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Shizuo Kajil Masaya Yasudal Katsuki Fujisawa™**
July 8, 2021
Abstract

Lattice problems are a class of optimization problems that are notably hard.
There are no classical or quantum algorithms known to solve these problems efficiently.
Their hardness has made lattices a major cryptographic primitive for post-quantum
cryptography. Several different approaches have been used for lattice problems with
different computational profiles; some suffer from super-exponential time, and others
require exponential space. This motivated us to develop a novel lattice problem
solver, CMAP-LAP, based on the clever coordination of different algorithms that
run massively in parallel. With our flexible framework, heterogeneous modules
run asynchronously in parallel on a large-scale distributed system while exchanging
information, which drastically boosts the overall performance. We also implement
full checkpoint-and-restart functionality, which is vital to high-dimensional lattice
problems. Through numerical experiments with up to 103,680 cores, we evaluated
the performance and stability of our system and demonstrated its high capability for
future massive-scale experiments.

1 Introduction

A lattice is the set of all integral combinations of n linearly independent vectors in the
Euclidean space R™. Lattice problems are a class of discrete optimization problems whose
objective functions are defined on the set of lattice points or the set of lattice bases. The
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most fundamental instance of the lattice problems is the Shortest Vector Problem (SVP),
which asks to find the shortest non-zero vector in a given lattice. Lattice problems are
believed to be computationally hard with both classical and quantum algorithms [5] and have
been used to construct various cryptosystems [22], including post-quantum cryptography.
Therefore, developing a framework for lattice problems is an important task both in large-
scale optimization and cryptanalysis (see [15] for cryptanalysis using high-performance
computing). More specifically, the security of many cryptosystems is based on the hardness
of an approximate variant of SVP. Lattice problem solvers have been extensively tested at
the Darmstadt SVP challenge [25], which asks to find a lattice vector shorter than 1.05
times the expected length of a non-zero shortest lattice vector (see [6] for a choice of the
approximate factor 1.05).

There are three basic families of lattice algorithms that have been developed to solve
practical lattice problems: basis reduction, enumeration (ENUM), and sieve. We provide a
brief description of their variants in Section 2. These algorithms have advantages and disad-
vantages, and there is no single definite algorithm for lattice problems. Therefore, practical
lattice-problem solvers generally rely on two or more algorithms. G6K [2] implements a
variety of basis reduction and sieve algorithms, and it is considered the state-of-the-art
SVP solver. G6K is equipped with both CPU and GPU highly parallelized implementations,
but it runs only on a single machine. Furthermore, the memory requirement is exponential
with respect to the dimension of the lattice, which is inevitable for sieve algorithms. On the
other hand, MAP-SVP [35] is based on basis reduction and ENUM, which showed efficient
scalability above 100,000 MPI processes.

Existing solvers are limited to a fixed set of algorithms and lack in flexibility. There
are two main obstacles in developing a large-scale multi-paradigm solver: the need for an
efficient high-level information-sharing scheme across different algorithms, and an adaptive
task selection and distribution strategy for hundreds of thousands of processes. The main
contribution of this paper is to provide solutions to overcome these obstacles and develop a
flexible framework to make various algorithms work cooperatively on a large-scale distributed
computing platform. By exploiting the mathematical properties of lattice, a clever vector
pooling scheme is introduced to minimize the amount of information communicated among
processes. By extending the well-recognized Ubiquity Generator (UG) framework [37] for
Branch-and-Bound (B&B) algorithms, we have built a solid backbone to manage hundreds of
thousands of processes running heterogeneous algorithms in parallel, where the assignment
of algorithms and their parameters can be adaptively tuned according to the available
resources and the progress of the whole system. The original UG framework has been
successfully utilized for mixed-integer linear programming problems [29, 32, 30, 31], Steiner
tree problems [13, 34, 33, 24], and quadratic assignment problems [11] on supercomputers.
For lattice problems, the MAP-SVP, as mentioned above, is based on the original UG
framework. However, most lattice algorithms are not B&B ones, and hence, MAP-SVP
cannot utilize the full features of the original UG. The success of MAP-SVP motivated
the UG project to refactor the original UG framework. The original UG codes have been
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Figure 1: Refactoring of the UG framework

refactored into the Generalized Ubiquity Generator framework (Generalized UG)! to allow
more flexibility necessary for lattice algorithms (see Figure 1). Particular emphasis is put
on the efficient and versatile message-sharing mechanics. Based on the Generalized UG
framework, we developed the Configurable Massively Parallel Solver for Lattice Problems
(CMAP-LAP)?.

Our contribution is summarized as follows:

We propose a novel parallel and multi-algorithm scheme for lattice problems, in
which several different single- or multi-rank solvers work cooperatively while sharing
information efficiently with other solvers even on a large-scale computing platform
(See Section 5, and detail for solving SVP is in Section 6.1). To realize the scheme,
CMAP-LAP is developed entirely from scratch by fully utilizing the features of the
Generalized UG.

CMAP-LAP with 103, 680 cores stably and continuously ran for more than 42 hours.
We tested CMAP-LAP in several environments with different scales and configurations
(see Section 6).

Each process asynchronously performs various lattice algorithms in coordination while
sharing information. Processes for different algorithms are adaptively allocated, and

!The Generalized UG code will be released within the SCIP Optimization Suite [28] in 2021.
2pronounced “see” MAP-LAP to indicate that it provides new insights into the use of massive parallelism
for lattice problem solvers.



their parameters are tuned according to the available resources, current progress,
and estimated time for finding a solution. In particular, our accurate estimation

of memory usage has drastically improved the stability and scalability (see Section
5.1.4).

e The high-level checkpoint-and-restart functionality is implemented to make it possible
to save and resume even on different architectures and platforms of various sizes (see
Section 5.1.5).

e The efficient information-sharing scheme is developed based on the properties of lattice
problems, and is backed with blocking and non-blocking communication mechanisms
(see Section 5.2.3).

e Highly modular architecture allows one to incorporate new algorithms easily into the
system. Existing implementations that work only in a shared-memory environment
can work as modules of CMAP-LAP, which run massively in parallel (see Section 5.2.1).

2 Lattice Problems

A (full-rank) [lattice of dimension n is the set of all integral linear combinations

L=L(by,...,b,) = {inbi:xl,...,anZ}, (1)
i=1

where by, ..., b, are n linearly independent vectors in R™ for a positive integer n. The set
of the n vectors {by,...,b,} is called a basis of L. When another set of vectors {cy,...,c,}
spans the same lattice L, it is also called a basis of L. Furthermore, £(B) denotes the
lattice spanned by the row vectors of an invertible matrix B. The n x n matrix B is called a
basis matriz of L. Two matrices B and C span the same lattice if and only if there exists a
unimodular matrix T satisfying C = TB. (An integral square matrix is called unimodular
if its determinant equals +1.) Given a basis matrix B of L, the volume of L is defined as
vol(L) := |det(B)|, which is independent of the choice of basis matrices.

Lattice problems are algorithmic problems that involve lattices. Among lattice problems,
the following is of fundamental importance:

Definition 1 (Shortest Vector Problem (SVP)). Find the shortest non-zero vector with
respect to the f5-norm in the lattice £(B), given a basis matrix B.

SVP is a discrete optimization problem for finding z;’s in (1) and is shown to be NP-hard
under randomized reductions [1]. (That is, there exists a probabilistic Turing-machine that
reduces any problem in NP to SVP instances in polynomial-time.) Note that the shortest
vectors are not unique, and SVP asks to find one of them. The length of the shortest
non-zero vector in L is denoted by A;(L). SVP is the problem of finding a lattice vector
s € L with ||s|]| = A;(L). It should be emphasized that there is no known NP algorithm
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to check if ||v]| = A{(L) for a given v € L. Therefore, we rely on Gaussian Heuristic,
which assumes that the number of vectors in L NS is roughly equal to vol(S)/vol(L) for a
measurable set S in R™. By taking S to be the ball of radius A\;(L) centered at the origin 0
in R”, the Gaussian Heuristic leads to an estimation of \;(L) as

vol(L)) L/n |

Wn

(L) =~ (

where w,, denotes the volume of the n-dimensional unit ball. By Stirling’s formula, we have
~ (2me n/2
wy & (2£)"" as n — oo, and define

GH(L) := 1/2L7T6v01(L)1/". 2)

Then, A\ (L) ~ GH(L) holds for random lattices L in high dimensions n > 40. (Gaussian
Heuristic does not hold in low dimensions.) For a vector v € L, the value ||v||/GH(L)
is called the approximation factor of v. Similarly, for a basis matrix B, the value
ming <;<, ||b;||/GH(L) is called the approximation factor of B. They are evaluation metrics

for the lattice vector and the basis. Based on this observation, an approximate variant of
SVP is defined:

Definition 2 (Hermite Shortest Vector Problem (HSVP)). Given a basis matrix B and
an approximation factor v > 0, find a non-zero vector v € L(B) such that ||v] <
v - vol(L(B))/™,

Another important lattice problem is:

Definition 3 (Closest Vector Problem (CVP)). Given a basis of a lattice L and a target
vector t, find a vector in L that is closest to t.

CVP is a generalization of SVP because we can easily convert an instance of SVP to
one of CVP. This implies that CVP is at least as hard as SVP. From a practical point of
view, however, both problems are considered equally hard due to Kannan’s embedding
technique [16] that can transform CVP into SVP.

A particular case of CVP that we will use later in this paper is

Definition 4 (Bounded Distance Decoding (BDD)). Given a basis matrix B and a target
vector t within distance aX;(L) of L = £(B) for a constant 0 < a < 1, find a vector in L
closest to t.

There are other important lattice problems related to the security of modern lattice-
based cryptosystems such as the learning with errors and NTRU problems (e.g., see [22]).
Most lattice problems can be reduced to SVP or CVP, and hence, SVP and CVP are
fundamental. As Kannan’s embedding transforms CVP into SVP, we focus on SVP in this
paper to simplify the narrative. However, the proposed methods are applicable to other
lattice problems.



3 Related Work

We summarize existing lattice problem solvers with a particular emphasis on SVP. The
Darmstadt SVP challenge [25] has been considered to be an established venue for assessing
algorithms for SVP. Lattice bases for dimensions from 40 to 200 are made publicly available.
More precisely, for each dimension and for an integer called the seed, a unique lattice basis
is generated and listed. For each listed lattice L, any non-zero lattice vector with length less
than 1.06GH(L) is considered as a solution (recall Equation (2) for GH(L)). In other words,
it is a contest for solving HSVP with v = 1.05/n/2me, or equivalently, with approximation
factor 1.05. Solutions with smaller approximation factors are closer to shortest. Precisely,
the number of vectors with approximation factor f is estimated by f™ by the Gaussian
Heuristic. For example, finding a vector in an 130 dimensional lattice with approximation
factor 1.04 is 3.5(~ 1.05'3%/1.04'%°) times more difficult than finding one with 1.05. There
is a fundamental difference in exact and approximate SVP solvers. In the latter, algorithms
search for short vectors within a given approximate factor. In contrast, (even probabilistic)
exact SVP solvers find a shortest vector with a positive probability.

3.1 Approximate-SVP solvers

We present recent works for solving the SVP challenge in high dimensions, where n > 150.
Note that the approximation factors of most of the current records for dimensions greater
than or equal to 150 are over 1.02, so they are not likely to be the shortest vectors. In
early 2017, an SVP instance in dimension 150 was first solved with an approximation factor
1.04192. It was reported in [36] that it took 394 days using up to 864 machines. The work
is based on the random sampling [26], which samples small z;’s in (1) until a short vector
is found. After August 2018, a number of records for the SVP challenge in dimensions
up to 155 were updated using the general sieve kernel, called G6K [2]. G6K supports a
variety of lattice basis reductions and sieve algorithms (see Section 4). It provides a highly
optimized, multi-threaded, and tweakable implementation as an open-source C++ and
Python library. Most of the records for n > 130 and notably the current highest dimension
record (180 dimensional) have been found using G6K. It was reported in [10] that the 180
dimensional record took 51.6 days on a single machine with 4 NVIDIA Turing GPUs, and
its approximation factor was 1.04002. They used the sub-sieve strategy [9] of G6K, which is
an approximate algorithm (see Section 4.3), and worked with projected lattices of up to
dimension 146 to fit within 1.5 TB of RAM.

3.2 Exact-SVP solvers

We present several works solving exact-SVP based on ENUM (see Section 4). As de-
scribed in the previous section, ENUM is asymptotically slower than sieve. However, it
is a deterministic algorithm with polynomial-space (cf., sieve requires exponential-space).
Parallelization for ENUM is conducted for traversing the enumeration tree by divide-and-
conquer [7, 14, 17]. Another parallelization approach has been pursued by randomization.



Applying unimodular transformation to the basis vectors does not change the lattice, but
it alters the enumeration tree. Hence, a parallel search can be conducted on the bases
obtained by applying randomly generated unimodular matrices to the basis. Based on this
idea, a shared-memory parallelized ENUM system based on randomization and pruning
techniques was presented in 2019 [4]. It reported the running time of solving exact-SVP
over 60 cores for dimensions up to 100. In 2020, a massive parallel exact-SVP solver, called
MAP-SVP, was developed in [35] using the Ubiquity Generator framework [37]. It was the
first distributed asynchronous cooperative solver based on randomization and ENUM with
pruning techniques. MAP-SVP found solutions for many instances of the SVP challenge in
dimensions up to 127. In particular, it took 147 hours to find a new solution in dimension
127 (with seed 3) using 100,032 cores. The approximation factor of the solution is 0.97573,
which is the smallest among the current records with dimensions over 120.

4 Lattice Algorithms

We summarize practical algorithms solving lattice problems, mainly SVP (see [21, 39] for a
survey). We also discuss our extension of these algorithms for parallel computation.

The Gram-Schmidt orthogonalization of a basis {by,...,b,} is the set of orthogonal
vectors bj, ..., b} defined recursively by

. N - « <bza b;> . .
by :=by, b;=Db;— Zuijbw ij = e (i > ) (3)
j=1 J

for 2 <7 < n. Let B* denote the matrix whose rows are the Gram-Schmidt orthogonalization
of the basis with the basis matrix B. Let U = (u;;) denote the lower triangular matrix
given by (3) and p;; = 1. Then, we have B = UB*, and hence, vol(L) =[]}, ||b}]| for the
lattice L = £(B). For each 1 < k < n, define an orthogonal projection map as

T R" — (b%, ... b’)p, Wk(v):;Wbi (v € R™),

where (by,...,b!)r is the sub-vector space spanned by {bj,...,b%}. The lattice in R"
spanned by projected vectors m(by), . . ., mk(by,) is denoted by 7 (L) and called the projected
lattice. The lattice my(L) is of dimension n — k + 1 and its volume is equal to []}_, ||b}]|.

4.1 Enumeration (ENUM)

ENUM is a deterministic algorithm solving SVP exactly. For an SVP instance of dimension
n, the time complexity is 2°0("*), but the space complexity is a polynomial in n. Given a
basis {by,...,b,} of a lattice L, ENUM is based on a depth-first tree search for an integer
combination (v1,...,v,) such that s = v;b; + -+ - + v, b,, has the shortest norm in L\ {0}.



With the Gram-Schmidt information (3), the target vector can be written as

n i—1 n n
i=1 j=1

j=1 i=j+1

By the orthogonality of b!’s, the projected vector m,(s) has length

n n 2
Imr(s)> = <Uj + > uijvi> B3> (1<k<n).

i=k =741

Given a search radius R > 0, ENUM constructs an enumeration tree of depth n, whose
nodes at depth n — k 4+ 1 correspond to the set of all vectors in 7, (L) with a maximum
length of R. The key observation is that if a shortest vector satisfies ||s|| < R, its projections
satisfy ||mg(s)||* < R? for all 1 < k < n; hence, it appears as a leaf of the tree. These n
inequalities provide an efficient enumeration of the tree. The total number of nodes to be
searched can be estimated using the Gaussian Heuristic as »_,_, Hy, where

Rw, Rtw,

VOl(ﬂ-nJrlff(L)) Hz =n+1— é”b H

Therefore, it is crucial to choose a good R, which is sufficiently small but larger than
the shortest norm. One useful strategy is pruning [12] where a smaller tree is built
by replacing the inequalities ||m4(s)||* < R? by ||m(s)||> < RZ,,_, with a shorter radii
Ry <--- < R, = R at each depth defined by a pruning strategy. This is a probabilistic
method because it is not certain that s can be found in this pruned tree.

Another strategy is parallelization. We start with a sufficiently big R. When one
instance finds a short vector, its norm R’ is shared across all instances. Because the shortest
norm should be less than or equal to R’, we can replace R with R’ to reduce the size of the
enumeration tree.

We combine both strategies in CMAP-LAP.

4.2 Sieve

Given a lattice L of dimension n, sieve is a probabilistic algorithm that solves SVP exactly
with a time complexity 290, which is asymptotically faster than ENUM. The downside is
that it requires exponential space of 29" Consider a ball S centered at 0 and of radius
R with A\;(L) < R < O(M\(L)). Then, Equation (2) implies #(L N S) = 29, ENUM
performs an exhaustive search of L NS by going through all the vectors in the union set

n_ (me(L) N S), whose total number is 2°(*). In contrast, the sieve relies on the following
observation. Let M be a set of vectors uniformly sampled from L N.S. The shortest lattice
vector would be included in M with a probability close to 1 if #M > #(L N S). More
precisely, there exists a vector w € L N S such that w and w + s are both contained in
M with a positive probability for some shortest vector s € L\ {0}. Therefore, s can be
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found by computing differences of pairs in M. There are various implementations of sieve
algorithms that differ mainly in how to sample M such as GaussSieve [19]. Similarly to
ENUM, the choice of R is crucial to the sieve.

4.3 Project-and-lift

The computational complexity of every known algorithm for SVP is exponential. A
workaround is to work with a smaller dimensional lattice and lift its shortest vector to find
a short vector in the original lattice. A straightforward but effective approach is to project
the original basis vectors by 7 for some 1 < k < n. First, find shortest vectors in the
projected (n — k + 1)-dimensional lattice by, for example, ENUM or sieve, and lift them to
the original lattice so that their projections by 7. coincides with the shortest vectors in the
projected lattice. The latter lifting process is equivalent to BDD. In this manner, however,
it is not guaranteed that a shortest vector will be found.

Sub-sieve is proposed in [9] which implements this idea using sieve. Specifically, a sieve
algorithm is performed in a projected lattice 7 (L) to obtain a list of short lattice vectors:

Dipr ={0#vem(L):|v| <7 -GH(me (L))}

for a constant 7 such as 7 = \/g . In practice, k is chosen to be around n — 30 for high-

dimensional lattices [2, 10]. Then, by Babai’s algorithms [3], the short vectors in the inverse
image W;l(Dk’T) C L are enumerated.

We introduce the novel sub-ENUM algorithm, which is suitable for massive parallelization.
The first part is very similar to sub-sieve. An ENUM algorithm is performed in a projected
lattice 7, (L) to obtain a list of short lattice vectors Dy, .. Then, instead of Babai’s algorithms,
an ENUM algorithm is again used to find a shortest vector for a k-dimensional lattice
spanned by {by,...,bg_1,v}.

4.4 Basis reduction

Given a basis of a lattice, basis reduction algorithms seek for a new basis of the same
lattice with short and nearly orthogonal basis vectors (such basis is called reduced or good).
Below, we introduce several practical algorithms. These algorithms do not always find
the shortest vector, but they are much faster than exact-SVP solving algorithms, such
as ENUM and sieve. In practice, lattice basis reduction is performed as a pre-processing
step of ENUM and sieve to reduce their expensive cost. In contrast, short (not necessarily
shortest) vectors found by ENUM and sieve can be used in conjunction with lattice basis
reduction algorithms to obtain better bases. Our CMAP-LAP cleverly manages this mutual
dependency.

Lenstra-Lenstra-Lovasz (LLL) Given a parameter ; < § < 1, abasis {by,...,b,} is d-
LLL-reduced if it satisfies the following two conditions: (i) (Size-reduced) The Gram-Schmidt
coefficients satisfy |p;;] < & for all i > j. (ii) (Lovasz’ condition) 6|[bj_;[|* < ||m_1(by) ||

9



for all 2 < k <n. An LLL-reduced basis can be found by the LLL algorithm [18], which
swaps adjacent basis vectors by_; and by, iteratively if Lovasz’ condition does not hold.

LLL with deep insertions (DeepLLL) It is a simple generalization of LLL [27], in
which the swapping is replaced with so-called deep insertion. If ||mi(b;)||> < &||bZ||? for some
i < k, the k-th vector by, is inserted before b; as {b1, ..., b;_1, b, b;, ..., br_1,bri1,...,b,}.
In this case, the new Gram-Schmidt vector at the i-th position is given by 7;(by), which is
strictly shorter than the old Gram-Schmidt vector b;.

Block-Korkine-Zolotarev (BKZ) Givenabasis B = {by,...,b,},let B; j = {b;,...,b;}
for i < j. Denote by B ; the projected vectors {m;(b;), 7i(bi+1), ..., m(b;)}, and by Ly
the projected lattices spanned by BE‘ i For a block size 2 < 8 < n, the basis is 5-BKZ-
reduced if it is size-reduced and it satisfies ||[b}|| = A1 (L(j 1) for every 1 < j < n with

k = min(f —1,n). A f-BKZ-reduced basis can be found by the BKZ algorithm [27], which
calls LLL to reduce every local block By; ;1 and ENUM or sieve to find the shortest vector

in the projected lattice Ly . When 8 = n, BKZ finds the shortest vector of L. In
general, the parameter S controls the trade-off between the quality of the basis and the
computational cost. The computational complexity of BKZ is not known.

DeepBKZ This is an enhancement of BKZ algorithm [38], in which DeepLLL is called a
subroutine alternative to LLL. Experiments in [38, 40] show that short lattice vectors can
be found by DeepBKZ with a smaller block size 8 than BKZ.

Multi-Share DeepBKZ We introduce a novel parallelized extension of DeepBKZ, which
exploits the data-sharing scheme of CMAP-LAP. The DeepBKZ algorithm searches for a vector
v satisfying 0 < ||7;(v)|| < ||7;(b;)|| from a restricted search range {v | 7;(v) € Ly; 1 }-
It relies on ENUM or sieve for the search of v, and increasing the search range (via the
choice of the parameter ) results in a better lattice basis with a higher computational cost.
If there is a pool of short vectors, the DeepBKZ algorithm can look up the pool for v. The
pool is shared with other instances of the DeepBKZ algorithm, even with different lattice
algorithms.

5 Design of CMAP-LAP

It is essential for a practical solver to utilize the multiple lattice algorithms introduced in
Section 4. Most of the existing solvers discussed in Section 3 rely on either the combination
of lattice reduction and sieve or the combination of lattice reduction and ENUM. These
algorithms are inter-dependent and executed sequentially. In contrast, CMAP-LAP is built
on a new multi-algorithm paradigm in which multiple lattice algorithms are executed
cooperatively and yet asynchronously in parallel. The key idea is that each lattice algorithm
described in Section 4 can be considered a sampler of short lattice vectors. Furthermore,

10



each algorithm benefits from the knowledge of short vectors; for example, the enumeration
tree of ENUM shrinks according to the upper bound R of the shortest norm. Using different
algorithms and randomly transformed bases, we can increase the number of samplers, which
mutually boosts the sampling performance by sharing the information of short vectors found
(see Figure 2). To realize the novel multi-algorithm paradigm, CMAP-LAP was developed
entirely from scratch utilizing the full power of the Generalized UG, which is a generic
high-level task parallelization framework.

[ Reduction ]

(§4.4)
. /// \\
v ¥ 4
Enumeration Sieve
(§4.1, 4.3) < — (§4.2, 4.3)
___.> —.—p
reduced basis short vectors ~ current shortest
vector found

Figure 2: Interaction among SVP algorithms: Basis reduction generates a reduced basis,
over which enumeration and sieve can find short vectors efficiently. In contrast, enumeration
and sieve find short vectors so that basis reduction accelerates to find a more reduced basis.

5.1 Architecture of CMAP-LAP

rank O
LoadCoordinator (LC)

Instance Pool Task Pool Solver Pool Share-data Pool
W W Checkpoint [l Local Solver
[__ENUM | [ sieve | Writer Local Solver
rank 1 @ rank 2 @ rank 3 @ rank N @

Solver: Solver: Solver: Solver: Solver: Solver: (thread = 0) Sieve
(thread =0) | ! (thread = 1) (thread = 0) (thread=0) |; (thread=1) List sampler

DeepBKZ DeepBKZ ENUM ; DeepBKZ ENUM ; ’ ‘

Figure 3: System overview of CMAP-LAP for SVP

We describe the architecture of CMAP-LAP. The Generalized UG consists of a controller
process, LoadCoordinator (LC), and multiple Solvers. Each Solver communicates with LC

11



asynchronously. This system is suitable for multiple processes that run different algorithms
and share information, as needed. CMAP-LAP adopts the Supervisor-Worker load coordi-
nation paradigm (see [23]), where LC is Supervisor and Solvers are Workers. The main
difference to the typical Master-Worker paradigm is that the Supervisor’s task is limited
and Workers act more independently by exchanging small messages with Supervisor as
needed, avoiding unnecessary overhead to manage Workers. The LC has the following data
pools: 1) Instance Pool, 2) Solver Pool, 3) Task Pool, and 4) Share-Data Pool. (See Figure
3). The LC creates special purpose local threads as needed: 1) Checkpoint Writer thread 2)
Local Solver threads.
Each Solver carries a Task, which is a triple of:

e Instance is the data that represents the problem to solve, which in the case of SVP is

a lattice basis, and in the case of CVP is a lattice basis and a target vector.

e Parameters describe the type of algorithm and the parameters of the algorithm. For

example, an ENUM algorithm with a pruning strategy from Parameters.

e Status represents the algorithm’s progress, e.g., for the depth-first search of the

enumeration algorithm, it is the node currently being searched.

Given a lattice problem, each Solver is created in one core and assigned a Task by LC.
The basic flow of CMAP-LAP is as follows (see Figure 4):

1.

2.

LC stores given Instance in the instance pool.

LC pops an Instance from the instance pool, sets Parameters for Instance, and
initializes Status. The created Task = (Instance, Parameters, Status) is stored in the
task pool.

If there exists an idle Solver, LC pops a Task in the task pool and sends it to the
idle Solver, and stores it to the solver pool.

Each Solver takes the algorithm and its input from the received Task, and occasionally
shares information to LC, such as Instance, Data, Status. The information sent depends
on the algorithm, as shown in Figure 2. LC stores the information in the pool according
to this type. In addition, Solver sends its Status to LC, and LC updates Task in the
solver pool for the checkpoints.

Information in the share-data pool is occasionally retrieved from LC, and shared among
Solvers. Each Solver updates its Parameters according to the shared information.
See Section 4 for how the shared information is utilized by each algorithm run by the
Solver.

When a Solver finishes the assigned Task, it sends its final Status to LC and becomes
idle.
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LC always checks for messages from Solver. Messages received by the LC are processed
it through the message handler according to the type of message. As described above,
Solver only communicates with LC, and Solver does not share information with other
Solvers directly. This communication via the share-data pool is an effective solution for
massive parallelization to achieve 1) the reduction in the number of communication paths,
2) the management of the total amount of communication, 3) the control over the memory
usage, and 4) 1/0 for checkpoint and progress takes place solely within LC.

The detail of the components of CMAP-LAP is given as follows.

5.1.1 Instance Pool

Instance pool stores instances of the problem together with their priorities. For example,
bases transformed by unimodular matrices give the same lattice and represent different
instances of the same lattice problem. Provided a lattice basis that specifies the lattice
problem, the instance pool is initialized with the single basis. LC stores bases sent from
Solvers, which run the reduction algorithm. In the case of SVP, the priority can be
computed by the estimated total number of nodes in the enumeration tree described in
Section 4.1 such that the shortest vector will be found more efficiently with an instance of
higher priority. LC pops an instance with the highest priority from the instance pool and
creates a Task from it.

5.1.2 Task Pool

Task pool stores Tasks, which are triples of (Instance, Parameters, Status). It manages the
Tasks waiting to be executed. LC assigns the Task with the highest priority to a Solver. In
this way, the Tusks which would lead to better solutions quickly, are prioritized. Multiple
Tasks may be generated from a single instance using different algorithms and parameters.

5.1.3 Solver Pool

Solver pool stores information of the running Solvers. Each Solver is managed by (Solver
Id, Task). The Status of Task is periodically updated by the Status message sent from
Solver. This allows LC to grasp the status of all Solvers. When Solver finishes the
assigned Task, it is registered as idle. In addition, when LC wants to assign a new Task of
high priority immediately, LC chooses a running Solver to interrupt the current Task.
The number of active Solvers that runs on a single machine node is determined by LC
according to the computational cost of Task. For example, sieve algorithms have a large
memory footprint to maintain a large number of lattice vectors; a single Solver becomes
active and runs on a single machine node. Meanwhile, ENUM and reduction algorithms use
little memory, and the same number of Solvers as that of the cores run on a single node.
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5.1.4 Share-Data Pool

Share-data pool stores information that is shared across multiple Solvers. In the case of
CMAP-LAP, a typical type of information sent from Solvers is a lattice vector of small
norm. The size of the message is equal to the product of the dimension (e.g., 130) and the
size of the scalar (e.g., long integer). LC checks if the sent vector is already in the pool. If it
is not in the pool, an entry (Data, Sent-Solvers, priority) is created in the pool, where Data
is the sent vector. Sent-Solvers is a set that records the Solver Ids to which Data has been
sent. The priority is computed by its norm. When the pool size gets bigger, LC decides
which entries remain stored in the pool according to their priorities. At an interval, LC
selects an entry according to the priority and pushes it to those Solvers whose Solver Ids
are not in Sent-Solvers and adds their Solver Id to Sent-Solvers. In this way, information is
shared among all Solvers efficiently while controlling the total amount of communication.
The interval at which Solvers and LC push information can be tuned depending on the
configuration of the machine. There is no danger of locking regarding the order of messages
in our scheme.

The share-data pool is the most memory-consuming part of the LC. The size of share-data
pool increases over time, and the limit of the pool size must be set appropriately according
to the available memory. In particular, the size of the Sent-Solvers is dominant and should
be estimated carefully in case of massive parallelization. Moreover, the cost of Data retrieval
increases when the pool size and the number of Solvers are large. In this case, the limit of
the pool size and the frequency of data sharing are suppressed.

5.1.5 Fully Checkpoint Functionality with Checkpoint Writer thread

One of the most powerful features of CMAP-LAP is the checkpoint mechanism for storing
high-level information of the whole system. Lattice problems are hard and often require
millions of core hours. Thus, it is critical to have the functionality to record the progress
and resume after interruption. Our checkpoint functionality is carefully designed so that
high-level, platform-independent information is stored to enable restart even on different
platforms.

When a checkpoint is requested, the data in the pools in LC are serialized and stored in
checkpoint files using zlib [8], a portable compression library. At the time of restart, CMAP-
LAP reads the checkpoint files to restore pools. The task pool contains Tasks, including
the progress information Status, which can be assigned to Solvers to resume. When the
checkpoint files are loaded in a different environment from the one that has saved them,
the number of cores and the available memory may be different. In this case, LC distributes
the Tasks in the task pool to Solvers as much as possible, leaving the other Tasks in the
task pool. At the same time, LC creates new Tuasks when a large number of Solvers are
available.

The technically important point is that the message processing from Solvers to LC is
blocked when LC writes checkpoint files. With many MPI packages, this is problematic
because the size of the queue of MPI messages waiting to be received becomes large and
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eventually leads to an error when the upper limit is reached. This problem becomes more
pronounced for larger-scale execution. To avoid this problem, LC temporarily creates a copy
of the pools on memory, and a dedicated thread in LC, called Checkpoint Writer, is created
to write the copy in the checkpoint files. This has significantly reduced the block time for
checkpoints and enabled CMAP-LAP to run stably on large-scale platforms.

5.1.6 Local Solver threads

Some solvers can be created as a thread in LC. These Local Solvers work on lightweight
tasks requiring access to the entire pools. For example, Local Solvers list the projected
vectors in the share-data pool, which are found by Solvers performing sub-ENUM and
sub-sieve. Because Local Solvers have access to the share-data pool without communication,
the total amount of communication is reduced in this way.

5.2 Implementation Technicalities

5.2.1 Extendability

There are many lattice problem solvers, including the state-of-the-art sieve solver G6K,
which is available as open-source software. CMAP-LAP’s flexible and highly modular design
allows solvers to be incorporated as a part of the system. For the ease of incorporation,
an interface class ParaSolver is provided, with which existing solvers can be turned into
Solvers with minimum effort. Each Solver has a ParaSolver object that takes care of all
the communication, and existing solvers only have to receive input data and send the results
via ParaSolver’s API (see bottom of Figure 4). The solvers are not limited to single-rank
applications. The UG has a feature to parallelize multi-rank applications. See [20] as an
example.

5.2.2 Hybrid Parallelization

CMAP-LAP uses hybrid parallelization that combines MPI communication with C+411
thread communication. LC and Solver have two kinds of communicators: one is ParaComm,
which wraps MPI communication functions, and the other is LocalComm, which wraps
C+-+11 communication functions. ParaComm is used for inter-process communication,
and LocalComm is used for inter-thread communication within a process (see Figure 5).
Because all Solvers know the MPI rank of LC, Solvers send messages directly to LC using
ParaComm and ISendQueue, which is described in the following section. In contrast, when
LC sends a message to Solver, LC first sends a message via ParaComm to the MPI rank
where the Solver resides. The solver with 0 thread-Id receives the message; we call this
the rootSolver. Then, the rootSolver sends the message to the Solver using LocalComm.
Therefore, the rootSolver receives more messages than the other Solvers, the received
messages must be checked frequently, even during the execution of the algorithm. However,
the idle time for message processing can be reduced by using non-blocking communication,
as described below.
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Because LC receives messages from all busy Solvers, the LC’s load is the highest of all
the processes in the case of large-scale computation. In addition, depending on the type
of messages received, processing such as inserting Data into the share-data pool occurs in
LC. This blocks the LC message processing and delays the receiving of the messages. Note
that the load coordination paradigm used in CMAP-LAP is Supervisor-Worker [23] and then
small message communications are performed between LC and Solvers for load balancing.
Although the frequency for the small message communications can be controlled by run-time
parameters, they are crucial in large-scale computations such as over 100,000 Solvers used.
Therefore, in CMAP-LAP, to reduce the idle time of communication in Solver, we send all
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messages from Solver to LC by using MPI_ISend, the non-blocking communication. This
leads Solver to resume the algorithm without waiting for the check that LC receives the
message. To prevent the objects deleted before they are sent, we copy the objects sent
by MPI_ISend to a queue called ISendQueue in the memory of that process. We remove
them from ISendQueue as soon as the transmission is confirmed by MPI_Test (see Figure
6). By examining the size of each ISendQueue, we can determine the number of unreceived
messages of LC. Therefore, we set an upper limit on the size of ISendQueue and do not send
messages exceeding the limit, thereby preventing many messages from accumulating in LC.

6 Numerical Experiments

In this section, we evaluate the performance of CMAP-LAP with the SVP challenge. The
computing platform used in the following numerical experiments includes the Lisa and
Emmy at Zuse Institute Berlin, and ITO at Kyushu University. These specifications are
summarized in Table 1.

Table 1: Computing platforms used

Machine Memory / node CPU CPU frequency # of nodes # of cores
Lisa (HLRN IV) 384 GB Intel Xeon Platinum 9242 (CLX-AP) 2.30 GHz 1,080 103,680 (96 x 1,080)
Emmy (HLRN IV) 384 GB Intel Xeon Platinum 9242 (CLX-AP) 2.30 GHz 128 12,288 (96 x 128)
ITO 192 GB Intel Xeon Gold 6154 (Skylake-SP) 3.00 GHz 128 4,608 (36 x 128)
CAL A 256 GB Intel(R) Xeon(R) CPU E5-2640 v3 2.60 GHz 4 64 (16 x 4)
CAL B 256 GB Intel(R) Xeon(R) CPU E5-2650 v3 2.30 GHz 4 80 (20 x 4)

6.1 Solving SVP with CMAP-LAP

We briefly describe the overall behavior of CMAP-LAP for solving SVP. Recall that an SVP
is specified by a lattice basis matrix. At the beginning of the execution, the LC reads the
basis matrix from a file and stores it in the instance pool. LC creates a Local Solver to
transform the basis with random unimodular matrices and stores the resulting bases in
the instance pool. Then, LC generates DeepBKZ Tasks for the bases in the instance pool.
The reduced bases are sent from Solvers performing DeepBKZ Tusks to LC, and LC stores
them in the instance pool. LC also generates ENUM and sieve Tusks using the bases in the
instance pool. Short lattice vectors are occasionally sent from Solvers to LC, which are
inserted into the share-data pool. At regular intervals, Solvers request LC to send short
vectors from the share-data pool. DeepBKZ Tuasks insert the received short vectors into the
basis, sieve Tasks use the received short vectors as sampling seeds, while ENUM adjusts
the search radius according to the norm of the shortest vector ever found. Some of the
contents of the pools in LC are written to checkpoint files at regular intervals: vectors in
the data-share pool, basis matrices in the instance pool, and Tasks in the solver pool. The
Task mainly contains the basis matrix and the vector and parameters needed to run the
algorithm. When restarting, as described in Section 5.1.5, there are few processes other
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than reading checkpoint files. We calculate the communication interval and the number of
vectors shared from the number of cores, and the maximum MPI buffer size to relax the
communication delay.

Since computing the exact norm of a shortest vector of a given lattice is as hard as
computing a shortest vector, we evaluate the progress of solving an SVP instance by the
approximation factor defined in Section 4. A smaller value of the approximation factor
indicates a better (temporary) solution. With the Gaussian Heuristics, the approximation
factor should be about 1.0 for a good candidate of a shortest vector. From a cryptanalysis
viewpoint, an approximate factor of 1.05 is often set as a goal as in the SVP challenge.
The numbers of lattice vectors having smaller approximation factors decrease quickly;
for example, in dimension n = 130, the ratio of the numbers of lattice vectors having
approximation factors 1.20 and 1.30 is approximately (1.20"/1.30") ~ 3.03 x 1075. In other
words, it is 33,000 times harder to reach an approximate factor of 1.20 than of 1.30. It
becomes increasingly harder to find lattice vectors with smaller approximate factors; for
example, the ratio of the numbers of lattice vectors having approximation factors 1.10 and
1.20 is approximately (1.10"/1.20") ~ 1.22 x 1077.

6.2 Information sharing

We evaluate the effect of our novel information-sharing scheme and the parallelization
with the lattice reduction algorithm. We performed experiments running DeepBKZ with
£ = 30 for five instances of the SVP challenge of dimension 130 with seeds from 0 to 4. We
executed all computations on the CAL A and CAL B with 144 cores.

We show the efficiency of the information sharing with CMAP-LAP. In CMAP-LAP,
Solvers share multiple short lattice vectors via the share-data pool in LC. The amount of
information shared among Solvers can be controlled by the size of the share-data pool.
Figure 7 compares the transition of the approximation factor (averaged over 5 instances)
overtime with the size of the share-data pool 0, 1, and 100,000. When the size of the
share-data pool is set to zero, no information is shared and all the Solvers are executed
independently. When the size of the share-data pool is set to 1, only the current shortest
lattice vector (the current solution) is shared among Solvers. This is equivalent to the
sharing scheme of MAP-SVP. We observe that the approximation factor is drastically reduced
when the size of the share-data pool is set to 100, 000. This shows the effectiveness of our
data sharing scheme.

6.3 Coordination of heterogeneous algorithms

We show the effectiveness of CMAP-LAP’s multi-algorithm paradigm, in which heterogeneous
lattice algorithms are executed concurrently in coordination. In this experiment, we fix the
number of Solvers assigned to each Task, that is, DeepBKZ, sub-ENUM, and GaussSieve.
Each Solver is assigned the the same type Task when it completes the current Task.
Figure 8 and 9 shows the results for a 110- and 130-dimensional SVP with four different
configurations of the Tusk assignment, respectively. We ran the experiment on the CAL
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Figure 7: Transition of the approximation factors for different share-data pool sizes;
execution were done on the CAL A and CAL B with 144 cores. The solid blue lines in
Figure 7, 9 and 11 represent the same experimental result.

A and CAL B with 144 cores for an hour or five hours, and the 1 core was assigned to
LC, and the other 143 cores were assigned to three types of Tasks. We set the size of
the share-data pool to be infinity. The best result was obtained with the combination
of (DeepBKZ, sub-ENUM, GaussSieve) = (110, 32, 1). To investigate the reason, we
examine the distribution of vector norms in the share-data pool for two configurations of
130-dimensional experiments (see Figure 10). The total number of vectors shared through
the share-data pool for (DeepBKZ, sub-ENUM, GaussSieve) = (143, 0, 0) was 36, 055,
and that for (DeepBKZ, sub-ENUM, GaussSieve) = (110, 32, 1) was 101,952. In both
configurations, shorter vectors were found by DeepBKZ Solver. However, a large number
of relatively short vectors found by sub-ENUM and GaussSieve helped DeepBKZ find
shorter vectors.

6.4 Scalability

To see the scalability of CMAP-LAP, we experimented with the same 130-dimensional SVP
instances as in Section 6.2 on Lisa using 2,976, 6,048, 12,192, 24,480, and 49,056 Solvers
with DeepBKZ (5 = 30). We measured the average number of the main iterations (called
the tour) performed by each Solver within six hours. The number of tours provides a
good estimation of the progress of the DeepBKZ algorithm. As we observe from Table 2,
the average number of tours stay almost constant when the number of Solvers increases.
Therefore, even if the number of Solvers becomes large-scale, there is no significant change
in the performance of each Solver.
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Figure 8: Same as Figure 7, but dimension is 110 and different allotment of algorithms;
execution were done on the CAL A and CAL B with 144 cores.

Table 2: Iterations of DeepBKZ of each Solvers for 130-dimensional SVP
# of Solvers 2,976 6,048 12,192 24,480 49,056

averaged

4 of iterations 45.86 43.32 43.08 40.10 57.07

In addition, we evaluated the effect of parallelization on the transition of the approx-
imation factor (see Figure 11). We experimented with the same SVP instances as in
Section 6.2 using different numbers of Solvers. The size of the share-data pool was set to
100,000. We used the CAL A and CAL B with 144 cores and ITO with 2,304 cores for
this experiment. The best (minimum) approximation factor obtained within 5 hours with
143 Solvers was 1.176 and 1.117 with 2,303 Solvers. In terms of Gaussian Heuristics,
the latter is considered to be 1.17613°/1.117'3° ~ 800 times better. It took 14,844 seconds
to reach the approximation factor of 1.176 with 143 Solvers while it took 2,965 seconds
with 2,303 Solvers, which is a speed-up by a factor of 5.0 compared with 143 Solvers.
Similarly, the time for the approximation factor to fall below 1.2 was 7,319 seconds with
143 Solvers and 1, 360 seconds with 2,303 Solvers, which is a speed-up by a factor of 5.3.

6.5 Stability with massive parallelization

We show the results of a long-time execution of CMAP-LAP.
Figure 12 shows the result of multiple executions of a 134 dimensional SVP instance.
We ran the experiment 13 times using our checkpoint-and-restart functionality on the
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Figure 11: Same as Figure 7, but for different number of Solvers; execution were done on
the CAL A and CAL B with 144 cores, and ITO with 2,304 cores.

Lisa supercomputer with 103,680 cores. The first few executions were performed for short
periods to test the checkpoint functionality. During the test, we observed occasional aborts
due to an excessive number of MPI messages waiting to be received by the LC. As a
workaround, the Checkpoint Writer (described in Section 5.1.5) was developed, and the
upper limit of the size of ISendQueue was set based on the number of messages the Solver
sends to the LC (described in Section 5.2.3). This has improved the stability and enabled a
longer execution time. We have tested up to 42 hours of continuous execution. Together
with checkpoint and restart, the approximation factor was improved over time.

Figure 13 shows the result of multiple executions of a 130 dimensional SVP. This time,
we tested a restart from a checkpoint created on a different environment. The first 14
executions were performed on the Emmy with 12, 288 cores and the last 1 execution was
restarted on the Lisa with 103,680 cores. Although the number of cores used in the Lisa is
8.44 times more than that of the Emmy, the execution was carried over by the checkpoint
functionality without any problem. The Tasks running on the Emmy when the checkpoint
was created were executed on the Lisa immediately after the restart, and new Tasks were
generated from the instance pool and assigned to extra Solvers available on the Lisa. It
should be noted that the approximation factor was improved in the last execution after the
final restart (see the purple segment in Figure 13).

The interval of the creation of checkpoint files were set to an hour. It took an average
of 1,531.75 seconds per checkpoint for the Checkpoint Writer to compress and write the
pool’s information in files, whose size was approximately 7.09 GB on memory. In contrast,
it took only an average of 2.77 seconds for LC to copy the pools for the Checkpoint Writer.
In this manner, the blocking time of LC’s message processing was greatly improved by the
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Figure 12: Transition of the approximation factor of a 134-dimensional SVP for long-time
execution on the Lisa with 103,680 cores. Each dot represents the beginning of restart from
checkpoint.
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Figure 13: Transition of the approximation factor of a 130-dimensional SVP for long-time
execution on the Emmy with 12,280 cores and Lisa with 103,680 cores.

Checkpoint Writer. The averaged time required to read a checkpoint is only 64.75 seconds,
and since the checkpoint contains Task information, execution can be restarted without
prepossessing.

7 Conclusion and Future Work

Lattice problems are a type of discrete optimization problem that is difficult to solve, even
for a quantum computer. There is little research on solving this problem in large-scale
distributed systems. In addition, the difficulty of solving the lattice problems supports
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the security of major cryptographic systems in post-quantum cryptography. Therefore,
investigating the potential of large-scale parallel computation of the lattice problems is
important in the field of optimization and cryptanalysis.

This paper proposes a novel large-scale framework, CMAP-LAP, for lattice problems.
CMAP-LAP offers a multi-algorithm paradigm in which multiple types of lattice algorithms
run in parallel while sharing information to improve the performance of the entire system.
To realize this paradigm, we have developed four key components. Our communication
interface class enables hybrid parallel processing, independent of the solver’s internal
algorithms. This makes it easy to incorporate existing solvers, those run not only on shared-
memory systems but also on distributed-memory systems [20]. The efficient collection
and distribution of short lattice vectors by the management process facilitate information
exchange among heterogeneous solvers. This is based on the fact that each lattice algorithm
generates short lattice vectors as by-products, which can be utilized by other algorithms
if shared. Furthermore, the management process generates new tasks from the collected
information and assigns them to the solvers in order of the estimated likelihood of finding
a solution. The periodic collection of all solvers’s progress by the management process
allows the grasp of the overall system status. This is used to adjust the assignment of
tasks to solvers. In addition, a powerful checkpoint functionality is implemented, which is
essential for long execution times. The management of memory and communication delays
is carefully realized, which are essential for the stability of large-scale parallel execution.
Several numerical experiments demonstrated the stability, scalability, and checkpointing
of CMAP-LAP and showed performance improvement through information sharing and
heterogeneous execution of multiple algorithms.

CMAP-LAP has the following limitations. 1) In the experiments in this paper, we used
simple lattice algorithms such as the naive GaussSieve for testing purposes of the framework.
The system can be made more powerful by incorporating state-of-the-art solvers such as
G6K. 2) The memory requirements of the management process can be high in massively
parallel environments with over a million cores. A distributed management of memory
should be developed for further parallelization. 3) The system has been tested only with
SVP. It is readily applicable to other lattice problems, and we will evaluate the system for
them.
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