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OPTIMIZATION MODELS FOR OPERATIVE PLANNING IN DRINKING
WATER NETWORKS

JENS BURGSCHWEIGER, BERND GN̈ADIG, AND MARC C. STEINBACH

ABSTRACT. The topic of this paper is minimum cost operative planning of pressurized
water supply networks over a finite horizon and under reliable demand forecast. Since this
is a very hard problem, it is desirable to employ sophisticated mathematical algorithms,
which in turn calls for carefully designed models with suitable properties. The paper de-
velops a nonlinear mixed integer model and a nonlinear programming model with favorable
properties for gradient-based optimization methods, based on smooth component models
for the network elements. In combination with further nonlinear programming techniques
(to be reported elsewhere), practically satisfactory near-optimum solutions even for large
networks can be generated in acceptable time using standard optimization software on a
PC workstation. Such an optimization system is in operation at Berliner Wasserbetriebe.

0. INTRODUCTION

Municipal water supply systems constitute a central part of the public infrastructure and
cause substantial costs, both in monetary and energetic terms. Avoiding unnecessary con-
sumption of resources is therefore desirable for economical as well as ecological reasons.
To achieve this goal, model-based decision support tools become increasingly important.
The principal planning tasks include optimal network design to reduce investment costs
and optimal network operation to minimize running costs. The subject of this paper is
network operation. The mathematical problem of operative planning is hard because it
involves both discrete and continuous decisions, in addition to the complexity caused by
close-meshed networks and temporal coupling over the entire planning horizon. From a
practical viewpoint, this makes it difficult to generate sufficiently accurate and reliable so-
lutions in acceptable time. To achieve a reasonable compromise between model accuracy
and computation times, the development of appropriate models for advanced optimization
methods is important.

Because of the enormous complexity of the operative planning task, early mathematical
approaches typically rely on substantially simplified network hydraulics (by dropping all
nonlinearities, for instance) [13, 14, 18, 32, 39], which is often unacceptable in practice.
Other authors employ discrete dynamic programming [8, 9, 11, 29, 31, 41], which is math-
ematically sound but only applicable to small networks unless specific properties can be
exploited to increase efficiency. Optimization methods based on nonlinear models (mostly
for the pumps only) are reported in [3, 10, 12, 24, 36]. These approaches employ compu-
tationally expensive meta-heuristics or suffer from inefficient coupling of gradient-based
optimization with non-smooth simulation by existing network hydraulics software, such as
EPANET [35]. More recent related work addresses modeling and optimization for networks
of irrigation and sewage canals or for gas networks, see, e.g., [19, 23, 28, 38]. Note finally
that the hydraulic equations already have an intrinsic optimization structure [1]; quite gen-
eral mathematical formulations together with existence, uniqueness, and sensitivity results
can be found in [16, 17].
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FIGURE 1. Schematic diagrams of waterworks with tanks (type I; left)
and without tanks (type II; right)

The current paper addresses detailed and comprehensive models that are suited for
gradient-based nonlinear optimization of daily network operations under reliable demand
forecasts. These models possess certain favorable smoothness and regularity properties.
Together with further work by the authors [4, 5, 7, 20, 21], they provide the basis for an
optimization module that is in operation at Berliner Wasserbetriebe (BWB) for minimum
cost operative planning of integrated raw water and pure water management in the mu-
nicipal drinking water network. Our models are generic in that they are applicable to any
pressurized water supply network consisting of similar elements. To add concreteness,
however, we will often refer to the BWB network.

The paper is organized as follows. Section 1 outlines the overall structure and opera-
tion of urban water supply networks. Section 2 then develops a detailed and comprehen-
sive physical model for dynamic network operation in continuous time, with emphasis on
smooth approximations of the hydraulic pressure loss in pipes and of the aggregate effi-
ciency of pumping stations. This model covers basic water hydraulics [15, 26, 30]. In
Section 3 we consider the full operative planning problem with binary and continuous de-
cisions in discrete time, providing both a generalized disjunctive programming (GDP) and
a mixed integer nonlinear programming (MINLP) formulation. In developing the latter we
avoid introducing additional nonlinearities or undesirable big-M terms and ensure that the
relaxations are nondegenerate. Since a full mixed-integer optimization is impractical for
large networks as in Berlin, we finally present a basic nonlinear programming (NLP) model
in Section 4 which, in combination with special techniques addressing the binary decisions
[7], is actually suited for practical computations. At BWB, a hierarchical solution strategy
employs this model for the overall network optimization, followed by local mixed-integer
optimizations for each waterworks or pumping station.

1. APPLICATION BACKGROUND

The technical process under consideration consists of the four main steps: raw water
extraction, water treatment, intermediate storage, and distribution.

Raw water is extracted from reservoirs, either groundwater wells or sources of surface
water such as lakes or rivers. It is treated in waterworks by various chemical and physical
processes to guarantee the required quality standards. After the treatment, the clean water
is either stored in pure water tanks or directly injected into the pressurized distribution
network. In the fist case, pure water pumps have to be used in order to inject the water into
the network. In the latter case, water treatment takes place under pressure so that increase
of pressure is only produced by the raw water pumps; see Fig. 1.

There are additional pure water tanks and pumping stations within the distribution net-
work. Generally, the tanks are filled during periods of low demand and deflated during the
peak demand periods.

The filling of the tanks is controlled by valves. Such valves are also located at various
other places within the network in order to control pressure and flow between adjacent
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FIGURE 2. Schematic diagrams of pumping station with tanks (left) and
without tanks (booster; right)

TABLE 1. Basic notation

Symbol Explanation Value Unit

Q Volumetric flow rate in arcs m3/s
D Demand flow rate at junctions m3/s
H Pressure at nodes (head) m
H̄ Constant pressure at reservoirs m
∆H Pressure increase at pumps, decrease at valves m
ρ Water density 1000 kg/m3

g Gravity constant 9.81 m/s2

regions. Pumping stations are required for emptying the tanks, but there are also pump-
ing stations without a tank on the suction side. These stations (boosters) just increase the
pressure from the suction side to the pressure side; see Fig. 2. The outlet pressure at house-
hold connections must always be kept in a certain range. This is ensured by continuously
monitoring the network pressure at certain pressure measurement points.

Although there is plenty of surface water in the Berlin area, BWB produces the drink-
ing water exclusively from ground water. This is because of the excellent water quality
caused by the sandy ground: no sterilization or treatment of the raw water with additional
chemicals are required; it is only aerated and filtered in the waterworks.

2. PHYSICAL MODEL

First we model the physical and technical network behavior in continuous time and
discuss approximations of some components. The basic notation is given in Table 1. As
usual, the physical model is macroscopic in space and time. Spatial model components
are the physical network elements (pipes, tanks, and armatures, each described by a few
dynamic variables). Short-period control actions such as starting up a pump or shutting a
valve are considered to happen instantaneously. The dynamic variables may therefore have
finitely many jump discontinuities but are assumed to be bounded and piecewise smooth
(L∞). Dynamic variables of which derivatives are taken will be considered to be bounded,
continuous, and piecewise differentiable with bounded derivatives (H1,∞).

2.1. Optimization Horizon. The planning period is denoted asI = [0, T ]. At BWB this
time interval represents the following day,T = 24 h.

2.2. Network Topology. The mathematical model of the water network is based on a
directed graphG = (N ,A) whose node set represents junctions, reservoirs, and tanks,

N = Njc ∪Nrs∪Ntk,

and whose arc set represents pipes, pumps, and gate valves,

A = Api ∪ Apu∪ Avl .
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FIGURE 3. Test configuration for optimization at BWB

The set of pumps consists of raw water pumps (at the reservoirs) and pure water pumps (at
the outlets of type I waterworks and pumping stations),Apu = Apr ∪ App.

We denote individual arcs asa ∈ A or, using the tail and headi, j ∈ N , asij ∈ A.
The flow in an arcij is defined to be positive when it is directed fromi to j; otherwise it
is negative (or possibly zero). The flow is always nonnegative in the pumps and in some
other arcs where only one direction is possible.

Initial investigations toward optimization at BWB were conducted with a small network
graph having144 nodes and192 arcs, thetest configurationshown in Fig. 3. This heavily
reduced graph, which contains mostly major pipes of0.5 m or more in diameter, turned
out to be too coarse for practical purposes. The operational model is therefore based on a
larger graph with1481 nodes and1935 arcs, themain networkillustrated in Fig. 4.

2.3. Pressure and Flow.The principal dynamic variables in the network model are node
pressures and arc flows. Due to the incompressibility of water, pressurep can equivalently
be expressed as an elevation difference∆h,

∆h =
p

gρ
,

whereg is the gravity constant andρ is the constant water density. In water management,
pressure is therefore often measured by the fictitious elevation above sea level, theheadH,
which is the sum of the actual geodetic height and of the elevation difference corresponding
to the hydraulic pressure. Thus, for instance, a network pressure of3 bar at60 m above sea
level corresponds to the headH = 90.6 m, a typical value in the Berlin area.

Dynamic pressure variablesHj(t) with upper and lower boundsH±j (t) are associated
with every nodej ∈ N . The bounds are typically static,H±j (t) = H±j for all t ∈ [0, T ],
except at the outlets of waterworks and pumping stations. At BWB we impose network-
wide default bounds,H− = 20 m andH+ = 125 m, to keep iterates within reasonable
physical limits during computations. Tighter bounds will be specified where appropriate.

Volumetric flow ratesQa(t) with boundsQ±
a (t) are associated with every arca ∈ A.

Here we use default boundsQ± = ±10 m3/s, and again tighter values where appropriate.



OPTIMIZATION MODELS FOR OPERATING WATER NETWORKS 5

������ ������ �� ������ 	

�����

�������� �� �� �������� �� ����� � !"#�#$�$
%�%&

'�'(�( )*
+, -. /0

112
2 34

56 78 9: ;<=�=>�>

?@ AB CD EFG�GH�H IJ
K�KL
M�MN OP

QR
S�ST�T U�UV WX YZ

[\ ]^

_` ab
c�cd
ef gh ij
k�kl�l mnop qr st u�uv

w�wx yz

{| }~ ��
�� ��
���� ������ �� �� �� ����

���� ��������
��
��
������ �� ���  ¡¢£�£¤�¤ ¥¦§�§¨�¨©�©ª «¬ ® ¯�¯°�°±�±²

³�³´
µ¶ ·¸¹�¹º�º »¼½¾
¿À ÁÂÃ�ÃÄ

ÅÆ ÇÈ

ÉÊ ËÌ ÍÍÎ
Î

ÏÐ
ÑÒÓÔ

ÕÖ
×Ø

ÙÚ ÛÜ

ÝÞ ß�ßà

áâãä
å�åæ�æçè éê

ëì

í�íîï�ïð ñ�ñò�ò

óô

õ�õö�ö ÷øùúû�ûü�üý�ýþ�þ
ÿ���

��

��

��	
 �� ���������

��
��

��

��

��
������  ! "�"#�# $%&'(�()�)*+,-

.�./�/

0123
4�45�5

67 89:�:; <=
>�>?@�@A�ABC

D�DEF�FG�G

H�HI

JKLM NOPQ
RS

TU VWXYZ�Z[�[
\]
^�^_
`a

b�bc�c

de

f�fg

h�hi

j�jk
lmno

pq rs
tu

v�vw xy z{ |�|} ~� �� �� ��
�������� �� �������� ��

���� ��������������
����

������  ¡¢£¤¥¦�¦§¨�¨©�©ª�ª«�«¬�¬®�®¯ °±
²³ ´µ ¶· ¸¹º�º»¼½ ¾¿

ÀÁ ÂÃÄ�ÄÅÆÇ
È�ÈÉ�É

Ê�ÊË�Ë

ÌÍ ÎÏ

Ð�ÐÑ�ÑÒ�ÒÓ�ÓÔ�ÔÕ�ÕÖ�Ö×�×Ø�ØÙ�ÙÚ�ÚÛÜ�ÜÝÞ�Þßà�àá�áâ�âã�ãä�äå�åæ�æç�ç èéê�êë
ìíîï

ðñ
òó

ôõ

ö�ö÷

øùúû ü�üý�ýþÿ
��

������ ��

������	
����

���� ������ ������������������

��
��

��� 
!"

#$

%&'()* +,-�--�-.
.

/0

1�123�345�56
78 9: ;<=�=>�>

?�?@�@

A�AB�B CD EF GH

IJ KLM�MN�NO�OP�PQ�QRS�ST�T

UV

W�WX
Y�YZ[\

]�]^�^_�_`�`
ab

cd
efgh

ij
k�kl�l

mn

op

q�qr�r

st

uv

wx

yz {|
}~����������
����

���������� ��
����

��������
��
������
���� �� �� � ¡¢

£¤¥�¥¦�¦§�§¨�¨©ª
«�«¬�¬�®�®¯�¯°±�±² ³´µ¶·¸
¹º »¼ ½¾ ¿À ÁÂÃÄ

ÅÆÇÈ
ÉÊ ËÌ ÍÎ

ÏÐ
Ñ�ÑÒ�ÒÓ�ÓÔÕ�ÕÖ�Ö ×Ø ÙÚ ÛÜ ÝÞßà

áâ
ãäå�åæ�æ çè éê ëì íî ïðñ�ñòó�óô õö ÷øù�ùú ûü ýþ

ÿ�ÿ�������
���� ����
�	


� � ������������

�� �� �� ����������������

 ! "# $%
&' ()
*+

,- ./0�01�1 23 45
67 89
:;

<= >?@A BCDEF�FG�GH�HI�IJ�JKL�LM�MN�NO
PQ R�RS
T�TU�UV�VWX�XYZ�Z[�[ \] ^_ `a bc de fg

hi
jkl�lm nop�pq rst�tu�uvw xyz{

|}~� �� ��
�� �� ������

������������

�� ��

��

��
���������� � ¡�¡¢£

¤�¤¥�¥ ¦�¦§�§ ¨© ª« ¬
®¯ °± ²³ ´�´µ�µ

¶�¶· ¸¹º�º»�» ¼½
¾�¾¿�¿À�ÀÁ ÂÃ Ä�ÄÅ ÆÇÈ�ÈÉ ÊË

Ì�ÌÍ�Í Î�ÎÏ�Ï ÐÑ ÒÓ ÔÕ Ö×ØÙ ÚÛÜÝ Þßà�àá�áâ�âã�ã
ä�äåæ�æç�ç
èéêëì�ìíîïðñòóô�ôõö÷ø�øù�ù

ú�úûü�üý�ý

þÿ

����������������
	
����

��������� ��
������

������

������

���� ��
��� � !"
#�#$�$

%&
'( )*+�+,�,
-�-.
/01234

5�56 789:
;<

=�=>�>
?�?@�@ AB
C�CD

EF
GH

I�IJ�J

K�KL�L
M�MN�N

OPQ�QR
S�STU�UV�V

WX YZ [\ ]^
_` abc�cd�de�ef�fghijk�kl�lmnop qrstuv

wx yz
{�{|}�}~ ������
��������

��

���� �� ��
��
�� ������

���������� �� ��� 
¡�¡¢�¢£¤¥¦ §¨ ©ª
«¬®

¯�¯°�°±�±²³´

µ¶
·�·¸¹º

»�»¼ ½¾¿�¿À�ÀÁ�ÁÂ
ÃÄÅÆÇÈ

ÉÊ

Ë�ËÌÍÎ

Ï�ÏÐ�Ð Ñ�ÑÒ�Ò
ÓÔ
Õ�ÕÖ

×Ø

Ù�ÙÚ�Ú

ÛÜÝ�ÝÞ

ßà
áâ
ãä
åæ çè

éê
ëì íî

ïð

ñò
ó�óô�ô

õö
÷ø

ù�ùú�ú

ûü ý�ýþ�þ ÿ�

������ ������
�� �	 
������� ��

��������������
��������

 � !�!
"�"#�#
$%&�&'()
*+
,- ./

0�01�1
2�2345 67 89 :; <=>? @ABC DEFGHI JKLM NO PQR�RS�STUVWXY Z[ \]

^�^_ `a bc de
f�fg hij�jkl�lm�m nop�pq�qrs

t�tu
vwxy

z{
|} ~�

����
����

��������
��

��
���� ��
����
��

��
�� ¡

¢�¢£�£

¤¥

¦�¦§¨�¨©

ª�ª«�«

¬

®¯

°±²³´�´µ�µ¶�¶·�·¸�¸¹º�º»¼½¾¿À�ÀÁ�ÁÂ�ÂÃÄ�ÄÅÆ�ÆÇ�ÇÈ�ÈÉÊ�ÊË�Ë
Ì�ÌÍ�ÍÎ�ÎÏÐ�ÐÑÒ�ÒÓ�ÓÔ�ÔÕ
Ö× ØÙ
Ú�ÚÛ�ÛÜÝÞ�Þß�ßàáâã

ä�äå

æç

èé
êë

ìí
îï ðñòóô�ôõö÷
øù úû
üý þÿ ���� �� �� �	 
�
� ��
���������������������������� � !"
#$ %&
'()�)* +,-�-./�/012
3�34�45�56�6 78 9: ;�;< => ?@

AB CD
EF GHI�IJ�J KL
MN

O�OP�P
QRSTUVW�WX

YZ [\]^_` abcd
e�ef�f
ghi�ijk�kl�lm�mn op qr st

uvwx
yz
{�{| }~
����

��
���� �������� ��������

��
�� ��
������
����
��

������

���  ¡¢£�£¤�¤
¥¦

§�§¨�¨©�©ª�ª
«¬�®�® ¯° ±² ³´ µ¶ ·¸

¹º »¼ ½¾
¿À ÁÂ

ÃÄ

ÅÆ ÇÈÉ�ÉÊ�Ê
ËÌÍ�ÍÎ

ÏÐÑÒ
ÓÔÕÖ

×�×Ø�Ø
Ù�ÙÚÛÜÝÞ

ß�ßà

áâ

ãä

åæ

çè
é�éê ëì
í�íî�îï�ïð

ñò

óô
õ�õö

÷ø

ùú

û�ûü

ý�ýþ�þÿ�ÿ� �� �� ����

	


����� ����
��

��
��

������ ������������  ! "#
$�$%&' ()*�*+,�,-�- ./

0�01�1 23
45

67

89

:;<=

>?

@�@A�A BC
DEF�FG�G HIJ�JK LMN�NO�O

PQ

R�RS�S

TU

VW

XY

Z[

\]

^�^_

`a
b�bc�c

de
f�fg
hi jk

lm

no

p�pq�q

rs

t�tu�u

vw

x�xyz�z{

|}~�~�����

�������� ����������

��

��
�� �� ��

��

�� ��

����
��

 ¡ ¢£ ¤¥¦§
¨©

ª«¬®¯°�°± ²³ ´µ¶·

¸¹

º»

¼�¼½
¾¿ÀÁÂÃ ÄÅ

Æ�ÆÇ�Ç

È�ÈÉ�ÉÊË

ÌÍ
Î�ÎÏ�Ï
ÐÑ

ÒÓ
ÔÕ Ö×
Ø�ØÙ�ÙÚ�ÚÛ�Û

Ü�ÜÝ

Þßàáâ�âã�ã

äå æç èé êë

ì�ìí

îïð�ðñ�ñ

òó ôõ ö÷ øù úû

üý þÿ���� �� �� �	
�

�

��

��

������������

����
���� � 

!�!"
#$%�%&�&
'�'(�(

)*

+�+,�,

-�-.�.

/0

12
34

5�56

78

9:;<

=>

?@

AB CD EF G�GH

IJ

KL

MN
O�OP QR

ST
UV

W�WX�X YZ [\ ]^ _`
abc�cd�def

g�gh�h
i�ij�jk�kl
mnopq�qr�r st uv
w�wx�x
yz {|}�}~�~

������ �� ��
������
�� ������ �� ��

�� ������
����

��
����
� ¡�¡¢ £�£¤�¤ ¥¦ §¨ ©ª «¬

®
¯�¯°�°

±²
³´µ�µ¶�¶
·�·¸¹º»¼

½¾¿�¿À
Á�ÁÂ�Â

Ã�ÃÄÅÆÇÈÉÊËÌ

ÍÎ

ÏÐ

ÑÒ

ÓÔ
Õ�ÕÖ�Ö

×�×Ø�Ø

Ù�ÙÚ�Ú

Û�ÛÜ�Ü
ÝÞ
ß�ßà áâã�ãäåæ

çè

éê

ëì

í�íî

ï�ïð�ð

ñò
óôõ�õö�ö

÷øùú
ûü
ýþ
ÿ�ÿ��� ��
���� ���� �	 
������

�� �� �� ��
����

������
������
 ! "#$�$%&'

()

*+,-
./0�01 23
4�4567 89

:;
<=>?

@ABC DEFG

HI

J�JK�K

L�LM

N�NO�O PQ
R�RS�S

T�TU�U VW

X�XY

Z[

\]

^_`a

b�bc�c

de
f�fg

hi

jkl�lm

n�no

p�pq�q

rs
tu

vw

xy

z�z{�{|�|} ~���
��
����
��

��

�� ��
�������������������� ������

 ¡

¢£

¤�¤¥�¥¦�¦§�§
¨©

ª�ª«

¬®¯

°�°±
²³
´�´µ�µ

¶�¶·
¸�¸¹

º» ¼½

¾¿ À�ÀÁ
ÂÃ

Ä�ÄÅ
Æ�ÆÇ

ÈÉ

Ê�ÊË

ÌÍ Î�ÎÏ�Ï
ÐÑ

ÒÓ

Ô�ÔÕ Ö×
ØÙ

ÚÛ ÜÝ

Þß
àáâãäå

æç
èéêë
ìí

îï

ðñòó
ôõ

ö÷
øù

úû
ü�üý�ý

þ�þÿ��
���
�

�����	
�������

������
���� ��

������� � 
!!""##$%%&
'())* +,-.

/01122
34

56 7899::;;<==>??@AAB

CD
EF GHIJKKLLMMN

OP
QRSSTT UV

WWXX

YZ

[\ ]^ _`ab cdef gh ijkl mn

ooppqrsstuuvwwx

yz{| }~ ����

�� �� �� ��
����

��

���

����� ����

�� �� ���� ¡¡¢¢ £¤¥¥¦¦

§§¨¨©©ª

«¬ ® ¯° ±±²³³´´

µµ¶

·¸

¹º»¼

½¾
¿À

ÁÂÃÃÄÄ

ÅÅÆ
ÇÈ
ÉÊ

ËÌ

ÍÎ

ÏÐ ÑÒ ÓÔ

ÕÖ ×Ø ÙÚ ÛÜÝÞßßàáâãä åæçèéê
ëìíîïð ñòóóôôõõö÷÷øùùúúûûüüýþ ÿ��������� �	
�
���������������� ���� �� ����  !"�"#�#
$% &'() *+ ,-./
01
23

4�45�5

67

89:;

<=

>�>?

@�@A

BC DE

F�FG

HI

JK
LM

N�NOP�PQ

R�RS�S

TU

VW

XY

Z[

\]

^_

`�`a

b�bc�c

de fg

h�hi

j�jk�k

lm

no

FIGURE 4. Main distribution network of BWB

Further degrees of freedom are the controlled pressure increase in pumps and pressure
decrease in valves,∆Ha(t), a ∈ Apu∪Avl , with bounds∆H±a (t). Here the default values
are∆H−

a = 0 in pumps,∆H−
a = −125 m in valves, and∆H+

a = 125 m in both cases.
Depending on the chosen degree of detail, additional variables may later be introduced in
selected model components.

2.4. Junction Model. Every junction nodej ∈ Njc has an externally given demand profile
Dj(t) so that the continuity equation (conservation of mass) yields flow balance equations
of Kirchhoff type,

∑

i: ij∈A
Qij(t) −

∑

k: jk∈A
Qjk(t) − Dj(t) = 0. (1)

The default pressure bounds are replaced with local valuesH±j (t) at the outlet junctions of
waterworks and pumping stations, and at predefinedpressure measurement pointswhere
sensors are installed that monitor the network state permanently to ensure safe operation.

2.5. Reservoir Model. Reservoirsj ∈ Nrs behave like unlimited sources of raw water
where the pressure has a known constant valueH̄j,

Hj(t) − H̄j = 0.

No further constraints need to be satisfied since the hourly as well as daily amounts of
water extracted from the reservoirs are bounded by limits associated with the raw water
pumps; see Section 2.8.
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2.6. Tank Model. At the tanksj ∈ Ntk, the flow balance equations are similar to (1) but
involve the volumetric tank inflowEj(t) instead of a demand,

∑

i: ij∈A
Qij(t) −

∑

k: jk∈A
Qjk(t) − Ej(t) = 0. (2)

The (possibly negative) tank inflowEj(t) depends on the headHj(t) through the effective
tank filling volumeVj(t). The latter is related to the filling levelhj(t) by a characteristic
functionfj,

hj(t) = fj(Vj(t), t),

whose inverse with respect to the first argument is given by the vertical profile of the cross-
sectional tank areaAj,

Vj(t) = f−1
j (hj(t), t) =

∫hj(t)

0

Aj(h, t) dh. (3)

Here the explicit time-dependence ofAj (and hencefj) reflects the fact that one or more
physical tanks constituting the conceptual tankj ∈ Ntk may be temporarily unavailable,

Aj(h, t) =

Nj∑

ν=1

Yjν(t)Ajν(h), (4)

where the functionsAjν(h) model the individual tank profiles, and the binary availabil-
ity profiles Yjν(t) are externally given, representing maintenance schedules or the like.
Substituting the sum (4) into the volume integral (3) and differentiating yields

V̇j(t) =

Nj∑

ν=1

Ẏjν(t)

∫hj(t)

0

Ajν(h) dh +

Nj∑

ν=1

Yjν(t)Ajν(hj(t))ḣj(t)

=

Nj∑

ν=1

Ẏjν(t)Vjν(t) + Aj(hj(t), t)ḣj(t) =

Nj∑

ν=1

Ẏjν(t)Vjν(t) + Ej(t).

Here the first term (with Dirac measuresẎjν) models abrupt effective volume changes due
to adding or removing individual tanks while the second term is precisely the tank inflow.

The pressure variablesHj simply represent the tank filling above sea level,

Hj(t) = zj + hj(t), (5)

wherezj is the elevation of the tank floor. Static boundsH±j are naturally given by the
elevation of the pumps (dry run) and the tank geometry (overflow). (The filling level and
head as well as the corresponding bounds are always identical for connected individual
tanks.) With (5) we can finally express the tank inflow as

Ej(t) = Aj(Hj(t) − zj, t)Ḣj(t). (6)

2.7. Pipe Model. In every pipe,a = ij ∈ Api, hydraulic friction causes a pressure loss.
This friction loss is given by the formula of Darcy–Weisbach (cf. [15,§8.1]),

Hi(t) − Hj(t) = λa(va(t))
La

da

va(t)|va(t)|
2g

, (7)

whereLa andda are the length and bore (inner diameter) of the pipe, respectively, and the
average water velocityva is the flow rate divided by the cross-sectional pipe areaAa,

va(t) =
Qa(t)

Aa
=

4

πd2
a

Qa(t).

In our model (using flow variablesQa), the pressure loss equation thus reads

Hj(t) − Hi(t) + ra(Qa(t)) Qa(t)|Qa(t)| = 0, (8)
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TABLE 2. Notation for the pipe model

Symbol Explanation Value Unit

L Pipe length m
d Pipe diameter (bore) m
k Pipe roughness m
A Pipe cross-sectional area m2

λ Pipe friction coefficient –
r Pipe hydraulic loss coefficient s2/m5

υ Kinematic viscosity of water; at10◦ C: 1.31e−6 m2/s

where the hydraulic loss coefficientra(Qa) can be written

ra(Qa) =
La

2gdaA2
a

λa(Qa/Aa) =
8La

π2gd5
a

λa(va). (9)

In the following subsections, we discuss empirical laws and suitable approximations for the
friction coefficientλa(va) and the associated friction loss∆Ha(Qa) = ra(Qa) Qa|Qa|.
Note that the pressure always decreases in the direction of flow; hence∆H is an odd func-
tion of Qa, and the positive coefficientsλa, ra depend only on|va| and|Qa|, respectively.
This also applies to other approximations of the pressure loss∆Ha. We just mention the
most common one, the formula of Hazen–Williams,

∆Ha(Qa) = rHW
a |Qa|1.85 sign(Qa), (10)

where the loss coefficientrHW
a depends only on the pipe parameters.

2.7.1. Friction Coefficient.The friction coefficientλa(va) in (7) and (9) is determined
by the nature of the flow as characterized by the value of the non-dimensional Reynolds
number,

Rea(t) =
da

υ
|va(t)| = 4

πυda
|Qa(t)|,

whereυ denotes the kinematic viscosity of water.
Two cases have to be distinguished. (We drop the pipe subscript and time argument

for simplicity). In the usual case ofturbulentor vortical flow (Re > 2320), the friction
coefficient depends not only on the Reynolds number (and hence the flow rate) but also on
the roughness of the inner pipe surface,k, according to the law of Prandtl–Colebrook,

1√
λPC

= −2 log

(
2.51

Re
√

λPC
+

k

3.71d

)
. (11)

This formula is also known as law of Colebrook–White.
For laminarflow (Re< 2320), the friction coefficient depends on the Reynolds number

only, according to the law of Hagen–Poisseulle,

1√
λHP

=
Re
√

λHP

64
⇐⇒ λHP =

64

Re
. (12)

Note that the pressure loss in this case growslinearly with the flow rate,

∆Ha(Q) =
64

4|Q|πυda
8La

π2gd5
a

Q|Q| = 128υLa

πgd4
a

Q,

whereas in the turbulent case it grows roughly quadratically.
Finally, two simplifications of the formula of Prandtl–Colebrook are commonly used:

the law of Prandtl–Ḱarmán for hydraulically smooth pipes,

1√
λPKs

= −2 log
2.51

Re
√

λPKs
= 2 log

Re
√

λPKs

2.51
, (13)
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and the law of Prandtl–Ḱarmán for hydraulically rough pipes,

1√
λPKr

= −2 log
k

3.71d
⇐⇒ λPKr =

(
2 log

k

3.71d

)−2

. (14)

These expressions are obtained as the respective limit cases fork = 0 (hydraulically
smooth pipe) and for Re→ ∞ (hydraulically rough pipe).

Based on the above empirical laws, (11), (12), and (14), we consider two models for the
friction loss∆Ha(Q) along a pipea ∈ Api: theHP-PC friction modelas reference,

∆HHP-PC
a (Q) = rHP-PC

a (Q) Q|Q| with rHP-PC
a (Q) =

{
rHP
a (Q), Re≤ 2320,

rPC
a (Q), Re> 2320,

(15)

and thePKr friction modelas simplification,

∆HPKr
a (Q) = rPKr

a Q|Q|, (16)

whererPC
a (Q), rHP

a (Q), andrPKr
a are given by (9) with (11), (12), or (14), respectively.

2.7.2. Approximation of Friction Coefficient.For various reasons, the two friction models
just defined are not well suited for application in derivative-based optimization methods.
The HP-PC model is highly accurate but has jump discontinuities at the transitions between
laminar and turbulent flow. It is also implicit and therefore computationally expensive.
The PKr model (with constant coefficientrPKr) is simple and inexpensive but has a second
order jump discontinuity atQ = 0 (where the HP-PC model is linear and hence smooth).
Moreover, it is not very accurate for small|Q|, and one can show that asymptotically for
large |Q| only the second order derivative(∆HPKr) ′′ = ±2rPKr agrees with the HP-PC
reference model, but not∆HPKr and(∆HPKr) ′.

Here we develop a globally smooth explicit approximation of∆H that is asymptotically
correct for the usual large flow rates. As an additional benefit, it does not underestimate
∆H for small flow rates, thus leading to conservative solutions.

To investigate the asymptotic behavior of the pressure loss, consider for fixed relative
roughnessk/d the function that implicitly defines the Prandtl–Colebrook coefficient,

FPC(Re, λ) =
1√
λ

+ 2 log

(
2.51

Re
√

λ
+

k/d

3.71

)
.

This function is defined on the positive orthant ofR2 and has the following properties: it
is smooth and convex jointly in both arguments, it is strictly decreasing in Re orλ when
the other argument is fixed, and in these cases it has limit values

lim
λ↓0

FPC(Re, λ) = +∞ lim
λ→+∞

FPC(Re, λ) = 2 log
k/d

3.71
,

lim
Re↓0

FPC(Re, λ) = +∞, lim
Re→+∞

FPC(Re, λ) = 2 log
k/d

3.71
+

1√
λ
.

For every Re> 0, these properties immediately imply the existence and uniqueness of the
friction coefficientλPC such thatFPC(Re, λPC) = 0, since0 ≤ k < d/2 and

sup
λ

FPC = +∞, inf
λ

FPC≤ 2 log
k/d

3.71
< 2 log

1

7.42
< −0.87 < 0.

This yields a smooth dependenceλPC = fPC(Re) for fixed relative roughnessk/d. It can
further be shown that above we actually have equality infλ FPC = 2 log[k/(3.71d)], and
thatfPC is convex, strictly decreasing, and bounded away from zero with

inf fPC = lim
Re→∞

fPC(Re) =

(
2 log

k/d

3.71

)2

.

This infimum is precisely the friction coefficientλPKr (14).
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Next, we derive a quadratic polynomial inQ that approximates the friction coefficient
λPC up to second order forQ → +∞. To this end, define the positive constants

α =
2.51

4/(πυd)
, β =

k/d

3.71
, γ =

8L

π2gd5
,

and let

x = Q, y =
1√
λ
, z =

α

β

y

x
.

ForQ > 0, the pressure loss (8) and the law of Prandtl–Colebrook (11) then read

∆H = rx2 = γλx2, y = −2 log
(
α

y

x
+ β

)
= −2 log

[
β(1 + z)

]
.

Since logw = ln w/ ln 10, the last equation can be rewritten as

ln 10

2
y = − ln β − ln(1 + z),

yielding for |z| < 1

ln β +
ln 10

2

β

α
xz = −z +

z2

2
−

z3

3
± · · · . (17)

It is now easily seen thatλPKr = 1/(2 logβ)2 is obtained with the series expansion of order
zero, ln(1+ z) ≈ 0, for smallz (largex). Starting from the expansion of order one instead,
ln(1 + z) ≈ z, one obtains after some algebraic manipulations the coefficient

λ =

(
−

α

(β ln β)x
−

1

2 logβ

)2

,

and the resulting pressure loss for largex,

∆H = γλx2 = γ

(
α

β ln β
+

x

2 logβ

)2

= rPKr

(
2α

β ln 10
+ x

)2

,

whererPKr = γλPKr = γ/(2 logβ)2. Letting

δ = 2α/(β ln 10),

this formula can be shown to be asymptotically correct up to the constantλPKr(ln β)δ2 < 0,
so that we finally obtain the desired asymptotic approximation forx → +∞:

∆H ≈ γλx2 = rPKr
(
x2 + 2δx + (ln β + 1)δ2

)
. (18)

As smooth global approximation for∆H = Hi − Hj we now suggest a function of the
general form

∆HPKrs(x) = rPKr

(√
x2 + a2 + b +

c√
x2 + d2

)
x, (19)

with first and second order derivatives

(∆HPKrs) ′(x) = rPKr

(
2x2 + a2

√
x2 + a2

+ b +
cd2

√
x2 + d2

3

)
,

(∆HPKrs) ′′(x) = rPKr

(
2x3 + 3a2x
√

x2 + a2
3

−
3cd2x

√
x2 + d2

5

)
.

We call∆HPKrs thesmoothed PKr friction modelsince it differs from the PKr model mainly
in that it approximates the absolute value function|x| =

√
x2 with

√
x2 + a2, thus smooth-

ing out the kink atx = 0; see Fig. 5 (bottom left, solid line vs. dashed line).
Finally we have to select the parametersa, b, c, d in such a way that asymptotic cor-

rectness is guaranteed. To compare (18) with (19), let us define the asymptotic error

E(x) =

(√
x2 + a2 + b +

c√
x2 + d2

)
x −

(
x2 + 2δx + (ln β + 1)δ2

)
. (20)
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FIGURE 5. Comparison of friction loss models (top) and their first order
derivatives (bottom) for small flow rates (left) and large flow rates (right);
flow rates in m3/s, friction loss in m/km, derivatives in(m/km)/(m3/s)

Then one obtains forx → ∞

E(x) → (b − 2δ)x +
a2

2
+ c − (ln β + 1)δ2, E ′(x) → b − 2δ, E ′′(x) → 0.

Asymptotic correctness thus determines the parameters

b = 2δ, c = (ln β + 1)δ2 −
a2

2
,

satisfyingb > 0 and (irrespective ofa) c < 0. The parametersa > 0 andd > 0 influence
the approximation only close tox = 0, where

∆HPKrs(0) = 0, (∆HPKrs) ′(0) = rPKr(a + b + c/d), (∆HPKrs) ′′(0) = 0.

Thusa andd can be chosen to match any desired slope atx = 0 while the value and
curvature remain zero. In addition, the relative contributions of the two square root terms
at small flow values can be balanced.

2.8. Pump Model. Every pump,a = ij ∈ Apu, increases the pressure by some controlled
nonnegative amount∆Ha(t),

Hj(t) − Hi(t) − ∆Ha(t) = 0. (21)

As with the tanks, such a conceptual pump usually consists of several physical pumps
operated in parallel; see Figures 1 and 2. Aggregating pumps allows a largely simplified
modeling of their combined behavior, based on a good approximation of the combined
power consumption (or efficiency) which is a key factor in the cost. In what follows, we
first study the model for an individual pump and then present suitable aggregate models
for collections of raw water pumps and pure water pumps, respectively.
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TABLE 3. Notation for the model of a single electric pump

Symbol Explanation Value Unit
ωaν(t) Relative speed of the pump –
naν(t) Absolute speed of the pump 1/min
nnom,aν Nominal speed of the pump 1/min
cH,0,aν Coeff. of the pump characteristic m
cH,1,aν Coeff. of the pump characteristic s/m2

cH,2,aν Coeff. of the pump characteristic –
cP,0,aν Coeff. of the power characteristic W
cP,1,aν Coeff. of the power characteristic J/m3

cN,0,aν Coeff. of the NPSH value characteristic m
cN,1,aν Coeff. of the NPSH value characteristic s/m2

cN,2,aν Coeff. of the NPSH value characteristic –
vin,aν(t) Pump inflow velocity m/s
zin,aν Elevation of pump inlet m
zNPSH,aν Elevation of pump reference plane m
pin,aν(t) Pressure at pump inlet bar
pv Vapor pressure of water; at10◦ C: 0.0123 bar

TABLE 4. Model parameters of a waterworks outlet with four pumps,
three of which are identical (BWB)

Pump Hsuct Hpress n− nnom n+ Q− Qnom Q+

1–3 29.5 29.5 1180 1495 1540 0.2222 0.6944 0.8333

4 29.5 29.5 1180 1450 1500 0.1944 0.5000 0.5833

Pump cH,0 cH,1 cH,2 cP,0 cP,1 cN,0 cN,1 cN,2

1–3 99.02 57.74 2.015 29572 106 6.997 1.408 1.796

4 99.14 81.31 2.356 25806 134 7.283 80.173 5.554

2.8.1. Single Pump Model.The individual pumps constituting an arca ∈ Apu have a
common pressure increase∆Ha(t) but different flow ratesQaν(t) that add up to the total
arc flow,

Qa(t) =

Na∑

ν=1

Qaν(t). (22)

Common pump types include electric centrifugal pumps and Diesel centrifugal pumps.
The latter are usually used as backup units only and are therefore not addressed here.
The technical model of each electric centrifugal pump is given by several characteristic
diagrams involving the pump flow rateQaν(t) and the non-dimensional relative speed,

ωaν(t) =
naν(t)

nnom,aν
, (23)

wherennom,aν denotes the nominal speed of the pump. The additional dynamic variables
have respective boundsQ±

aν(t) andω±
aν(t) whose static default valuesQ±

aν andω±
aν are

technical parameters of the pumps, whereas the total flow boundsQ±
a (t) are defined by

the network operator depending on contractual and other requirements.
The characteristic diagrams are given in closed form with two or three empirical coeffi-

cients measured at the nominal speed; see Table 3. Actual values for a real waterworks at
BWB are given in Table 4.
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The common pressure increase∆Ha(t) of all pumps is related to their respective flow
rates and relative speeds by thepump characteristic,

∆Ha(t) = ωaν(t)2

(
cH,0,aν − cH,1,aν

(
Qaν(t)

ωaν(t)

)cH,2,aν
)

. (24)

The power consumption of each pump is given by thepower characteristic,

Paν(t) = ωaν(t)3

(
cP,0,aν − cP,1,aν

Qaν(t)

ωaν(t)

)
. (25)

Finally, therequired NPSH value (net positive suction head)is given as

NPSHaν(t) = ωaν(t)2

(
cN,0,aν − cN,1,aν

(
Qaν(t)

ωaν(t)

)cN,2,aν
)

. (26)

This value is bounded above by theavailable NPSH value(with a safety margin of0.5 m)
to prevent cavitation inside the pump,

NPSHaν(t) ≤ NPSHAaν(t) − 0.5 m. (27)

Here the available NPSH value of the pump is given as

NPSHAaν(t) = zin,aν − zNPSH,aν +
pin,aν(t) − pv

gρ
+

vin,aν(t)2

2g
, (28)

wherezin,aν andzNPSH,aν are the respective elevations of the pump inlet and of its NPSH
reference plane. (For horizontally installed pumps the latter coincides with the elevation
of the pump axis.) Further,pin,aν(t) = gρ(Hi(t) − zin,aν) andpv are the pressure at the
pump inlet and the vapor pressure of water, respectively, andvin,aν(t) = Qaν(t)/Ain,aν

denotes the pump inflow velocity of the water.
Certain types of pumps can only operate at fixed speed,naν(t) ≡ nnom,aν. In this case

we haveωaν(t) ≡ 1, and the characteristics (24)–(26) simplify to

∆Ha(t) = cH,0,aν − cH,1,aνQaν(t)cH,2,aν , (29)

Paν(t) = cP,0,aν − cP,1,aνQaν(t), (30)

NPSHaν(t) = cN,0,aν − cN,1,aνQaν(t)cN,2,aν . (31)

Inactive pumps of either type are disconnected from the network (by shutting valves)
and behave like absent arcs: the flow rate, speed, and power are zero,

Qaν(t) = 0, ωaν(t) = 0, Paν(t) = 0,

and the constraints (24), (25), (27) can be dropped. The binary activity status of a pump will
be denoted asYaν(t). In contrast to the tank availability status, it is subject to optimization.
One of the major difficulties in the mixed integer model below stems from the fact that a
pump cannot be shut down continuously, in the sense that the admissible sets of flow rate
and speed become disconnected,Qaν ∈ {0} ∪ [Q−

aν, Q+
aν] andωaν ∈ {0} ∪ [ω−

aν,ω+
aν].

This is a consequence of the macroscopic time model: in practice, starting up a pump or
shutting it down is actually a continuous procedure but requires a more complex sequence
of actions, involving the opening or closing of additional valves on the suction and pressure
sides of the pump in the proper order.

2.8.2. Aggregated Raw Water Pump Model.An arca ∈ Apr typically represents a large
collection of almost identical raw water pumps, which can be assumed to run at top effi-
ciency for all flow values. (The smallest waterworks at BWB has 14 raw water pumps, the
largest has 170, and the total number in all nine waterworks is 620.) Raw water pumping
is thus modeled with constant specific energy demand per m3, wraw,a, yielding the total
power consumption

Pa(t) = wraw,aQa(t).
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timal configuration

2.8.3. Aggregated Pure Water Pump Model.Pure water pumps appear in much smaller
collections (three to six per outlet at BWB) that require a more detailed model based on an
approximation of their combined efficiency. The exact combined efficiency is

ηa(t) =
ρg∆Ha(t)Qa(t)

Pa(t)
,

where the numerator measures the total power output transferred to the water, andPa(t)
denotes the total power consumption of the pumps,

Pa(t) =

Na∑

ν=1

Paν(t). (32)

Assuming that the optimal configuration of available pumps is selected under all operating
conditions (yielding minimum power consumptionPa, or maximum efficiencyηa, for
givenQa and∆Ha), we can neglect the moderate pressure dependence and approximate
the flow dependence of the efficiency as

ηa(Qa(t)) = ηmax
a

(
1

φ−
a (Qa(t))

−
1

φ+
a (Qa(t))

)
+ 0.001,

where

φ±a (Q) = 1 + α±a exp

(
β±a

Q − q±a
q±a

)
. (33)

Here the parametersα±a andβ±a are fitted to the reference data, and the valuesq±a are
defined as

q−
a = min

{
Q−

aν

}Na

ν=1
, q+

a =

Na∑

ν=1

Q+
aν.

The latter determine roughly where the left and right slopes are located. The efficiency
model is designed such that operation in the lower infeasible range0 < Qa < q−

a is
strongly discouraged through small values of the efficiency (see Fig. 6) whereasQ+

a is
explicitly specified as an upper bound. However,q+

a may become relevant as a soft limit
when one or more pumps are out of service.

2.8.4. Restrictions in Pump Models.Further constraints usually differ among certain sub-
sets of the pumps. LetW denote the set of waterworks and pumping stations. Forw ∈ W,
denote byApr(w) the associated set of raw water pumps (empty for pumping stations),
byApp(w) the associated set of pure water pumps (empty for type II waterworks), and by
Apu(w) = Apr(w) ∪ App(w) their union. Finally, letApo denote the set of pumps at all
waterworks outlets (not including the pumping stations).
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For the raw water pumps,a ∈ Apr, there are additional bounds on the derivative of the
flow rate,

Q̇a(t) ∈ [Q̇−
a (t), Q̇+

a (t)]. (34)

This type of constraint is imposed to ensure the quality of the filtering process.
At the waterworks outlets,a ∈ Apo, there may be additional bounds on the total daily

discharge of the associated pumps,
∫T

t=0

Qa(t) dt ∈ [ΣQ−
a , ΣQ+

a ]. (35)

This type of constraint models the availability of raw water; at BWB it is caused by con-
tractual limits on the yearly groundwater extraction.

Finally, since electricity prices often include a component depending on the peak power,
there is an upper bound on the combined power consumption of all pumps in a waterworks
or pumping station,w ∈ W. The disaggregated version of this constraint reads

∑

a∈Apu(w)

Na∑

ν=1

Paν(t) ≤ P+
w, (36)

and the (nonlinear) aggregated version reads
∑

a∈Apr(w)

wraw,aQa(t) +
∑

a∈App(w)

ρg∆Ha(t)Qa(t)

ηa(Qa(t))
≤ P+

w. (37)

Here the first sum is empty in pumping stations and the second sum is empty in waterworks
of type II.

2.9. Valve Model. The pressure in a valvea = ij ∈ Avl is decreased by some controlled
amount∆Ha(t),

Hj(t) − Hi(t) + ∆Ha(t) = 0. (38)

To ensure consistency of the pressure decrease with the generally unknown direction of
flow, we impose a nonnegativity constraint

∆Ha(t)Qa(t) ≥ 0. (39)

This model allows for the valve to be fully open (∆Ha(t) = 0) or fully closed (Qa(t) = 0).
During periods where the valve position is prescribed externally, the respective condition
is introduced as an additional constraint,

∆Ha(t) = 0 (open) or Qa(t) = 0 (closed),

and the other variable (Qa or ∆Ha) remains free for optimization. The nonnegativity
constraint is dropped in these cases, and the valve behaves either like a zero length pipe
(without pressure loss) or like an absent link. A ternary valve modema(t) with the values
open, closed, controlleddesignates which situation applies.

2.10. Demand Model. The demand forecast at BWB is generated by separate neural net-
works for the total daily consumption and for the hourly fractions of the total consumption.
Input data are selected parameters from the weather forecast for the prediction horizon, the
category of the day (weekday, holiday, vacation, etc.), and the actual consumption of the
previous day. The neural networks have been trained on data collected over a period of four
years. In addition, a long-term negative trend is adequately incorporated both in training
and prediction. The basic approach is reported in [37]; details are confidential [6].

The BWB forecast method yields highly reliable predictions of the cumulative (network-
wide) hourly demand but cannot generate predictions for individual junctions. Data on
individual junctions are only available from the yearly read-out of the water meters. Al-
though our optimization model permits arbitrary demand profilesDjt at all junctions (see
Section 2.4), we therefore assume a static spatial demand distribution. Thus we obtain a
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FIGURE 7. Typical profile of hourly network-wide demand in Berlin (m3)

product structure with respect to space and time, where the demand at every junction is a
constant fraction of the time-dependent cumulative demand. A typical hourly profile of the
latter is given in Fig. 7, taken from two days in late May 2004.

2.11. Initial and Terminal Conditions. Initial values are only required for the tank filling
levels and the flow rates of raw water pumps (whose derivatives appear in the constraints,
(6) and (34)),

Hj(0) = Hj0, j ∈ Ntk,

Qa(0) = Qa0, a ∈ Apr.

All other dynamic variables are discontinuous in general and need only to be consistent
between jumps.

Suitably tightened lower bounds are imposed on the tank filling levels att = T to
prevent undesired finite horizon effects,

Hj(T) ≥ H−
jT , j ∈ Ntk.

Without such terminal constraints, operation costs during the current planning period could
be reduced by deflating the tanks. On the following day, however, this would usually
generate disproportionately increased costs or, even worse, render the network inoperable.

2.12. Objective Function. The goal is to minimize the variable operating costs, that is,
the costs of raw water production and pure water production during the planning period,

K = Kraw + Kpure =

∫T

0

( ∑

a∈Apr

K̇raw,a(t) +
∑

a∈App

K̇pure,a(t)

)
dt. (40)

The variable costs include ground water extraction fees, costs for operational supplements,
energy costs for raw water pumps, energy costs for raw water treatment, and energy costs
for pure water pumps. This yields differential costs

K̇raw,a(t) = K̇fee,a(t) + K̇suppl,a(t) + K̇el,pump,a(t) + K̇el,treat,a(t),

K̇pure,a(t) = K̇el,pump,a(t).

In terms of the specific cost per m3, kraw,a = kfee,a+ksuppl,a, and the specific work per m3,
wraw,a = wpump,a + wtreat,a, the contribution from raw water production can be written

K̇raw,a(t) =
[
kraw,a + wraw,akel,a(t)

]
Qa(t), (41)
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TABLE 5. Notation for the cost function

Symbol Explanation Unit

K Total daily operating cost e
kel,a(t) Price for electric energy at pumpa e/J
kraw,a Specific price for raw water and treatment materials at pumpa e/m3

wraw,a Specific work for raw water pumping and treatment at pumpa J/m3

and the contribution from pure water production reads

K̇pure,a(t) = kel,a(t)
ρg∆Ha(t)Qa(t)

ηa(Qa(t))
, (42)

wherekel,a denotes the price for electric energy. Using the total power consumption (32),
the corresponding expressions for the disaggregated pump model are

K̇raw,a(t) = kraw,aQa(t) + kel,a(t)Pa(t), (43)

K̇pure,a(t) = kel,a(t)Pa(t). (44)

The constants and coefficients are listed in Table 5.

2.13. Summary. The component models of all network elements, objective, and bound-
ary conditions are now complete. Altogether, they form a continuous time optimization
problem that might be supplemented by minimum up and down time constraints for the
pumps to prevent solutions with excessive switching activity. Theoretically one could now
invoke the maximum principle [33, 25] to formulate continuous time necessary optimal-
ity conditions, even including the discrete decisions [2]. However, due to the problem
size and its combinatorial complexity, this can be considered an insurmountable task in
practice, and the resulting multi-stage boundary value problem with switch and jump con-
ditions would be intractable anyway. We therefore proceed with a discrete time nonlinear
mixed integer formulation of the planning problem. Another reason to use discrete time
is the fact that this is already common practice: demand forecasts, electricity prices, and
operating schedules are typically specified in hourly intervals.

3. GDP AND MINLP M ODELS

Relevant combinatorial aspects in our model include switching of pumps or (in the
aggregated case) of waterworks and pumping stations, and the direction of flow in valves.
After formulating all component models in discrete time, we will discuss the combinatorial
issues and provide both a generalized disjunctive programming (GDP) formulation [22, 34]
and a suitable MINLP formulation.

3.1. Discrete Time Setting. We consider a planning period of lengthT in discrete time,
t = 1, 2, . . . , T , with initial conditions att = 0. Subintervalt is denotedIt = (t − 1, t)
and has physical length∆t. At BWB, the planning period represents the following day,
partitioned into24 one-hour time-steps.

The discrete pressure variables in nodej ∈ N are denotedHjt, with upper and lower
boundsH±jt, t = 1, . . . , T . Arc flow rates are similarly denotedQat, with boundsQ±

at, and
the pressure differences in pumps and valves are∆Hat, with bounds∆H±at. The flows are
assumed to be quasi-stationary and right-continuous with possible jumps at the grid points.
That is,Qat will be interpreted as constant value during(t− 1, t], whereasHjt and∆Hat

will be interpreted as values at timet. Additional speed and flow variablesωaνt andQaνt

in the disaggregated pump model as well as powersPaνt and binary variablesYat, Yaνt

(including the tank availability profiles) are interpreted likeQat.
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3.2. Model Formulation. We begin with the full discrete time model for individual pure
water pumps. (Raw water pumps are always aggregated from now on.) The objective is

∆t

T∑

t=1

( ∑

a∈Apr

(wraw,akel,at + kraw,a)Qat +
∑

a∈App

kel,atPat

)
→ min . (45)

Basic equality constraints include the overall flow balances and pressure relations:

∑

i: ij∈A
Qijt −

∑

k: jk∈A
Qjkt − Djt = 0, j ∈ Njc, (46)

∑

i: ij∈A
Qijt −

∑

k: jk∈A
Qjkt − Ejt(Hj,t−1, Hjt) = 0, j ∈ Ntk, (47)

Hjt − H̄j = 0, j ∈ Nrs, (48)

Hjt − Hit + ϕa(Qat) = 0, a ∈ Api, (49)

Hjt − Hit − ∆Hat = 0, a ∈ Apu, (50)

Hjt − Hit + ∆Hat = 0, a ∈ Avl . (51)

HereDjt denotes the predicted consumption demand,Ejt the tank inflow (to be defined
below),H̄j the constant reservoir pressure, andϕa = ∆HPKrs

a the PKrs approximation (19)
of the hydraulic pressure loss. LikeQat, the flowsDjt, Ejt are interpreted as constant
values during periodt. The tank inflows are given as

Ejt(Hj,t−1, Hjt) =
1

∆t

Na∑

ν=1

Yjνt∆Vjν(Hj,t−1, Hjt),

where∆Vjν denotes the change of the filling volume of tankjν during periodt,

∆Vjν(Hj,t−1, Hjt) =

∫Hjt

Hj,t−1

Ajν(h − zj) dh;

cf. Section 2.6. Here we require that the availability profiles are constant in each period,
Yjν(τ) ≡ Yjνt for τ ∈ It.

The nontrivial inequalities include discrete analogs of the restrictions (34)–(36) at the
raw water pumps, outlets, and waterworks and pumping stations, respectively:

Qat − Qa,t−1 ∈ [∆Q−
at, ∆Q+

at], a ∈ Apr, (52)

∆t

T∑

t=1

Qat ∈ [ΣQ−
a , ΣQ+

a ], a ∈ Apo, (53)

∑

a∈Apr(w)

wraw,aQat +
∑

a∈App(w)

Na∑

ν=1

Paνt ≤ P+
w, w ∈ W, (54)

where∆Q±
at = Q̇±

at∆t.
Turning to the individual pure water pumpsν = 1, . . . ,Na, a ∈ App, we define binary

variablesYaνt ∈ {0, 1} designating the activity status during periodt. The flow balance
for an entire pump collection reads

Qat −

Na∑

ν=1

Qaνt = 0, a ∈ App. (55)
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Letting z0
aν = zNPSH,aν + pv/(ρg) + 0.5 m, cf. (28), the additional constraints for every

active pump (Yaνt = 1) can be written

∆Hat − ω2
aνt

(
cH,0,aν − cH,1,aν

(
Qaνt

ωaνt

)cH,2,aν
)

= 0, (56)

Paνt − ω3
aνt

(
cP,0,aν − cP,1,aν

Qaνt

ωaνt

)
= 0, (57)

Hit +
Q2

aνt

2gA2
in,aν

− z0
aν − ω2

aνt

(
cN,0,aν − cN,1,aν

(
Qaνt

ωaνt

)cN,2,aν
)
≥ 0, (58)

whereas every inactive pump (Yaνt = 0) must satisfy

Qaνt = 0, (59)

Paνt = 0, (60)

ωaνt = 0. (61)

For pumps with fixed speed the variablesωaνt are dropped. Extra constraints during
inactive periods are (59), (60), and during active periods we obtain

∆Hat − (cH,0,aν − cH,1,aνQcH,2,aν
aνt ) = 0, (62)

Paνt − (cP,0,aν − cP,1,aνQaνt) = 0, (63)

Hit +
Q2

aνt

2gA2
in,aν

− z0
aν − (cN,0,aν − cN,1,aνQcN,2,aν

aνt ) ≥ 0. (64)

At the valves, the discrete version of the sign condition reads

∆HatQat ≥ 0, a ∈ Avl . (65)

However, this condition produces as feasible set the union of the positive and negative
quadrant inQat-∆Hat-space, which has disconnected interior. To capture the alternatives
explicitly, we introduce binary decision variablesYat ∈ {0, 1} designating the direction of
flow. The respective constraints are

Qat ≥ 0, ∆Hat ≥ 0 (positive flow,Yat = 1), (66)

Qat ≤ 0, ∆Hat ≤ 0 (negative flow,Yat = 0). (67)

The case of stagnant flow (Qat = 0) is covered by both alternatives.
There are no initial conditions as in the continuous-time model, but initial values appear

as parameters in the tank flow balances (47) and in the raw water gradient constraints (52).
The relevant initial values are

Hj0, j ∈ Ntk, (68)

Qa0, a ∈ Apr, (69)

and the tightened terminal constraints read

HjT ≥ H−
jT , j ∈ Ntk. (70)

This completes the model formulation with disaggregated pumps.
With aggregated pumps we get the following modifications. The objective (45) has to

be replaced with

∆t

T∑

t=1

( ∑

a∈Apr

(wraw,akel,at + kraw,a)Qat +
∑

a∈App

kel,at
ρg∆HatQat

ηa(Qat)

)
→ min . (71)

Constraints (46)–(53) remain unchanged. The aggregated version of (54) corresponds to
(37) and reads

∑

a∈Apr(w)

wraw,aQat +
∑

a∈App(w)

ρg∆HatQat

ηa(Qat)
≤ P+

w, w ∈ W. (72)



OPTIMIZATION MODELS FOR OPERATING WATER NETWORKS 19

The physical model for individual pumps, (55)–(61), is replaced as follows in the aggre-
gated model. We define a single binary variableYat ∈ {0, 1} designating the activity status
of the entire collection of pure water pumpsa ∈ App during periodt. With φ±a from (33),
the aggregate efficiency in (71) and (72) is defined as

ηa(Qat) = ηmax
a

(
1

φ−
a (Qat)

−
1

φ+
a (Qat)

)
+ 0.001. (73)

During active periods (Yat = 1) there are no additional constraints, whereas an inactive
waterworks outlet or pumping station (Yat = 0) has to satisfy

Qat = 0. (74)

Constraints (62)–(64) are dropped since fixed speed pumps cannot be handled by aggrega-
tion. Finally, the valve constraints and boundary conditions (66)–(70) remain unchanged.

3.3. GDP Formulation. In generalized disjunctive programming (GDP), the selection
among two or more alternative operating states characterized by different sets of con-
straints is formulated as a logical disjunction, with one set of constraints corresponding
to each value of the discrete decision variableY ∈ {Y1, . . . , Yk}:

[
Y = Y1

constraint set1

]
∨ · · ·∨

[
Y = Yk

constraint setk

]
. (75)

Special algorithms exist for GDP problems; they use branching on the discrete variables
and exploit typical forms of the constraints [27, 40]. We use the notation “Y” for “ Y = 1”
and “¬Y” for “ Y = 0”, which is common in the case of binary choices. This yields the
GDP formulation for the disaggregated pump model:

Minimize (45)

subject to bounds on all variables,

(46)–(51), (54), (55), (68)–(70),[
Yaνt

(56)–(58)

]
∨

[
¬Yaνt

(59)–(61)

]
, a ∈ App (variable speed),

[
Yaνt

(62)–(64)

]
∨

[
¬Yaνt

(59), (60)

]
, a ∈ App (fixed speed),

[
Yat

(66)

]
∨

[
¬Yat

(67)

]
, a ∈ Avl .

With the aggregated pump model we get instead:

Minimize (71)

subject to bounds on all variables,

(46)–(51), (72), (73), (68)–(70),

Yat ∨

[
¬Yat

(74)

]
, a ∈ App,

[
Yat

(66)

]
∨

[
¬Yat

(67)

]
, a ∈ Avl .

Notice that we have empty constraints in the disjunctionYat ∨ [¬Yat : (74)] for Yat = 1,
as already mentioned above.
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3.4. MINLP Formulation. For the MINLP formulation we wish to have suitable NLP
relaxations so that branching on fractional values of a binary variableY is possible. More-
over, the NLP relaxation should not introduce avoidable numerical difficulties (such as
big-M terms or additional nonlinearities), and it should satisfy a constraint qualification at
all feasible points, in the sense that the feasible sets for the casesY = 0 andY = 1 are
connected by a nondegenerate polyhedron (having nonempty interior). Formulations with
these properties will now be constructed.

3.4.1. Relaxations.Consider the individual pumps first. The straightforward relaxation
approach would simply scale the flow and speed bounds,

Qaνt ∈ [YaνtQ
−
aνt, YaνtQ

+
aνt],

ωaνt ∈ [Yaνtω
−
aνt, Yaνtω

+
aνt].

For Yaνt ∈ {0, 1} this gives precisely the desired (disconnected) feasible sets, and the
relaxationYaνt ∈ [0, 1] yields a3-simplex in the positive orthant,

(Qaνt,ωaνt, Yaνt) ∈
{
(Q, ω, Y) : YQ−

aνt ≤ Q ≤ YQ+
aνt,

Yω−
aνt ≤ ω ≤ Yω+

aνt, 0 ≤ Y ≤ 1
}
. (76)

For fixed speed pumps we dropωaνt and the relaxation yields the triangle (2-simplex)

(Qaνt, Yaνt) ∈ {(Q,Y) : YQ−
aνt ≤ Q ≤ YQ+

aνt, 0 ≤ Y ≤ 1}. (77)

Observe that forYaνt > 0 the strictly positive lower and upper bounds onQaνt andωaνt

guarantee that the quotientQaνt/ωaνt remains bounded (and bounded away from zero):

0 <
Q−

aνt

ω+
aνt

<
Qaνt

ωaνt
<

Q+
aνt

ω−
aνt

< ∞.

Moreover, sinceYaνt = 0 implies Qaνt = 0 andωaνt = 0 (as required), the pump,
power, and NPSH characteristics posses smooth extensions forYaνt → 0. The difficulty
is that some of the resulting constraints will be incompatible with the pump inactivity, as
we now show. From (56)–(58) we obtain in the limitYaνt → 0:

∆Hat = 0, (78)

Paνt = 0, (79)

Hit − z0
aν = NPSHAaνt − 0.5 m≥ 0. (80)

Constraint (79) is fine (and actually required), but the other two should be dropped. In fact,
(78) is certainly wrong since∆Hat > 0, and (80) is potentially wrong, depending on the
actual values ofHit andz0

aν.
For fixed speed pumps, we obtain from (62)–(64) in the limitYaνt → 0:

∆Hat − cH,0,aν = 0, (81)

Paνt − cP,0,aν = 0, (82)

Hit − z0
aν − cN,0,aν = NPSHAaνt − cN,0,aν − 0.5 m≥ 0. (83)

Here the constraints (81) and (82) are certainly wrong (the correct power isPaνt = 0), and
(83) is potentially wrong.

Since the conflicting constraints in the relaxed MINLP formulation must become irrel-
evant forYaνt = 0, we formulate them as inequality constraints that become inactive but
avoid the usual big-M formulation. Thus (56) is replaced with

∆Hat −ω2
aνt

(
cH,0,aν − cH,1,aν

(
Qaνt

ωaνt

)cH,2,aν
)
∈ (1−Yaνt)[∆H−

at, ∆H+
at], (84)
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and (58) is replaced with

Hit +
Q2

aνt

2gA2
in,aν

− Yaνtz
0
aν − ω2

aνt

(
cN,0,aν − cN,1,aν

(
Qaνt

ωaνt

)cN,2,aν
)
≥ 0. (85)

For fixed speed pumps we also have to blend out the constant terms, obtaining

∆Hat − YaνtcH,0,aν + cH,1,aνQcH,2,aν
aνt ∈ (1 − Yaνt)[∆H−

at, ∆H+
at], (86)

Paνt − YaνtcP,0,aν + cP,1,aνQaνt = 0, (87)

Hit +
Q2

aνt

2gA2
in,aν

− Yaνtz
0
aν − (YaνtcN,0,aν − cN,1,aνQcN,2,aν

aνt ) ≥ 0. (88)

The relaxed formulation for aggregated pumps simply replaces the flow bounds with

Qat ∈ [YatQ
−
at, YatQ

+
at]. (89)

No conflicts arise in this relaxation since the approximate efficiency model is well-defined
for all flow valuesQat ∈ [0,Q+

at] (in fact even forQat ∈ R).
At the valvesa ∈ Avl , we use a formulation similar to (84) and (86),

∆Hat ∈ [(1 − Yat)∆H−
at, Yat∆H+

at], (90)

Qat ∈ [(1 − Yat)Q
−
at, YatQ

+
at], (91)

forcing both variables to the negative or positive range ifYat = 0 or Yat = 1, respectively.

3.4.2. Complete MINLP Formulation.With the disaggregated pump model we obtain:

Minimize (45)

subject to bounds on all variables,

(46)–(51), (54), (55), (68)–(70),

(76), (84), (57), (85), a ∈ App (variable speed),

(77), (86), (87), (88), a ∈ App (fixed speed),

(90), (91), a ∈ Avl .

With the aggregated pump model we obtain:

Minimize (71)

subject to bounds on all variables except pump flows,

(46)–(51), (72), (73), (68)–(70),

(89), a ∈ App,

(90), (91), a ∈ Avl .

4. NLP MODEL

The discrete-time models in GDP and MINLP formulation are in principle solvable by
global optimization methods based on nonlinear branch and bound type strategies. For
small networks this may actually be practical. For routine application in daily operations
planning of large networks, however, nonlinear mixed-integer models are by far too com-
plex. At BWB it was therefore decided to employ a nonlinear programming (NLP) model.
Under this provision, the main challenge consists in developing suitable techniques to in-
corporate combinatorial aspects as well as possible. One key ingredient in this respect is
the aggregate efficiency model for collections of pure water pumps, which is particularly
effective in combination with special constraints ensuring minimum up and down times for
the pumps, as developed in [7].

The NLP model is formulated in discrete time and can be seen as a simplification of the
MINLP model, from which it differs only as far as combinatorial aspects are concerned.
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Here we formulate a basic NLP model that

• employs the aggregated pump model;
• addresses pump switching approximately via the efficiency model (73);
• may be refined by additional constraints.

This basic NLP model can be posed as follows:

Minimize (71)

subject to bounds on all variables,

(46)–(51), (72), (73), (68)–(70),

(65), a ∈ Avl .

5. SUMMARY

We have developed mathematical models for operative planning in drinking water net-
works by gradient-based optimization methods. Main elements from the nonlinear pro-
gramming perspective include an inexpensive, globally smooth and asymptotically correct
approximation of the hydraulic pressure loss in pipes, and a smooth approximation for the
combined efficiency of collections of outlet pumps in waterworks and pumping stations.
For pumps and valves we have provided nonlinear mixed integer formulations whose re-
laxations preserve desirable properties (smoothness, non-degeneracy) without introducing
undesirable big-M terms or additional nonlinearities.

The approximation of aggregated pump efficiency not only reduces the computational
cost significantly, in combination with special (smooth) minimum up and down time con-
straints developed in [7] it also allows to determine near-optimum network operation sched-
ules by nonlinear programming methods. Operation schedules of individual pumps are
then determined with the MINLP model separately for each waterworks and pumping sta-
tion, with the total flow and common pressure increase given by the upper level optimiza-
tion. Such a hierarchical approach is pursued in the optimization module for the large
network of Berliner Wasserbetriebe, which has been in operation since June 2004.
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