors
nor the workspace for the factorization are accurately predictable. Moreover, the runtime
performance improves slightly if more than the minimum required amount is provided.
The performance data reported below are obtained by doubling the amount of memory
repeatedly until the factorization is successful, starting with twice as many elements as the
number of entries in the original KKT system.

5.1. Networks and Space Discretization.For the numerical tests we consider two net-
works with different characteristics: a small test network with just a few control elements
and a total length of920 km depicted in Fig. 2, and a medium-sized network with more
than three times as many control elements and a total length of roughly2500 km, repre-
senting the backbone transport network of our industry partner Ruhrgas. Pipelines with
up to 120 km and235 km in length, respectively, correspond to single arcs in the basic
networks T120 and R235. We construct refined space discretizations as follows. Each
pipeline that exceeds a given maximum length is partitioned into as many arcs of equal
length as are needed to remain below the threshold. Thus we obtain three variants of each
network, referred to as ‘T networks’ and ‘R networks’, with up to approximately hundred
nodes and arcs; see Table 1.

5.2. Time Discretization. The longest relevant planning horizon,48 hours, is considered
in all test problems. Typical demand scenarios are described in [13]. For the uniform
time discretization we use multiples of48 up to288 as the number of periods, obtaining
timesteps of60, 30, 20, 15, 12, and10 minutes. Although there is no need to satisfy a
Courant–Friedrichs–Lewy (CFL) type stability condition in our context, some indication
on reasonable values of the period length∆t can be obtained by requiring that a flow
entering a pipe must not leave it in the same timestep:

∆t ≤ min
a∈Api

La

vmax
a

, vmax
a := max

t=1,...,T
max

{
qin

at

ρin
at

,
qout

at

ρout
at

}
.
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FIGURE 3. CPU time comparison for KKT solvers on T networks

Assuming a maximal gas flow velocity of about20 km/h (a realistic value), this inequality
yields maximal time steps between30 min and150 min for the networks in Table 1. This
shows that our range of time discretizations contains suitable values for each of the selected
space discretizations. However, as we are only studying linear solvers here, computational
results will be reported for every possible combination.

5.3. CPU Time. Let us first investigate the runtime behavior of the three codes. CPU
times for the factorization will be illustrated in plots showing the number and length of
timesteps on the abscissa in the form “te × ∆t”, with ∆t in minutes. Separate curves
corresponding to the network variants are plotted for each of the three solvers, where solid,
dashed, and dotted lines always correspond to the new locally projecting solver, the control
space method, andMA27, respectively. The runtime in seconds is indicated on the ordinate
in logarithmic scale.

CPU times for the T networks are displayed in Fig. 3. Comparing the control space
method withMA27 first, we observe that the former becomes rapidly slower with increas-
ing number of timesteps whereas the latter becomes drastically slower when the space
discretization is refined.MA27 requires up to an hour for factorizing the T10 matrix,
whereas the control space method takes never more than two minutes. As expected, the
new algorithm performs very well, especially on fine time discretizations. Although it
slows down considerably with increasing numbers of pipe segments, it factorizes all T120
and T40 instances in less than a second, and even the largest T10 instance in just24 sec-
onds. Hence the new algorithm can be considered the clear winner, being outperformed
only on the two smallest instances of T10 by the control space method. Note finally that
MA27 behaves strangely on T10 for240 and288 timesteps: on the larger problem it actu-
ally runs10 seconds faster. This is probably due to the fact that the performance depends
on the user-provided workspace memory.

The characteristics of each solver are even more clearly pronounced for the realistic
R networks; see Fig. 4. HereMA27 is consistently faster than the control space method,
and is in turn always outperformed by the new solver. The differences are quite significant
especially on fine time grids, where the control space method needs up to50 minutes,
MA27 up to6 minutes, and the new solver only up to half a minute. It can be expected that
the runtime advantage of the new solver increases further with larger networks, even with
the current preliminary implementation.
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FIGURE 5. Memory comparison for KKT solvers on R networks

5.4. Memory Requirements. The plots for memory requirements are organized in the
same way as for the CPU times, except that the ordinate displays the total memory in
megabytes on a linear scale. Turning to the results, we consider the R networks first; see
Fig. 5. The memory required by the new algorithm grows linearly with the number of
periods. MA27 appears to show roughly the same behavior, whereas the amount for the
control space method grows quadratically. The dependence on the space discretization is
almost negligible for the latter (only the workspace grows, notS), while the new solver and
especiallyMA27 show a strong dependence (exactly cubic for the former, apparently also
cubic for the latter). In absolute numbers, all problems are solved within less than412 MB,
and the solvers never differ by a factor greater than eight for the same problem.

For the T networks we observe drastic differences displayed in the three plots of Fig. 6.
Here the control space method needs very little memory on all instances (because of the
small dimension ofS), while the new algorithm needs moderate amounts comparable to
the R network instances. The requirements ofMA27, however, increase disproportionately,
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FIGURE 7. Condition numbers ofHt22 for network T10

growing up to1736 MB on the T10 instance with288 periods. This confirms the observa-
tion thatMA27 runs into difficulties when it has to handle large numbers of pipes. Possible
explanations for this behavior could be the increased number of intertemporal constraints
(making sparsity pivoting harder), or an increased number of poorly scaled rows (making
numerical pivoting harder). Indeed,MA27 has more flexibility for numerical pivoting than
the two other solvers, and it does achieve higher solution accuracies; see next section.

5.5. Solution Accuracy. To measure the solution accuracy, we generate error profiles as
follows. As right-hand side we use the product of the KKT matrix with the vector of all
ones,e = (1, . . . , 1). For each solver, the components of the absolute errorδy = |y − e|

are then ordered by increasing magnitude, and we plot the largest absolute error versus the
percentage of most accurate components.

As can be expected from the model equations, the condition of the KKT system depends
strongly on the scaling of variables or, equivalently, the choice of physical units. Numer-
ical tests confirm the ill-conditioning: if SI base units are used for all variables, none of
the algorithms can solve the system to a single digit of accuracy in terms of‖y − e‖∞.
(On the T10 problem with48 periods, for instance,MA27 yields‖y − e‖∞ = 7.8 using
581 MB and 7:33 minutes. The largest error of the control space method is4.8 × 106,
while the new algorithms stops with a factorization error.) The tests also showed that the
condition depends only mildly on the number of timesteps. This is illustrated in Fig. 7,
showing for three time discretizations the condition ofHt22 versus physical time. A de-
tailed discussion of scaling is beyond the scope of this paper, so we just mention that we
use a heuristic choice of scaling factors such that the function values and derivatives are
reasonably balanced.

In Fig. 8, results are shown for the T10 instance with144 periods, which is one of
the hardest cases. Results for the other problems are similar or better. The control space
projection is obviously the least accurate solver andMA27 is the most accurate one, while
the new algorithm lies in between. With minor differences, this is basically true for the
other problem instances as well. Slightly exceptional behavior occurs for the largest error
‖y − e‖∞: here all solvers yield comparable results, althoughMA27 still tends to be
somewhat more accurate than its competitors.

Looking at the test results separated by primal and dual components in Fig. 9, we see
that the primal solution is much more accurate than the dual solution for each of the solvers,
which is quite typical for KKT systems. As regards the relative performance of the solvers,
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FIGURE 9. Primal and dual errors for network T10 with144 periods

the same observations as above apply. In any case, the results clearly show that we will
need iterative refinement no matter which solver we choose.

6. SUMMARY

Transient optimization in gas networks is difficult even under specified combinatorial
decisions. Since general purpose NLP solvers are too slow for realistic problem sizes, our
goal is the construction of a highly efficient method for the large, potentially ill-conditioned
KKT systems arising in interior methods. The proposed algorithm uses sparse local pro-
jections in combination with a recursive solution of the small, dense projected system,
exploiting the fact that space and time discretizations of the PDE governing the gas flow
can be essentially decoupled. Even in the current preliminary implementation, the new
algorithm clearly outperforms a control space method and the public domain multifrontal
codeMA27, especially on fine discretizations. Moreover, in contrast toMA27, our al-
gorithm has accurately predictable (and generally lower) storage requirements. Because
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of the currently dense implementation of local factorizations, significant potential for im-
provements remains. As it turns out, more than70% of the factors (over60% of the total
memory) are zero entries even without sparsity pivoting. It is straightforward to reduce the
memory to roughly 40%, just by storing the factors ofF

y
t differently. Further substantial

savings in runtime and memory are to be expected from a genuine sparse factorization of
the local constraint matricesFy

t . Ultimately this may even include graph-based pivoting
selection to exploit the static structure of a given network.
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