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Abstract 

The numerical treatment of equivariant parameter-dependent 
nonlinear equation systems, and even more its automation re­
quires the intensive use of group theory. This paper illustrates 
the group theoretic computations which are done in the prepara­
tion of the numerical computations. The bifurcation graph which 
gives the bifurcation subgroups is determined from the interre­
lationship of the irreducible representations of a group and its 
subgroups. The Jacobian is transformed to block diagonal struc­
ture using a modification of the transformation which transforms 
to block diagonal structure with respect to a supergroup. The 
principle of conjugacy is used everywhere to make symbolic and 
numerical computations even more efficient. Finally, when the 
symmetry reduced problems and blocks of Jacobian matrices are 
evaluated numerically, the fact that the given representation is 
a quasi-permutation representation is exploited automatically. 
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Figure 1: Part of a bifurcation diagram 

1. Introduction 

Figure shows some stationary solutions of a parameter-dependent nonlinear 
system in the form 

x = F(x, A), F : IRn X IR -+ IRn , where 

ti(t)F(x,\) = F(ti(t)x,\), Vi€<3, 

with a linear representation i? holds. Such equivariant systems have branches 
of stationary solutions having the same symmetry, e.g. are invariant with re­
spect to isotropy groups H. As different branches may have different isotropy 
groups, all subgroups of G which occur as isotropy groups have to be taken 
into account. There may as well exist conjugate solutions "d{t)x which are 
given by a group operation t € G. At symmetry breaking bifurcation points 
branches with different isotropy groups intersect such that one group is a 
common supergroup of the others. The subgroups fullfill the conditions of a 

1 



bifurcation subgroup, which are arranged in the bifurcation graph. Of course, 
bifurcation points may have conjugate points (see 4 and 5 in Fig. 1 and 6 
and 7). Bifurcation points may be symmetric or asymmetric depending on 
the isotropy groups of emanating branches. 

Concentrating on one bifurcation point only the analysis may be found in 
GOLUBITSKY, STEWART, SCHAEFFER [8], [9], VANDERBAUWHEDE [22] while 
the numerical treatment was first considered by DELLNITZ, WERNER [2], 
and also by HEALEY [11]. 

The basic concept of numerical treatment is to apply the numerical path-
following procedure to the symmetry reduced systems only for one of the 
conjugate branches. The program SYMCON for example includes the nu­
merical pathfollowing algorithm ALCON (DEUFLHARD, FIEDLER, KUNKEL 

[3]). While performing the numerical pathfollowing the bifurcation points 
leading to higher symmetry are detected by sign change of symmetry mon­
itor functions and the points leading to smaller isotropy by sign check of 
determinants ([4]) or other test functions ([16] or [24]). The bifurcation 
points are computed by Newton's method applied to an augmented system 

'([4], [23], [24]). 

These techniques exploite the block diagonal structure of the Jacobian (see 
also [12], [13], [14], [18], and [23]). Since a bifurcation point was found, 
the numerical pathfollowing procedure is restarted and possibly applied to 
a different symmetry reduced system checking determinants of a different 
block diagonal structure. 

While the numerical mathematician concentrates on the numerical methods 
.: for determination and computation of bifurcation points we are interested in 

the automated preparation of examples which are equivariant with respect 
to different groups G. Starting with a database of irreducible representations 
of several finite groups (SYMMETRY [6]), different tasks and questions arise 
than those proposed by numerical mathematicians. 

1. How are the bifurcation subgroups and thus the bifurcation graph 
computed automatically? 

2. How are those subgroups determined which are relevant for a given 
problem? 

3. How is the block diagonal structure with respect to a subgroup ob­
tained if the transformation to the structure corresponding to a super­
group is known? 
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4.: Which information is needed to organize the handling of conjugate 
solutions, especially conjugate bifurcation points? (How acts the group 
G on the bifurcation diagram?) 

5. Which group theoretic computations may be saved because of conju­
gation? , . 

6. How to write a REDUCE program which organizes the numerical eval­
uation of reduced systems and Jacobian blocks efficiently, if the rep­
resentation i? is nearly a permutation representation? 

Continueing the work in [4] the theory of linear representations (SERRE [19] 
^or STIEFEL, FÄSSLER [20]) is used intensively, but not repeated completely. 
First, the analysis of equivariant systems is briefly outlined using the notion 
of symmetrical normal forms.' The computation of the bifurcation graph 
and its relevant part exploiting the interrelationship between irreducible 
representations of a group and its subgroups is given in Section 3. ' 

A deeper understanding of innerConnectivity of irreducible representations 
of G and its subgroups gives the transformation between the block diagonal 
structures corresponding to different groups (Section 4). In the literature 
this is only mentioned for the example of DQ ( IKEDA and M U R O T Ä [13]). 
The handling of conjugate bifurcation points necessitates a deeper under­
standing of the principle of conjugacy (Section 5). Section 6 is dedicated 
to an overall view and the exploitation of special properties of the repre­
sentation i? while Section 7 gives the advantages of Computer Algebra. For 
example the automatic code generation of the transformation matrices with 
the REDUCE [17] package GENTRAN [7] exploits their possible sparsity 
without extra implementational work as done by IKEDA and M U R O T A [13], 
[18]. It is shown how the exploitation of occurrence of permutation repre­
sentations lower the amount of produced C-code. In Section 8 the example 
of an hexagonal lattice dome, introduced in [11] demonstrates the success of 
the mixed symbolic-numeric concept. 

2. Analysis of equivariant systems 

The group theoretic investigations in the Sections 3-5 are derived, because 
we want to investigate the following problem automatically: 
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Let F : IRn+1 —> IRn be an explicitly given function which is G-equivariant 
(VANDERBAUWHEDE [22]), i.e. 

F(ti(t)x,\) = ti(t)F(x,\), V*G<3, (1) 

where i? : G —• Gi(IRn) is a real orthogonal linear representation (i?(f)i?(s) = 
•8(ts)Vt, s G G). The different types of stationary solutions (x,A), i.e. 

F(x,X) = 0, (2) 

are of interest. Because the system(2) is parameter dependent the solutions 
appear in continua. In this section the analysis of this problem class is 
summarized (see [2], [4], [8], and [9]). 

The elements x G IRn are distinguished by their symmetries. Mathematically 
speaking 

Gx :={teG | ti(t)x = x} (3) 

denotes the isotropy group H = Gx of x. In turn x is called H-invariant, if 
•d(t)x = x,Vt G H. The isotropy group H = Gx is the maximal subgroup 
of G with the property, that x is if-invariant. A simple but fundamental 
fact is that equivariant systems have continua of solutions with the same 
isotropy group. Different solution paths with different isotropy groups may 
intersect in the so-called bifurcation points. Depending on whether different 
or equal groups interact they are called symmetry breaking or symmetry 
preserving bifurcation points. Since the Jacobian DF(x*, A*) is singular in a 
bifurcation point (a:*, A*) or has pure imaginary eigenvalues in a Hopf-point 
( x + , A+) , the consequences of the equivariance (1) for the Jacobian have to 
be considered. 

Transformation to block diagonal structure 

For x G IRn with isotropy group H — Gx 

•d(t)DxF(x,X) = DxF(x,\)ti(t), Vt€H, (4) 

•d(t)DxF(x,X) = DxF(x,X), MteH, 

hold. By the theory of symmetry adapted basis (STIEFEL, FAESSLER [20]) 
the Jacobian DxF{x, A) may be block diagonalized with an orthogonal trans­
formation matrix M G IR^n'n^ which depends on H. For this we remind that 
a real irreducible representation of H has the property that it does not split 
into subrepresentations. Up to isomorphy a finite group has a finite number 
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h of real irreducible representations •##. One distinguishes 3 different types 
(real, complex, quaternonian) of real irreducible representations. The type 
of a real irreducible representation of complex type consists of 2 complex 
irreducible representations which are complex conjugate to each other. We 
restrict to groups which have no irreducible representations of quaternonian 
type. 

T h e o r e m 2.1 ([20], [23]): LetH be a group and let & : H -> GL(\Rni) ,n,- € 
IN , i = 1 , . . . , h , be its real irreducible orthogonal linear representations with 
corresponding characters x ' : H -> IR. Let A € IRn,n and •& : H -»• GL(\Rn) 
with •& = Y^i~\ c t^ ' where c,- are the multiplicities. 
If $tA = A'dt is satisfied for all t £ H, then there exist orthogonal matrices 

M = (Mu...,MhH), Mie\Rn'Ci-ni, i = l,...,h, 

Mi = (Miu...,Mini)1 MaZR"'«, i = l , . . . , n t - , 

with the property 

MTAM = diag(Blt...,Bh,)t 5,-G IRn<c 'xn 'Ci, 

MTti(t)M = diag{<di(t)). 

If T3* is an irreducible representation of real type (absolute irreducible) of 
dimension n,-, then 

( Ai \ 

Bi = MjAMi = • •. , M^AMii = A{ e IRc',Ci, 

V Ai ) 

where Ai appears n,- times. 

In [20] a straightforward computation of Mij using projections and the 
Gram-Schmid process is described. But for this the irreducible represen­
tations "&1 and its characters xl>* = l,...,h have to be known. 

The matrix M introduces the coordinate transformation x = Mu. 

Definition 2.2 ([4]): Let F : IRn+1 -* IRn be G-equivariant. Let H be a 
subgroup of G and M = MH the transformation matrix. Then the function 
g : IRn+1 -*• IRn defined by 

g(u,X):=MTF(Mu,X) 

is called the symmetrical normal form of F with respect to H. 
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The name symmetrical normal form is justified by the fact that the Jacobian 
Dug(u, A) has block diagonal form for every H-invariant point x = Mu. 

In these coordinates we have in analogy to (1), (4) with T?(2) = MT,d(t)M 

g(d(t)u,\) = 4(t)g(u,\) Vi € G,u G IRn, A € IR, -
•d(t)Dug(u, A) = Dug(u, X)d(t) V t e H, Vi? - invariant u (5) 
$(t)Dxgiu,\) = Dxg(u,X) \/t e H,V# -invariant u. 

S y m m e t r y r educed sys tems 

Let •d1 denote the trivial representation. Then each if-invariant x € IR" 
corresponds to one u = MTx = (ü, 0) with ü 6 IRCl. Because F is equivari-
ant (1), the set of ^-invariant solutions of (2) is equivalent to the solution 
set of the H- reduced equations 

g(ü,X) = M?g(M1ü,X) = 0, (6) 

where g : IRCl+1 -+ IRCl. This is a well known fact and is often used. 

Then 

Dug(ü,0,X) = MTDxF(Mjü,X)M = diag(5t-), 
M71DxF(M^Ü,X)Mil = A-(n,A), 

Dxg(ü,0, A) = (Dxg(ü,\)T,0)T, 
Düg(ü,X) = M^DXF{M1Ü,X)MX = Ai(ü,A), K'> 
Dxg(ü,X) = M1

TDXF(M1Ü,X), 
Dg(ü,X) = (A1,Dxg(ü,X)). 

Bifurcat ion g r a p h 

If a block Ai (i ^ 1, i?' of real type) becomes singular, a symmetry breaking 
bifurcation point may occur. Because the kernel of DF has dimension n,-, 
multidimensional irreducible representations gives raise to a multiple bifur­
cation point. In the equivariant branching lemma of VANDERBAUWHEDE [22] 
and CICOGNA (see also [9], p. 82 and [2]) the multiple problem is reduced 
to a simple bifurcation phenomena. DELLNITZ and W E R N E R [2] introduced 
the definition of a bifurcation subgroup. 

Definition 2.3 : Letti* : H -> GL(\Rn') be a real irreducible representation 
of real type. K is called a bifurcation subgroup of H of type i, if 
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a.) OV v €\Rni exists with K = Hv, 

b.) for every K -invariant w £ IRn' exists a G IR with w = av. 

Definition 2.4 : A group H is called a bifurcation supergroup of K, if K 
is a bifurcation subgroup of H of some type. 

If on a branch of solutions («(A), A) = (ü(A), 0, A) with isotropy group H one 
block Ai,i>2 becomes singular at (u*, A*) then it follows from the equivari-
ant branching lemma that generically branches of solutions emanate having 
the isotropy of bifurcation subgroups K of H of type i. These branches are 
solutions of the Jf-reduced problem. 

A deeper result from analysis is that the blocks A,- corresponding to a real 
irreducible representation of complex type generically do not become singu­
lar. The main reason is that A; is equivalent to a complex matrix consisting 
of to blocks which are complex conjugate to each other. A singular block 
A\ indicates a turning point, a symmetry preserving bifurcation point or 
a symmetry breaking bifurcation point where x* has the isotropy of a bi­
furcation supergroup of H. In the last case a branch with the isotropy 
of the bifurcation supergroup intersects in (x*, A*) Definition 2.3 leads to 
the definition of a bifurcation graph showing all bifurcation subgroups and 
bifurcation supergroups (see Fig. 2). 

The first aim of automation is the computation of the bifurcation graph. 
But the numerical pathfollowing applied to the reduced systems and the 
evaluation of Jacobian blocks is needed only for the isotropy groups of a 
given equivariant system (2). Thus Section 3 is devoted to the algorithmic 
determination of the relevant part of the bifurcation graph. 

3. Computation of relevant bifurcation subgroups 

In this and the next section the relation of irreducible representations of a 
group H with the irreducible representations of its subgroups is fundamental. 
We start with a technical definition. The restriction of a representation 
•d : H -* GL(\Rn) to a representation fl [K of a subgroup K of H is given 

by 

[•dlK](t) = -d(t) VteK. 
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Inne rconnec t iv i ty multiplici t ies 

The real irreducible representations i?#, i = 1 , . . . , hjj of H may be restricted 
to representations WjjlK oiK. Then a canonical decomposition with respect 
to K exists, i. e. integers dij 6 IM exists with 

hK 

&HlK = J2dij0
3K, i=l,...,hH, (8) 

j 

where $J(,j_ = 1 , . . .,hx are the real irreducible representations of K. For 
clarification indices corresponding to the subgroup K are underlined. 

Definition 3.5 : The integers dij, i = 1 , . . . , h}j, j_= 1 , . . . , hx, are called 
inner connectivity multiplicities. 

The innerconnectivity multiplicities dij are easily computed by a formula 
for multiplicities (see [20]). They have two applications. For the given 
representation •& : G —» GL(\Rn) in (1) the multiplicities cf in the canonical 
decomposition 

ha 

1=1 

are obtained by the formula mentioned above, (cf is the dimension of the 
G-reduced system and cf are the dimensions of the Jacobian blocks Ai.) 
Computing IT-invariant solutions of (2) means consideration of 

tfiJ = E « f * - (9) 

The multiplicities c^ for subgroups H may be obtained easily with the 
innerconnectivity multiplicities with respect to G and H: 

<f = £ < V ? , i=h...,h„. (10) 
»=i 

Second the innerconnectivity multiplicities enable the computation of bifur­
cation subgroups. 
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Lemma 3.6 : Let i?' : H —> GL(\Rni) be a non-trivial irreducible repre­
sentation and •0' [ K its restriction to a subgroup K of H. Then K is a 
bifurcation subgroup of H of type i, if 

hK 

VlK^dijti1«, 
i=i 

with du = 1 and if K is maximal with this property. 

Bifurcation subgroups of type i are isotropy groups of 1?#. But by this 
definition it is not considered whether they are isotropy groups for the given 
representation ti : G -*• Gi(IRn) in (1). 

Relevant subgroups 

Definition 3.7 : A subgroup H of G is called a relevant bifurcation sub­
group 0/1?: G -»• GL(\Rn) of level 1, if 

a.) cf > 1, where d = Y^x c?0jj 

b.) i € {2 , . . . , /IG} exists, such that H is a bifurcation subgroup of type i, 
and 

c.) cf > 1. 

Definition 3.8 : A subgroup K of G is called a relevant bifurcation sub­
group of i? : G -• GL(\Rn) of level v (v > I), if 

a.) a relevant bifurcation subgroup H of •d of level u — 1 exists and 

b.) i € {2 , . . . , h}j} exists, such that K is a bifurcation subgroup of H of 
type i and 

c.) cf > 1, where d IH = £?*i cf &H 

For finite groups G there is a level \i such that there are no relevant bifur­
cation subgroups of level v > fx for all linear representations of G. 

Definition 3.9 : The relevant bifurcation subgroups of ti : G —* GL(\Rn) of 
all levels v > 1 are called relevant subgroups of G with respect to i?. 
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De, 1 2 3 4 5 6 

Figure 2: Bifurcation graph for DQ 
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Figure 3: Relevant part of bifurcation graph for £>6-brusselator 
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L e m m a 3.10 : The relevant subgroups of G with respect to -d are isotropy 
groups offl. 

The relevant subgroups of G give the relevant part of the bifurcation graph 
(compare Fig. 2 and Fig. 3) which is needed in the numerical computation 
of the complete bifurcation scenario of an equivariant system (2). 

R e m a r k s : 

1.) The type i of a bifurcation subgroup is not unique. Z 2 is a bifurcation 
subgroup of D5 of types 3 and 4. 

2.) The level of a relevant bifurcation subgroup of 1? is not unique. Z2 is 
a relevant bifurcation subgroup of DQ of level 1 and 2. 

3.) In contrast to [2], the bifurcation graphs in [4] show the relation be­
tween bifurcation subgroups and their irreducible representations. 

4. Inner connectivity 

Once the transformation matrix M = MG for the absolute supergroup G is 
computed by means of projections, the transformation matrices M , where 
H is a relevant subgroup of G, are easily obtained in the following way. 

Recall that for each i = 1 , . . . , / I G the restricted irreducible representations 
"&Q I H have a canonical decomposition (see (8)). Furthermore there exist 
coordinate transformations C* € IRn,'n' such that (C") rt?k(t) C" are simulta­
neously block diagonal for all t € H, where the blocks consist of dij matrices 

( C ' ) T ^ W C * ' = d i a g ( ^ ( i ) ) , VteH, i=l,...,hG. (11) 

These matrices innerconnectivity matrices C" are computed as usual by 
means of projections applied to WQIH. Note that the columns of C form 
a symmetry adapted basis of IRn*. 

Transformation to block diagonal structure wrt different groups 

Based on dij and Cx a connection matrix CGH € IRn'n is defined such that 

MH = MGCGH , (12) 
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is a coordinate transformation matrix for H in the sense of Theorem 2.1. 
The computation of MH or its parts M[f using the connection matrix is 
much easier than by application of the projections, but the definition of 
CQH is tedious to describe in detail. For this we introduce the notation 

m 

D:=ilDi = (D1,...,Dm), (13) 
i= l 

where Di are given n x ji matrices and D denotes the matrix with n rows 
and Y^h=i Ji columns consisting of the collection of the matrices D{. In this 
notation a decomposition exists 

&= n &i, c ^ n ^ , t=i,...,/iG, (i4) 
j = i k=i 

dir^ 0 

where Cl- are real n,- X (nj-dij) matrices and C1-- are n,- x d,j matrices, nj is 

the dimension of frjj. C1^ correspond to the irreducible representations djj. 
Note that for d{j > 1 the matrix C*- is not unique. Recall the partitions of 
MG and MH with respect to the irreducible representations 

Then the innerconnectivity of irreducible representations of G and H (see 
(8), (11)) implies 

"5= n iit^cf, (i5) 

which is written in(12) in compact form. 

If H is a proper subgroup, the innerconnectivity matrices C" are given, and 
MG was already computed, then MH is uniquely defined by this procedure. 
We prefer (15) to (12) because only the parts Mj{ are needed for the com­
putation of reduced equations and Jacobian blocks. In IKEDA and MUROTA 
[13] the rearrangements of M for the subgroups of D& are explicitly given. 
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CGH 

. . . 0 . . . 0 0 . . . 

'• 
. . . . . . : ... ; . . . 

0 . . . * . . . 

i 

Ai3± 

i ha 

. . . * . . . 0 

; 
: : 

; 

. . . 0 . . . 0 . . . 0 . . . 

}1 

1 1 

> I 

n,- J 

}ha 

hu 

A i 3 - k = 

(dgi 

rh-kr 

C$1 \ ' 1 * 

n,atJ 

A4ik € Mat(ntcf ,d,jcp) 

with Ci3-k 6 .Mat(n,-,di,-) 

I € Mat(cf,cf) 

Figure 4: Connection matrix with respect to G and H 
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For a proper subgroup K of H which is a proper subgroup of G the problem 
arises that MK may be computed by MGCGHCHK or MGCGK which may 
happen to be different. In [18] it is stated that one should rearrange the order 
of irreducible representations and choose right bases for them and choose 
between conjugate groups such that there is a maximal chain of subgroups 
G > H > K > . . . with the property that the same transformation matrix 
M = MG = MH = MK • • • is valid. But the relevant subgroups are not 
arrangeable in one chain in general. The counterexample of De shows that 
it is not possible to determine one common matrix M for all non-conjugate 
subgroups. In SYMCON the transformation matrices MK — MGCGK are 
used. 

Coordinate transformation 

By x = MGUG and x = MHUJJ two coordinate transformations are defined. 
One may switch between G- and ^-coordinates by ' 

UG = CGHUH (16) 

This coordinate change may be written more concrete avoiding the multi­
plications and additions with zero: 

i = 1 , . . . , / I G , 

(17) 
j = l , . . . , / i # , 

UQ = («o. • • ;Uh
G

G), 

« G = («g, . . • . « G O , 

UH r= (u]j,.. •>4H)' 
i 

- . « f f " ) . UH = - . « f f " ) . 
ik jkhG 

u-H 
= ..,u-H 

i& / i£»'i ifcjdj 
) . 

Writing 

*H — VaH T--IU~H ~) > i = l , . . . , / l G , 

i = 1 , . . . , / I G , 

<% = L C ^ U<? fc = ! n . (18) 
V = l,...,dij. 

CGH = I I CGH > 
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this gives 

uL
H = {CGHfuG. (19) 

The inverse operation is given by 

hH " i d ' i . 

4 = E E E ^ " M r i = i,...,hG,i = i,...,ni. (20) 
J = l fc=l 1/=1 

Offset d i rec t ions 

The formulas (18), (19) and (20) for the coordinate changes are helpful to 
determine the directions of emanating branches which -are used for offset 
of the numerical pathfollowing. From the numerical determination of a 
bifurcation point (üJy,A*) with isotropy group H and type i corresponding 
to an irreducible representation d'H the kernel of DgH(ujj,0, A*) is known 
to be spanned by vectors t\,..., tn{ with 

*Jiff = ° V/ i = l , . - . , » i , V » = l,...,hH,i^i, 

t% = 0 W = l , . . . , n , - , / 9 6 / t , (21) 

t% = z, ze\Rc". 

Then a üf-invariant vector in the kernel in reduced /^-coordinates, where 
K is a bifurcation subgroup of H of type i, is given by 

t = t\ = (CGK)TCGH (j2 b, • t^J , (22) 

where 6/ are arbitrary numbers (for example bi = 1,62 = 2,63 = 1). 

Symmetry monitor 

While numerical pathfollowing a branch of solutions with isotropy K a sym­
metry breaking bifurcation point (ü*,0, A*) with the isotropy of a bifurca­
tion supergroup H has to be detected. This is done by a symmetry monitor 
function 

s m : IRC* - * I R ^ - ^ . 
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Let UK = (ü, 0) = (w]j-,0) be a iiT-invariant point in Jsf-coordinates which 
we have chosen. If G = H then uj< is decomposed as in (17). This is not 
ascertained for H ^ G. Then 

*K = ( ^ ) T ( C G * ) T C ^ U\ , (23) 

is a reduced isT-invariant vector in such coordinates that 

(uk) , = 0, V / = l + c f , . . . , c f , (24) 

if this vector is JI-invariant. Thus 

sm(ü) = ( ^ 2 , . . . , u ^ ) . (25) 

5. Action of G on the bifurcation graph 

The aim of this section is to show how symbolic and numerical computations 
are saved by the principle of conjugacy. Recall the linear representation i? : 
G —• GL(\Rn), and the system F(x, A) = 0 in (2) which is equivariant with 
respect to "d. G acts on IRn by i?(f). If for a given x G IRn the transformed 
•d(t)x ^ x, then i9(i)x is called a conjugate vector to x. If a; is a solution of 
(2), then also its conjugates are solutions. G acts on the set of subgroups of G 
by tHt*1 which in case tHt-1 ^ H is called conjugate subgroup of H. Both 
fit together in the sense that the isotropy group of "d{t)x is tHt~x = G$MX-

C o m p u t a t i o n of conjugates in a cycle 

The conjugate elements of x form the orbit Ox- The order of Ox is equal to 
the index m of H = Gx in G, which is the number of left cosets of H in G. 
Once a solution x is found numerically the conjugates are easily obtained 
by a cycle of group operations 

XQ := x, (ofC\ 
*n •= tf(r,)a:«-i, i = l , . . . , m - l , 

where s,- := r,- • . . . • r\ are representatives of the left cosets of G/H and 
rm :— s^1.! gives the original vector t'(rm)a:Tn_1 = x (see Fig. 5). 

S y m m e t r i c a l subgroups 

The group 
NG(H) := {t € G\ tHr1 = H} , 
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symbolic procedure mk!_cycle(superg,subgid); 
begin 
scalar Nset, elem, ris, ri; 
Nset:=subsetminus(get!»elements(superg),get!»elements(subgid)); 
elem:='id; 
ris:=nil; 
while Nset do 
« ri:=search!_ri!_coset(superg,get!*elements(superg),elem,Nset); 

ris:=append(ris, list(ri)); 
elem:=get!»product(superg.ri,elem); 
Nset:=subsetminus(Nset,mk!_left!_coset(superg,elem,subgid)); 

»; 
ris: =appeind(ris ,list (get! »inverse (superg, elem))) ; 
set!_cycle(subgid, ris); 

end; 

Figure 5: Function choosing some group elements which give the conjugate 
solutions in a cycle 

is called the normalizer of E in G. For x with isotropy group E = Gx 

the conjugate element i?(i)a;, t G NQ{E) — E has the same isotropy group 

H - Gti{t)x' 

If K is a bifurcation subgroup of E there are only two possibilities for the 
normalizer. 

Theorem 5.11 ([2]): Let K be a bifurcation subgroup of E of type i. Then 
either 

NH(K)/K 2 Z 2 or NH(K) = K. 

The first case NH(K)/K = Z 2 corresponds to a pitchfork bifurcation point 
and K is thus called symmetrical. 

These two cases are distinguished by computation of the normalizer NH(K)-

While the action of G on the subgroups is determined the normalizer Na(K) 
is derived which easily gives NJJ(K) = NG(K) D E. 
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Conjuga te r ep resen ta t ions 

The action of G on its subgroups is much more sophisticated. Let 

SH(S) := {r £ H\ 3si € H with r = Sassj"1} 

denote the equivalence classes of H and e(H) the set of classes. For t € G 
and a proper subgroup H of G a mapping 

f : e{H)-+e{tHrl), ts{s) = ^ - i ^ ' 1 ) . 

is induced which is a permutation of equivalence classes of IT, if i € NG(H)-

Let x ( # ) denote the set of dass functions x '• H —*• IR, (x ( r ) = x ( 5 ) Vr G 
£H(-S)) then t g G induces the mapping 

* £ : X ( # ) - X ( ' # * _ 1 ) , *&(x(«)) = X(*««-1) = X(a). (27) 

Because the characters x* of irreducible representations i?^ are special class 
functions this gives conjugate class functions <#(x') : tHt-1 —• IR, which 
are again characters of irreducible representations of the conjugate group 
t f f r 1 . 

Definition 5.12 ( see /J5/^ : Let H be a subgroup ofG,p:H-+ GL{V) a 
linear representation, t G G. 

pt-.tEr1-* GL(V), p\tsTx) := p(s) , V s € # , 

is called the conjugate representation of p. 

Of course it may happen that pi is equivalent to p. The group operations 
with this property form the inertia group Hp of p. For each irreducible 
representation d%

H the conjugate representation ($#)* is an irreducible rep­
resentation of the conjugate group tHt~l and thus equivalent to one $J# t - i . 
For t € NG(H) this is a permutation of irreducible representations. By 

t i r : { l , . . . , A » } - > { l , . . . , A « r t - i } , ( (*k)* ~ *&?-») (28) 

we denote the induced mapping between indices of irreducible representa­
tions. 
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Because it is not convenient to handle with the equivalence of representa­
tions, the mapping t\j is determined with the characters %'. For each fand 
i one has to check whether 

tx
H(xW) = Xtm-i • 

If equality holds then i#(J) = A. 

Proposit ion 5.13 .* Let H be a proper subgroup of G and K a proper 
subgroup of E. Let dij and C%- denote the innerconnectivity multiplicities 
and matrices with respect to H and K. Let cf denote the multiplicity oftf'jj 
offllH for a given representation d : G —» GL(\Rn). Then 

a.) <% = dtiH(i)tiKQ Vi G G V i - 1 , . . . , hH, j_ = 1 , . . . , hK 

b.) d%
H{i)C,x is for all t € H the innerconnectivity matrix with respect to 

H and tKt'1. 

c - ^ = c?w1 yteG-

Proposit ion 5.14 : If K is a bifurcation subgroup of H of type i, then 
Vi € G the conjugate group tKt-1 is a bifurcation subgroup oftHt*1 of type 
tjj(i). If H is a relevant subgroup with respect to tf : G —> GL(\Rn) then 
tHt~x, V t G G are relevant subgroups. 

Restriction to non-conjugate groups 

This principle of conjugacy has consequences for the numerical computations 
as well as for the preparing group theoretic computations. The numerical 
pathfollowing procedure is applied to the reduced systems (6) with respect 
to non-conjugate relevant subgroups only. 

Solutions of (2) including symmetry breaking bifurcation points are conju­
gated by cycle elements. Because the type and bifurcation subgroups are 
stored together with a bifurcation point, a sophisticated administration of 
bifurcation points is needed. This necessitates the knowledge of tjj and the 
action of t on the subgroups of G. 

Once a symmetry breaking bifurcation point with isotropy of a non-conjugate 
H iß computed formula (22) gives the directions of emanating branches. In 
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Symcon the offset directions are computed for all bifurcation subgroups' K 
which are non-conjugate with respect to H. The other directions are given 
by conjugation. Computation of offset directions for subgroups K which 
are non-conjugate in G could have the disadvantage that the bifurcation su­
pergroup is a conjugate group of H and thus more of the innerconnectivity 
matrices C%- are needed in the symbolic part (see below). 

Pathfollowing a branch with non-conjugate isotropy the symmetry monitor 
functions with respect to all bifurcation supergroups have to be considered. 

Consequences for g r o u p theore t i c c o m p u t a t i o n s 

Recall 

#i
HiK = YJdiJ4. 

1=1 

The innerconnectivity multiplicities dij are computed with respect to non-
conjugate subgroups H and non-conjugate subgroups K of H (conjugacy 
in H\). The others are given by conjugation. Especially for t € NH(K) 
the relation d,j = diti /•* for the conjugate irreducible representations with 

numbers j and £#(j) . Moreover Clifford's theory ( [1], [15]) states: if K is 
normal in H (which means NJJ(K) = H) then j_ € { 1 , . . . , hjj} exists with 

^iK = d{j £ 4iD- (29) 
t&H/K 

As few as possible innerconnectivity matrices C%i- should be computed. They 
have to be computed for G and all non-conjugate H. Additionally, some 
other C%1 are needed. Because conjugate solutions with isotropy H are 
computed numerically using M^, in the symbolic preparation of M^ the 
matrices C"1 with respect to G and conjugate groups of H are needed. In 
the computation of these Ca itself Proposition 5.13 is applied. Secondly, 
these includes matrices C*1 which are needed for the determination of offset 

-directions. K being a bifurcation subgroup of a non-conjugate subgroup 
H and K being non-conjugate in H, the matrices C"1 with respect to G 
arid K are needed. Thirdly, some C' 1 are needed for the symmetry monitor 
functions. To avoid the use of C*-,j_ > 2 with respect to G and conjugate 
subgroups H, the formulas (23) and (24) for the symmetry monitor functions 
have to be modified. On a branch of solutions with non-conjugate isotropy 
group K the monitor functions recognize if-invariant points, where H is 
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not known to be a member of the chosen non-conjugate relevant subgroups. 
Let H be a chosen nonconjugate relevant subgroup which is conjugate to H. 
Then t <E G exists with H = tHt~l and K = tKt~l. 

4 = ipHkY\CGH)T ̂ ir^Chi^k , • (30) 

gives an alternative symmetry monitor, which is equivalent to the detection 
of points with isotropy H on the branch with isotropy K. 

For this formula the matrices C"1 with respect to non-conjugate H and its 
bifurcation subgroups K are necessary. Computing these C'1 itself again 
Propostion 5.13 b.) may be used. 

During the numerical computations the action t^ on irreducible representa­
tions (28) is needed only for some group elements t and subgroups H, if H 
is a non-conjugate relevant subgroup and t = r,- a member of its cycle with 
s = Si-x = r,_i • . . . • r\ and H = sHs-1. 

6. Overview of the algorithm 

The group theoretic computations in SYMCON simulate a mathematician 
1 who has read the analysis (equivariant braching lemma), looks up the irre­
ducible representations of the group, and then prepares and implements a 
given equivariant system (2). 

For the second point the SYMMETRY Package ([6]) is used which contains 
functions for the computation of symmetry adapted bases and a database 
containing irreducible representations for the small dihedral groups, the sym­
metric group 54 and others. 

Problem independent part 

The first step is the determination of all subgroups which is implemented like 
the other grouptheoretic computations in RLISP. Starting with an arbitrary 
set of elements of fixed order including a known subgroup (e.f. { id }) 
elements are eliminated and new are chosen with a weighting procedure 
until a subgroup is found. This works fine for the small groups from the 

''SYMMETRY Package. 

A group isomorphism between these computed subgroups and a stored ab­
stract one from the Package are constructed based on a search of equivalent 
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generators. This enables the use of the stored irreducible representations for 
the subgroups. 

While conjugacy is exploited the rest of the action of G on the subgroup 
tree is determined giving the normalizers as well. The algorithm from repre­
sentation theory gives the innerconnectivity multiplicities d{j and matrices 

C*̂ - which determines with Lemma (3.6) the bifurcation graph. The com­
putation of cycles terminates the problem independent part which ran only 
once. 

Organization of numerical computations 

Based on some stored information ('&a,dij,Cij,tIH, bifurcation graph with 
conjugate and symmetric groups, cycles) the equivariant systems (2) are 
tackled starting with determination of multiplicities cf,cf (10), the relevant 
subgroups (see 3.9) and parts M$ of the transformation matrix. 

During these computations and the following C code generation the intensive 
exploitation of conjugacy was the important aim. 

First the group operations •d(t) including its action on the tree of relevant 
subgroups and the actions on irreducible representations tjj (see 28) needed 
for bifurcation point administration are generated with GENTRAN. 

Then for each relevant subgroup coordinate transformation (15), symmetry 
monitors (25) and offset directions (22) are generated. 

A clear distinction between a set of non-conjugate relevant subgroups and 
their conjugates are made as the reduced system (6) and Jacobian blocks 
Ai are generated for the non-conjugates only. 

Their evaluation is a difficult point, see below. Li the numerical part the 
pathfollowing of non-conjugate solutions is done with ALCON (see [3], [4]) 
applied to the reduced systems. The conjugate solutions are computed by 
group operations in a cycle. 

While pathfollowing the symmetry monitor functions and determinants of 
Jacobian blocks are evaluated detecting bifurcation points leading to higher 
or smaller symmetry. The block structure is exploited as well for the compu­
tation of eigenvalues giving the stability of solutions and detection of Hopf 
points. The third use is the modification of step length by sub condition of 
the blocks A,-. 

Independent on whether the detection is done with determinants or bor­
dering, the computation of bifurcation points is done with an augmented 
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static void gD6D313(U,g) 
double *U, *g; 

•c 
transformD6D313(U,ygID); 
ELEM_RD6(ygID,ygRD6); 
g[l]=f3(ygID); 

g C2] = (SQRT3*SQRT2*f 4 (ygRD6) +SQRT3*S(}RT2*f 4 (ygID) ) / 2 . 0 ; 
g C3] = (SQRT3*SQRT2*f6(ygRD6)+SQRT3*SQRT2*f6(ygID))/2.0; 
g[4]=(-(SqRT3*SqRT2*f4(ygRD6))+SQRT3*SqRT2*f4(ygID))/2.0; 
g C5] = (-(SQRT3*SQRT2*f6(ygRD6))+SQRT3*SQRT2*f6(ygID))/2.0; 

Figure 6: D3-reduced equations for the hexagonal lattice dome 

system where A{ appears directly ([4], [23]) or indirectly in a testfunction 
([24]) the use of the block structure is essential. 

No extra work has to be done to avoid multiplication with zeros in M,j . So 
the extra work in [18] is superfluous. 

Explo i ta t ion of quas i -pe rmu ta t i on r e p r e s e n t a t i o n 

If the matrices •d{t) contain a lot of zeros, 1 and - 1 , then an evaluation of 
g(u,X) = ( M f ) T / ( M * ü , A ) and A,(ü,A) = (Mg)TDxf{M?ü,\)MJl by 
evaluating / and df at (cc,A) = {M\ü, A) numerically and numerical ma­
trix multiplications means an unnecessary computation with the complete 
system. Thus in the new version of SYMCON the functions fk(t, x, A) and 
dfi/ii(t, x, A) are generated for a set of indices which are computed with Com­
puter Algebra methods. For the case of a pure permutation representation 
see also [10]. 

Because the matrix multiplications with M(j are done in REDUCE, the 
numerical evaluations of g(ü, A) and A,- consist of function calls of % and 
dfVfi with different conjugate vectors i?(f)M^ü, where t are representatives 
of the left cosets of H in G ( see Fig. 6). This is also the best way in view 
of minimization the amount of Code. 

It remains to mention that for the trivial group instead of M — MGCa{id} 
no coordinate transformation is done. 
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s t a t i c void invtranslormD6D312(Y,u) 
double *Y,*u; 
i 

u [ l ] = Y [ 3 ] ; 
u [2 ] = (Y[19]*SQRT3*SQRT2+Y[16]*SQRT3*SQRT2+Y[13]*SQRT3*SqRT2+Y[10]*SQRT3* 

SQRT2+Y[7]*SQRT3*SQRT2+Y[4]*SQRT3*SQRT2)/6.0; 
u[3]=(Y[21]*SQRT3*SQRT2+Y[18]*3QRT3*SQRT2+Y[15]*SqRT3*SQRT2+Y[12]*SQRT3* 

SQRT2+Y[9]*SQRT3*SQRT2+Y[6]*SQRT3*SQRT2)/6.0; 
u[4]=(-(Y[20]*SQRT3*SQRT2)+Y[17]*SQRT3*SQRT2-(Y[14]*SQRT3*SQRT2)+Y[ 

11]*SQRT3 
*SQRT2-(Y[8]*SQRT3*SQRT2)+Y[5]*SQRT3*SQRT2)/6.0; 

u [5 ]=Y[22] ; 
> 

Figure 7: Coordinate transformation (ü,A) = (M1
 3)T(x,X) for the hexago­

nal lattice dome 

dimension degree 2 3 4 
10 6600 28600 100100 
20 92400 708400 4250400 
50 3315000 58565000 790627500 

Table 1: Number of possible terms in a Jacobian consisting of polynomials 

example REDUCE compile link numeric file 
brussD3 
brussD4 
brussD6 
brussS4 

dome 

20150 ms 
55280 ms 

350980 ms 
127570 ms 

52 min 

9.2u sec 
19.3u sec 
73.7u sec 
43.Ou sec 

333.2u sec 

6.5u sec 
6.3u sec 
6.7u sec 
6.7u sec 
8.4u sec 

2.3 sec 
8.38 sec 
16.8 sec 
8.28 sec 

1558.6 sec 

16960 Bytes 
33211 Bytes 

101741 Bytes 
61168 Bytes 

308723 Bytes 

Table 2: Performance of Symcoh on a Data General 
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group subgroup search identify subgroups bifgraph 
K4 30 ms 50 ms 250 ms 
D3 170 ms 90 ms 560 ms 
D4 330 ms 340 ms 1370 ms 
C4 50 ms 30 ms 70 ms 
C5 20 ms 20 ms 200 ms 
C6 110 ms 90 ms 490 ms 
D6 3440 ms 850 ms 7240 ms 
A4 6270 ms 420 ms 1830 ms 
S4 216510 ms 9530 ms 17630 ms 

Table 3: Performance of computation of bifurcation graphs on a Data Gen­
eral 

7. The battle between REDUCE and C 

For evaluation of the mixture of symbolic and numeric computations one has 
to take into account that the symbolic part is normally done by hand. In 
contrast to numerical computations the algorithmic complexity of symbolic 
computations is much higher (see Table 1). Nevertheless the bottleneck is 
not REDUCE or GENTRAN but the compiler that cannot compile expres­
sions larger than a certain size - the assumption obviously being that hand 
written code of such size cannot be correct anyway. 

So the compilation of the Jacobian matrix of the hexagonal lattice dome 
in a former version of SYMCON was only possible after modifications of 
GENTRAN and thus changing the way of C Code generation. 

Hence our most important aim was to produce as few as code as possi­
ble, which is done in SYMCON by exploitation of the quasi-permutation 
structure of the representation. 

The advantages of symbolic computation in this context are 

• the equivariance check (safety of implementation), 

• generation of matrices avoiding unnecessary operations with zero 
(see Fig. 6 and 7), 

• symbolic .differentiation, 
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• handHng of abstract functions (see Section 6.). 

Table 2 gives the computing times for the hexagonal lattice dome mentioned 
in Section ß and the brusselators with respect to different groups which 
have been often treated. The definition is given for example in [4]. The 
table shows that the computing time is an important criterion for ranking 
of numerical algorithms, for larger problems only. For smaller problems the 
criteria of reliability, robustness, easy implementation, and transparency are 
other important criteria. 

8. Example: Hexagonal latt ice dome 

In HEALEY [11] an example of a deformation of an hexagonal lattice dome 
is given. It was also treated in [21]. There are seven free nodes / € 
{A, B,C, D,E,F, G} with displacement vectors x/ € IR3 which form, the 
unknowns x = (XA, • • •, XG) € IR21 of the system. In [5] the example is fully 
described and an overview of stable solutions is given. We found more than 
600 symmetry breaking bifurcation points of different types which are con­
nected by ca. 200 branches of solutions with non-conjugate isotropy groups. 
Figure 8 gives an impression of the complexity of this problem. 
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