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Abstract

This report presents a method to integrate highly flexible technology
models for distributed energy resources such as electric vehicles, power-to-
heat systems, or home battery systems into a Lagrangian relaxation of the
pan-European day-ahead electricity market (EULR). These flexible tech-
nology models are highly sensitive to the changes of Lagrangian multipliers
within the iterative Lagrangian relaxation process, leading to volatile be-
havior. Furthermore, they show a high concurrency in their market behav-
ior due to their technical homogeneity. Therefore, the method proposed in
this report is an extension of the existing EULR modeling approach to im-
prove the model’s convergence. The methodological extension comprises
a convex combination of iteration solutions for the Lagrangian relaxation
subproblems similar to Dantzig-Wolfe decomposition. An exemplary case
study shows the effectiveness of this extended approach.

Keywords— Electricity Market Simulation, Lagrangian Relaxation, Distributed En-
ergy Resources

1 Introduction
Following the liberalization of the European energy system, the dispatch of power
plants is mainly determined by the coupled wholesale electricity market (either by di-
rect participation or by the effect of market prices on make-or-buy decisions of power
plant operators). In that context, the day-ahead market is regarded as the leading
market determining base prices and power plant dispatches. Assuming perfect com-
petition, electricity markets can be approximated by cost-minimizing system models
[1]. Cost-minimizing unit commitment models considering detailed start-up and shut-
down decisions of power plants are an established approach for modeling the European
(day-ahead) wholesale electricity market, especially in the energy system planning and
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analysis context [2]. The resulting unit commitment optimization problem suffers from
high computational complexity due to integer-based on/off decisions of power plants
and the complicating market coupling constraints according to the Single Day-ahead
Coupling (SDAC) of the different market areas. Thus, solving the detailed European
energy system models requires facilitation of decomposition methods or relaxation of
the complicating market balance and market-coupling constraints. Lagrangian Relax-
ation (LR) is preferred to decomposition approaches such as Benders Decomposition
[4, 5, 6] or Branch-and-Price [7] in the electricity markets modeling context as it poses
several superiorities compared to other decomposition methods. Interpretation of the
Lagrangian multipliers of the relaxed market coupling constraints as market prices,
which are among significant evaluation criteria of market models, is one of these su-
periorities. Besides, the LR allows for the formulation of individual subproblems for
each thermal power plant, (hydro-) storage system, and renewable generation plants.
We can then interpret subproblems as contribution margin optimizations of individual
actors (e.g., power plant operators) subject to the given market prices (multipliers)
of the LR within a welfare optimization model of the pan-European electricity mar-
ket. The EUropean Lagrangian Relaxation (EULR) model developed in [3] introduced
the consideration of market coupling as part of the LR. The advantage of the EULR
model compared to three-stage approaches where the market coupling is determined
by a pre-processing step has been shown in [2]. In three-stage approaches (e.g. [8]),
first a linear economic dispatch model is solved to determine exchanges between mar-
ket zones. Secondly, a detailed mixed-integer unit commitment model is solved per
market area to determine the detailed power plant schedules including start-ups and
shut-downs. This detailed unit commitment is often solved by LR. Third, the Eu-
ropean economic dispatch is re-solved with the fixed binary decision variables. In
contrast to sequential implementation of three-step approaches, the EULR model in-
tegrates these steps. A LR of European market balancing and coupling constraints is
carried out. The Lagrangian multipliers are interpreted as electricity prices per market
area. An additional market coupling subproblem determines the optimal electricity
exchange between market areas as well as the accepted schedules of each power plant.
The overdemands and oversupplies in each market area resulting from the market
coupling subproblem are then used as subgradients for the adjustment process of the
Lagrangian multipliers. The update process further takes export and import poten-
tials between market areas into account to ensure price convergence between market
areas [3]. An overview of the EULR approach is given in Figure 1.

Figure 1: Overview on EULR [3] process
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1.1 Problem definition
The EULR approach can further be extended to take into account distributed energy
resources (DERs) such as battery storage systems and heating technologies (heating
pumps, distributed combined-heat-and-power, heat storage systems) as done in [9].
The market integration of DERs increases the available flexibility potential, thus po-
tentially reducing system costs and improving integration of variable renewable gener-
ation. In this report, DER (sub-)problems are used synonymously for different kinds of
technology (sub-)models such as battery storage systems, electric vehicles and vehicle
fleets, and heating systems in combination with heating storage systems. Further-
more, also virtual power plants combining those technologies are represented by those
DER (sub-)problems. However, the DER technologies integration into the iterative
LR approach might lead to some convergence problems. We illustrate these problems
with the help of the following example which is also depicted in Figure 2.
Let us assume an electricity system with two power plants with maximum power

Figure 2: Example power system merit order

quantities q1,q2 and generation costs c1,c2, as well as two different time steps with
demand D1 and D2. Thus, in time step 1 power plant 1 has a remaining generation
capacity of q1 − ε1, whereas in time step 2 power plant 1 is producing at full capacity
and power plant 2 has to produce the remaining demand of ε2. Based on the merit
order, market prices λ result as λ(t = 1) = c1 and λ(t = 2) = c2.

We now assume that a storage system having a sufficiently large charging and
discharging capacity of PST

max as well as a storage capacity of WST
max is connected to

this power system. Without loss of generality, we assume that the storage is lossless
and PST

max = WST
max > D2−D1 = ε1 +ε2. Obviously, the welfare-optimal, cost minimal

storage operation comprises a charging of the storage in time step 1 and discharge in
time step 2 with a quantity equal to ε2. In that case, only the cheaper power plant 1
generates power and the market price in both time steps is equal to c1.

However, in a LR of the problem, the storage only optimizes itself given the cor-
responding multipliers λ representing the market prices. The basic feasible solutions
of linear optimization problems are extreme points of the feasible region. Therefore,
the storage subproblem in our example will always charge the maximum amount of
power PST

max > ε1 + ε2 in time step 1 and discharge the same amount in the next time
step given λ(t = 1) < λ(t = 2). Given these subproblem solutions, the LR of the
EULR problem, where we relax the market coupling constraint, will never result in
the optimal amount ε2. This is due to the cut of the optimal polyhedra of subproblems
with the coupling constraints in the main problem that is not considered in the relaxed
subproblem, thus changing the extreme points. One can easily see how this leads to
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divergent behavior of the LR methodology (due to the change in storage schedules if
λ(t = 1) < λ(t = 2) in one iteration of the LR and λ(t = 1) > λ(t = 2) in the next,
see Table 1).

λ(t = 1) < λ(t = 2) λ(t = 1) > λ(t = 2)
PST (t = 1) −PST

max 0
PST (t = 2) PST

max 0

Table 1: Example storage schedules (with no initial charge) for price-based
storage optimization

While this divergence can be addressed by adjustments to the multiplier update meth-
ods, with these methods, producing the optimal primal solution is not achievable with
the LR, but a post-processing step is required.

This structural behavior in LR has no significant impact in energy system models
dominated by conventional power plants and hydro storage systems (HSS) because for
HSS the storage capacity is significantly lower than the pumping and turbine capaci-
ties (PHSS

max << WHSS
max ). Therefore, HSS show a more seasonal behavior and are less

sensitive to price changes based on the adjustment of Lagrangian multipliers.
In contrast, time-shifting flexibility from DERs such as battery storage systems, elec-
tric vehicles, or heating pumps in combination with heat storage systems usually is
more sensitive to price changes. The installed power of such DERs compared to their
storage capacity is higher than for HSS, meaning they can fully (dis-)charge in a few
hours. They are, therefore, used for short-term schedule optimization within a few
hours a day, leading to a more price-sensitive behavior. This problem is aggravated by
a higher number of DERs that all respond to the same price signal of Lagrangian mul-
tipliers with high concurrency. Thus, the high technical flexibility and price sensitivity
leads to a volatile behavior of DERs between iterations depending on the adjustment
of these Lagrangian multipliers.

To address this problem, we extend the EULR market coupling subproblem, which
is used for the subgradient determination, by a column generation approach similar
to the process in Dantzig-Wolfe decomposition [10, 11]. DER optimization problems
can be approximated by linear programs with high accuracy, leading to convex DER
optimization problems. The idea behind our extension is based on the property that
any convex combination of iteration solutions form a new feasible solution because the
corresponding subproblem is convex.1 Each column represents a primal solution of
the DER subproblem optimization in each Lagrangian iteration. The combination of
iteration results as the “iteration bid” of the DERs within the market coupling problem
can be seen as an approximation of the optimal dispatch of those DERs in the original
problem. We can describe the idea of using convex combinations of these columns to
generate new solutions with the use of previously mentioned example in Table 1. In
the example, the iteration result vectors are described for the first iteration PST

l=1 =
[−PST

max, P
ST
max], the second iteration PST

l=2 = [0, 0] and the welfare-optimal schedule
is equal to PST,∗ = [−ε2, ε2]. Then, we can generate a solution from the convex
combination of the iteration schedules PST,∗ = ε2/P

ST
max ·PST

l=1 + (1− ε2/PST
max) ·PST

l=2,
which gives the welfare-optimal solution PST,∗ in this particular example.

The rest of this report is structured as follows: First, the the original EULR market
coupling subproblem is presented. Next, a description of our algorithmic extension of

1A convex combination is a linear combination of vectors in a convex space with the
additional constraint that the linear factors are positive and the sum of factors is equal to
one.
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the EULR and its relation to Dantzig-Wolfe decomposition is given. Subsequently, the
extended version of the EULR market coupling subproblem is formulated. Finally, a
case study for our new method as well as a discussion is presented.

2 EULR Market Coupling Formulation
In this section, we present the EULR market coupling subproblem formulation based
on [3]. The market coupling subproblem is an approximation of EUPHEMIA market
coupling algorithm [12]. The generic formulation of the original unit commitment prob-
lem is presented by (1). It can be described with a set of variables for the power plants,
HSS, and renewables x and a set of variables y determining the optimal electricity
exchange between market areas. The market coupling constraints (with Lagrangian
multiplier λ) are relaxed within the EULR approach, allowing for a decomposition of
the model.

min cTx

s.t.

Ax ≤ b
Bx +Dy ≤ d (λ)

(1)

Within the EULR approach, in each iteration of the LR, the market schedules (as
a subset of x) of the different subproblems (representing power plants, HSS, renew-
ables, etc.) are taken as inputs for the market coupling. In contrast to classical LR,
the subproblem concerning the market coupling variables is solved after the other sub-
problems (cf. Fig. 1). The iteration schedules x are interpreted as market bids o of the
different plants that can also be accepted partially within the market coupling, thus
allowing for an optimized determination of subgradients of the relaxed constraints.
Furthermore, non-variable components such as electricity demand are also taken into
account as bids. The different schedules and demands represent quantity bids qo (with
qo > 0 for generation and qo < 0 for load). The price component po of the bids o ∈ O
is parameterized based on either marginal costs, the last iteration’s price λ, regulatory
price components or cost of lost load depending on the type of bidding technology [3].
Each bid o in every time step t ∈ T is assigned a corresponding market area m ∈ M
based on the localization of the bidding asset and a continuous decision variable Ao

defines the degree of acceptance of each bid. As in [12], the objective of the market
coupling comprises a welfare-maximization of the accepted bids and it is given by the
equation (2). Furthermore, the exchange Fi,j between two market areas i and j is only
restricted by net transfer capacities (NTC) between both market areas Fmax

i,j (5). For
simplicity, only the NTC approach for market coupling is shown in this section with
equations (4) - (5). Flow-based market coupling can also be considered within this
approach with adjusted market-coupling constraints [13]. The balance of exchange
between all market areas is equal to zero as given in equation (6).

max
∑
t∈T

∑
o∈O(t)

−(qo · po) ·Ao (2)

s.t. ∑
o∈O(m,t)

qo ·Ao − nexm(t) = 0, ∀m ∈M, t ∈ T (3)

nexm(t) =
∑

j∈M\m

Fm,j(t)− Fj,m(t), ∀m ∈M, t ∈ T (4)

0 ≤ Fi,j(t) ≤ Fmax
i,j , ∀t ∈ T, {i ∈M, j ∈M |i 6= j} (5)
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∑
m∈M

nexm(t) = 0, ∀t ∈ T (6)

0 ≤ Ao ≤ 1, ∀o ∈ O (7)

Note that in this simplified market coupling approach, no time-coupling of bids is
considered. Within the EULR approach, the market coupling problem (2)-(7) is used
to determine the LR subgradients by evaluating the not accepted supply and demand
(oversupply and overdemand). Thus, the adjustment of LR multipliers is based on the
result of the EULR market coupling problem.

To integrate DER submodels and to improve the convergence of the process, the
EULR market coupling subproblem is expanded by approaches taken from Dantzig-
Wolfe decomposition.

3 Algorithmic extension of EULR approach for
DERs

The general idea for integrating the DER iteration results into the EULR market
coupling is to approximate the primal DER solution of the un-relaxed problem. To
that end, we extend the original EULR approach and the original market coupling
formulation by integrating DER iteration results into the EULR market coupling.

Firstly, the DER models are integrated into the EULR model as subproblems of
the LR [9]. The DER optimization problems are solved at each iteration given the
electricity market price (LR multiplier) of that iteration, analogously to power plant
subproblems.

The core component of the DER integration approach is the approximation of the
optimal DER solution through a convex combination of DER iteration solutions.

This component is inspired from the column generation methodology applied within
the Dantzig-Wolfe decomposition framework and the volume algorithm. In [14], the
volume algorithm is proposed to generate optimal primal solutions within a subgra-
dient method. By calculating an exponentially weighted moving average sl of the
subproblem solutions xl over the LR iterations l, the optimal primal solution of the
problem is approximated with help of the weighting factor α as in the equation (8).

sl = (1− α) · sl−1 + α · xl,∀l ∈ L (8)

This approach is described in [14] “as a fast way to approximate Dantzig-Wolfe de-
composition.”

In Dantzig-Wolfe decomposition, the original problem is reformulated such that
the complicating constraints (that are relaxed in LR) are part of the master problem.
However, a restricted master problem that includes a restricted set of variables is solved
iteratively instead of solving the master problem with a large number of variables at
once. At each iteration, the restricted master problem dual solution is used to generate
the additional columns for the restricted master problem in the next iteration by
solving the pricing problem.2

We take the idea of using the convex combination of subproblem iteration solutions
and apply it to the LR iteration solution of the DER subproblems within the market
coupling. Note that we apply the usage of convex combinations only to DER subprob-
lems, especially since the power plant formulations are non-convex (mixed integer).

2If the relaxed constraints of LR correspond to the constraints of the Dantzig-Wolfe mas-
ter problem, the optimal dual variables of the Dantzig-Wolfe master problem correspond to
the optimal Lagrangian multipliers of the LR and the subproblems of both decomposition
algorithms correspond to each other [15].
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Therefore, our approach is a heuristic replicating the ideas of columnn generation
method used within the Dantzig-Wolfe decomposition for the DER iteration solutions.

The approach to offer convex combinations within the market coupling can be
interpreted as a new kind of market bid of DERs where some flexibility is given to the
market coupling algorithm.

The formulation of the extended market coupling problem is presented in the next
chapter.

4 Time-Coupled EULR Market Coupling Formu-
lation with consideration of DER bids

This section presents the extended market coupling formulation incorporating the
convex combination of the different DER iteration results to counteract the diverging
behavior of DER subproblems. As noted earlier, the convex combination of iteration
solutions forms a new feasible solution if the corresponding subproblem is convex,
which is the case for our DER subproblems. Furthermore, a convex combination of
only a subset of the subproblem variables remains valid since the rest of the variables
can be analyzed and calculated ex-post. It is not necessary to include all variable
results for all iterations to form a feasible convex combination which further leads to
reduced information requirements. Therefore, only the market quantities of each DER
d in each time-step t have to be considered but other variables can be neglected. Given
a DER solution qdl of a given iteration l defined in equation (9).

qdl = [qdl (1), ...., qdl (T )],∀l ∈ L, d ∈ D (9)

It is obvious that to ensure the technical feasibility the whole solution vector qdl has to
be considered simultaneously.3 Thus, the time-decoupled market coupling formulation
given by equations (2)-(7) has to be reformulated and expanded to take into account
the time-coupling of the DER iteration solutions.

For this purpose, a new variable for acceptance ratio notated as Ad
l is introduced

for each DER iteration solution. Note that this acceptance ratio is not defined for one
time step but for the whole iteration solution vector (9) such that the acceptance of
the iteration solution is equal in all time steps. Then, the sum of acceptance over all
DER iteration solutions has to be equal to one to form a convex combination:∑

l∈L

Ad
l = 1, ∀d ∈ D (10)

0 ≤ Ad
l ≤ 1, ∀d ∈ D, l ∈ L (11)

Thus, the term qd =
∑

l∈L q
d
l ·Ad

l forms the final DER result. To account for a non-
acceptance of DER bids, two additional “slack bids” for generation qSG

m (t) and load
qSL
m (t) are introduced per market area m with DERs and per time step t. Then a
residual (accepted) demand resm(t) from DERs can be calculated as follows:

resm(t) = qSG
m (t) ·ASG

m (t) + qSL
m (t) ·ASL

m (t) +
∑

d∈D(m)

∑
l∈L

qdl (t) ·Ad
l , ∀m, t (12)

The non-supplied bids of DERs is then measured by the slack generation qSG
m (t)·ASG

m (t)
and slack load qSL

m (t) ·ASL
m (t).

3In theory, this also holds for power plants and HSS. But, due to their lower sensitivity
to price changes, their bids are more consistent and the resulting acceptance ratio is higher
(closer to one).
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By expanding the equation (3) with resm(t), we can integrate the time-coupled DER
bids into the market coupling formulation:∑

o∈O(m,t)

qo ·Ao + resm(t)− nexm(t) = 0,∀m, t (13)

To correctly account for the overdemand and oversupply in each market zone as sub-
gradients of the Lagrange multiplier adjustment process (cf. Figure 1), the slack
generation and load are placed last in the merit order by parameterization of their
corresponding price bids (e.g. pSG > po,∀o). Furthermore, the iteration price bids of
DERs are defined by the current market price λm(t)4:

pdl (t) = −λm,l(t),∀l ∈ L, t ∈ T,m ∈M,d ∈ D(m) (14)

The final time-coupled market coupling formulation is then given by (15)-(17):

max
∑
t

∑
o∈O(t)

−(qo · po) ·Ao

+
∑
t

∑
m

−(qSG
m (t) · pSG) ·ASG

m (t)− (qSL
m (t) · pSL) ·ASL

m (t)

+
∑
t

∑
m

∑
d∈D(m)

∑
l∈L

−(qdl (t) · pdl (t)) ·Ad
l

(15)

s.t.
Eq.(4)− Eq.(7) (16)

Eq.(10)− Eq.(13) (17)

The number of variables can be reduced if all DERs in one market area first form one
combined iteration bid (by summarizing the individual iteration bids). The combined
coupling result can then later be disaggregated to the individual DER results. This
simplification has the further advantage that all DERs in one market area are treated
equally within the market coupling algorithm.

To ensure complete technical feasibility for the convex combination of DER bids,
the market coupling period and the subproblem optimization period have to be identi-
cal. However, a calculation of the market coupling problem in independent time slices
reduces the computational complexity of the market coupling problem but increases
the risk of technical infeasibilities of the combined DER coupling vector.

5 Case Study
The proposed method of this report is demonstrated with a test case based on the
data from plan4res case study 1 [16]. One of the aims for the he project plan4res is to
develop an end-to-end planning and operation tool, composed of a set of optimization
models based on an integrated modelling of the pan-European Energy System [17].
Hence, a modeling framework comprising of interrelated models have been developed
by the project [18]. There are three case studies in the project that highlight tool’s
adequacy and relevance [19]. Besides, a public data set has been constructed from
the data used by these case studies [20]. For our test case, we only consider DERs
in Germany to reduce computational requirements. Furthermore, for our case study
only electric vehicles (with no consideration for vehicle-to-grid) and power-to-heat
systems in combination with heat storage systems are considered as DERs. The electric

4In contrast to Dantzig-Wolfe decomposition, where the objective value for Ad
l is defined

by the objective value of the subproblems’ iteration solution. The parameterization here is to
ensure consistency with the rest of the market coupling model.
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vehicles have a capacity of up to 355 Gigawatt (GW) and the capacity of the power-
to-heat system amounts to 20 GW. Based on the bottom-up data from [16], the DER
technologies are aggregated on the German high-voltage substation level and optimized
as local virtual power plants (LVPP) leading to 4324 DER or LVPP subproblems.

For our case study, we now compare the following three approaches for integrating
DERs into the EULR model.

C1 EULR Market Coupling formulation solution with basic LR (“basic LR”): We
solve the EULR market coupling model with the LR where only the iteration’s
DER result is considered within the market coupling as described in equations
(2)-(7),

C2 EULR Market Coupling formulation solution with the volume algorithm (“Vol-
ume algorithm”): We use the volume algorithm with an α-Value of 20% for
approximating primal optimal solutions of the DER subproblems as presented
in Section 3 as input of the market coupling (2)-(7).

C3 Time-Coupled Market Coupling (TCMC): We solve the TCMC formulation pre-
sented in Section 4 with an additional minimum acceptance of Ad

|L| ≥ α = 20%
for the current iteration solution to increase comparability with the volume al-
gorithm.

For our case study, we compare the results of the LR after 100 iterations. Empiri-
cally, the convergence improvements after 100 iterations are only minor in contrast to
the additional computational effort of another LR iteration.
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Duration Curves of DER Schedules
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Figure 3: Duration curves of DER schedules

First, we compare the resulting primal solutions of the DERs, i.e., DER load within
the market coupling. In Figure 3, the duration curves of the bidding schedules for the
volume algorithm and for the basic LR are shown as well as the convex combination∑

l∈L q
d
l ·Ad

l resulting from the TCMC approach in Section 4. It can be seen that the
schedules from C3 lead to fewer peaks in demand and a smoother demand profile. By
forming combinations of different iteration bids with extreme peaks, the DER sched-
ules are better adjusted to the general system properties, e.g. the residual load of the
system (defined as inflexible demand minus volatile renewable generation).

Furthermore, C3 leads to less volatility of DER bids between the different itera-
tions. This is shown in Figure 4 where the duration curves of the differences between
iteration bids (i.e. a sorted order of the vectors {∆qdl |∆qdl = qdl − qdl−1, l = 2, ..., |L|})
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are plotted for the different iterations and the three approaches. It can be seen that the
maximum absolute deviations of the schedules between the iterations are significantly
lower for C3 and highest for C1. The deviation of schedules between iterations can
be seen as an indication of convergence problems, since these deviations are reactions
to changes of the Lagrangian multipliers. Because DERs are more sensitive to the
changes of Lagrangian multipliers than the rest of the system, i.e. power plants, HSS,
renewable plants, the DER deviations increase the Lagrangian subgradient (oversupply
and overdemand per market area) instead of decreasing it.

Figure 4: Duration curves of differences between Lagrangian iterations

As a measure of convergence, we compare the final cost for the three approaches.
Non-supplied load demands (both from the static load and DER load bids) are consid-
ered within this cost comparison with a cost-factor of 400EUR/MWh. The generation
costs comprise the fuel and start-up costs of conventional power plants. The result-
ing costs for the three approaches are plotted in Figure 5. C1 results in the lowest
generation cost in the expense of a large amount of unsupplied demand, as reflected
in the high cost for loss-of-load. C3 leads to a smaller generation cost in comparison
to C2 and less loss-of-load, leading to the smallest total generation costs of all three
approaches. In conclusion, C3 gives the best solutions compared to C1 and C2 both
in terms of cost and solution quality.

Figure 5: Comparison of Generation and Loss-of-Load costs in the German
market area
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6 Conclusion
LRs of pan-European unit commitment models are an established approach for mod-
eling the pan-European day-ahead electricity market in energy planning and analysis
processes. However, the integration of models for distributed, small-scale technologies
such as electric vehicles into LR models might lead to convergence problems due to the
concurrency of the behavior of the corresponding technology submodels. Therefore,
in this report, the existing EULR model [3] is extended to improve the solution con-
vergence when incorporating DER optimization models as subproblems. The results
of an exemplary case study show the effectiveness of this approach.

The approach and results presented in this report allow for further investigations
and improvements. The interpretation of the EULR model as a welfare-optimization
with consideration of profit optimization of individual actors assumes the optimal
subproblem dispatch for given market prices (Lagrangian multipliers). Therefore, any
deviation of the convex combination of DER bids qd from the last iteration bid qd|L|
represents a non-optimal market schedule. To align the DER actor perspective with
the market coupling approach, two measures are proposed: Firstly, a minimum accep-
tance of the last iteration schedule as carried out in the case study. Secondly a filter of
iteration bids considered within the market coupling such that the revenue is at most
b% smaller than the current iteration revenue:

∑
t q

d
l (t) ·λt ≥ (1− b)% ·

∑
t q

d
|L|(t) ·λt.

This ensures that the possible resulting bid combination qd is not too disadvantageous
from a DER operator perspective. Additionally, the time-coupling of DER sched-
ules within the market coupling EULR subproblem is the first step for more detailed
modeling of the EUPHEMIA algorithm [12] within the EULR model and can further
be extended. Furthermore, the TCMC approach using methods from Dantzig-Wolfe
decomposition and LR presented in this report is only a heuristic approach to im-
prove the convergence process which can further be improved with a more detailed
mathematical analysis.
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Abbreviations
DER Distributed Energy Resource
EULR EUropean Lagrangian Relaxation
EUR Euro
GW Gigawatt
HSS Hydro Storage System
LVPP Local Virtual Power Plant
LR Lagrangian Relaxation
NTC Net Transfer Capacity
MWh Megawatthour
TCMC Time-Coupled Market Coupling
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Nomenclature
Indices and Sets:
m ∈M index and set of market areas
o ∈ O index and set of market bids
t ∈ T index and set of time period
d ∈ D index and set of DER subproblems
l ∈ L index and set of LR iterations

Parameters and Constants:
A,B,C Generic constraint matrices
b, d Generic constraint bounds
qo quantity component of bid o
po price component of bid o
Fmax
i,j maximum exchange (NTC) between market areas i and j
α weighting factor for the volume algorithm
λ Lagrangian multipliers/ electricity prices

Variables:
Ao Acceptance ratio for bid o
nexm Netto export of market area m
Fm,j Export from market area m to market area j
Fj,m Import from market area j to market area m
Ad

l Acceptance ratio for iteration solution l of DER d
resm Residual accepted bid of DERs in market area m
x Generic variables of power plants
y Generic market coupling variables
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