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Abstract

The numerical treatment of equivariant parameter-dependent
nonlinear equation systems, and even more its automation re-
quires the intensive use of group theory. This paper illustrates
the group theoretic computations which are done in the prepara-
tion of the numerical computations. The bifurcation graph which
gives the bifurcation subgroups is determined from the interre-
lationship of the irreducible representations of a group and its
subgroups. The Jacobian is transformed to block diagonal struc-
" ture using a modification of the transformation which transforms
to block diagonal structure with respect to a supergroup. The
principle of conjugacy is used everywhere to make symbolic and
numerical computations even more efficient. Finally, when the
symmetry reduced problems and blocks of Jacobian matrices are
evaluated numerically, the fact that the given representation is
a quasi-permutation representation is exploited automatically.
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Figure 1: Part of a bifurcation diagram

1. Introduction

Figure shows some stationary solutions of a parameter-dependent nonlinear
system in the form

i= F(z,)), F:R*xR—IR", where
I(t)F(z,\) = F(9()z,)), VteG,

with a linear representation 9 holds. Such equivariant systems have branches
of stationary solutions having the same symmetry, e.g. are invariant with re-
spect to isotropy groups H. As different branches may have different isotropy
groups, all subgroups of G which occur as isotropy groups have to be taken
into account. There may as well exist conjugate solutions 9¥(t)z which are
given by a group operation ¢ € G. At symmetry breaking bifurcation points
branches with different isotropy groups intersect such that one group is a
common supergroup of the others. The subgroups fullfill the conditions of a



bifurcation subgroup, which are arranged in the bifurcation graph. Of course,
blfurcatlon points may have conjugate points (see 4 and 5 in Fig. 1 and 6
and 7). Bifurcation points may be symmetric or asymmet;nc depending on
the isotropy groups of emanating branches.

Concentrating on one bifurcation point only the.analysis may be found in
GOLUBITSKY, STEWART, SCHAEFFER (8], [9], VANDERBAUWHEDE [22] while
“the numerical treatment was first considered by DELLNITZ, WERNER [2],
“and also by HEALEY [11].

The basic concept of numerical treatment is to apply the numerical path-
following procedure to the symmetry reduced systems only for one of the

.. conjugate branches. The program SYMCON for example includes the nu-
merical pathfollowing algorithm ALCON (DEUFLEARD, FIEDLER, KUNKEL
[3]). While performing the numerical pathfollowing the bifurcation points
leading to higher symmetry are detected by sign change of symmetry mon-
itor functions and the points leading to smaller isotropy by sign check of
determinants ([4]) or other test functions ([16] or [24]). The bifurcation
points are computed by Newton’s method applied to an augmented system

"([4], (23], [24]). '
‘These techniques exploite the block diagonal structure of the Jacobian (see
“also [12], [13], [14], [18], and [23]). Since a bifurcation point was found,
‘the numerical pathfollowing procedure is restarted and possibly applied to
a different symmetry reduced system checking determinants of a different
block diagonal structure.

. While the numerical mathematician concentrates on the numerical methods

+: for determination and computation of bifurcation points we are interested in

. the automated preparation of examples which are equivariant with respect

. to different groups G. Starting with a database of irreducible representations

. of several finite groups (SYMMETRY [6]), different tasks and questions arise
. than those proposed by numerical mathematicians.

. How are the bifurcation subgroups and thus the blfurcatlon gra.ph
computed automatically?

2. How are those subgroups determined which are relevant for a given
problem?

‘3. How is the block diagonal structure with respect to a subgroup ob-
tained if the transformation to the structure correspondlng to a super-
group is known?



.:‘_'4 . Which infoﬁhation is needed"i;b oféénizé the handling of conjugate
solutions, especially conjugate bifurcation points? (How a.cts the group
G on the bifurcation diagram?)

5. Which group theoretic computations may be saved because of con_]u—
’ gatmn”

6. How to write a REDUCE program which organizes the numencal eva.l-
uation of reduced systems and Jacobian blocks efﬁcxently, if the rep-
resentatlon 9 i is nearly a permutatlon representa.t1on‘7 ,

‘ Contmuemg the work in [4] the theory of linear representations (SERRE [19]

. or STIEFEL, FASSLER [20]) is used mtenswely, but not repeated completely.

First, the analySIS of eqmvanant systems is briefly outlined using the noétion

. of symmetrical normal forms." The computation of the bifurcation graph

,a.nd its relevant part explomng the interrelationship 'between irreducible

representatlons of a group and its subgroups is given in Sectxon 3.

A deeper understanding of innerconnectivity of irreducible representatmns
of G and its subgroups gives the transformation between the block diagonal
structures corresponding to different groups (Section 4). In the literature
this is only mentioned for the example of Dg (IKEDA and MUROTA [13]).
The handling of conjugate bifurcation points necessitates a deeper under-
standing of the principle of conjugacy (Section 5). Section 6 is dedicated
to an overall view and the exploitation of special properties of the repre-
sentation ¥ while Section 7 gives the advantages of Computer Algebra. For
" example the automatic code generation of the transformation matrices with
‘the REDUCE [17] package GENTRAN [7] exploits their possible sparsity
without extra implementational work as done by IKEDA and MUROTA {13],
'[18]. It is shown how the exploitation of occurrence of permutation repre-
sentations lower the amount of prodiced C-code. In Section 8 the example
of an hexagonal lattice dome, introduced i in [11] demonstrates the success of
the mixed symbolic-numeric concept.

2. Analysis of equivariant systems

~ The group theoretic investigations in the Sections 3-5 are derived, because
we want to investigate the following problem automatically:



Let F : IR™! — IR™ be an explicitly given function which is G -equivariant
(VANDERBAUWHEDE [22]), i.e.

F(3(t)z, ) = 9(t)F(z,)), VteG, (1)

where ¥ : G — GL(IR") is a real orthogonal linear representation (9(t)9(s) =
¥(ts)Vt,s € G). The different types of stationary solutions (z, A), i.e.

F(z,A)=0, (2)

are of interest. Because the system(2) is parameter dependent the solutions
appear in continua. In this section the analysis of this problem class is
summarized (see [2], [4], [8], and {9]).

The elements z € IR™ are distinguished by their symmetries. Mathematically
speaking
Goi={teG| Itz =2} (3)

denotes the isotropy group H = G, of z. In turn z is called H —invariant, if
¥(t)z = z,Vt € H. The isotropy group H = G, is the maximal subgroup
of G with the property, that z is H-invariant. A simple but fundamental
fact is that equivariant systems have continua of solutions with the same
isotropy group. Different solution paths with different isotropy groups may
intersect in the so-called bifurcation points. Depending on whether different
or equal groups interact they are called symmetry breaking or symmeiry
preserving bifurcation points. Since the Jacobian DF(z*, A\*) is singular in a
bifurcation point (z*, A*) or has pure imaginary eigenvalues in a Hopf-point
(z+, A1), the consequences of the equivariance (1) for the Jacobian have to
be considered.

. Transformation to block diagonal structure

For z € R"™ with isotropy group H = G,

1l

9(t) D F(z,\)
9(t)DrF(z,))

D.F(z,\)8(t), VteH, )
DAF(z,)‘)) VtEH,

hold. By the theory of symmetry adapted basis (STIEFEL, FAESSLER [20])
the Jacobian D F(z,A) may be block diagonalized with an orthogonal trans-
formation matrix M € R(™™ which depends on H. For this we remind that
a real irreducible representation of H has the property that it does not split
into subrepresentations. Up to isomorphy a finite group has a finite number
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h of real irreducible representations 9%, One distinguishes 3 different types
(real, complex, quaternonian) of real irreducible representations. The type
of a real irreducible representation of complex type consists of 2 complex
irreducible representations which are complex conjugate to each other. We
restrict ta groups which have no irreducible representations of quaternonian

type. :
" Theorem 2.1 ([20], (23] ): Let H be a group and let 9* : H — GL(R™),n; €
N,i=1,...,h, be its real irreducible orthogonal linear representations with

~ corresponding characters x':H —R. Let A€ R™ and ¥ : H — GL(R™)
with ¥ = Zf‘__’:’l ¢;¥* where ¢; are the multiplicities.

If 9;A = A%, is satisfied for allt € H, then there ezist orthogonal matrices
" M= (My,...,My,), M;eR™™ =1 h,
M; = (M, ..., My,), M;; € R™%, i=1,..,m,
with the property
' MTAM diag(By,. .., B), B;e€ RMoxmci
MTIOM = diag(di(t)).

If 9% is an irreducible representation of real type (absolute irreducible) of
" dimension n;, then

A;
B; = M{ AM; = , MEAM; = A; € RS,
A;
where A; appears n; times.
In [20] a straightforward computation of M;; using projections and the

Gram-Schmid process is described. But for this the irreducible represen-
tations 9* and its characters x*,i = 1,...,h have to be known.

The matrix M introduces the coordinate transformation z = Mu.

Definition 2.2 ([4]): Let F : R**! — IR™ be G-equivariant. Let H be a
subgroup of G and M = M¥ the transformation matriz. Then the function
g: R™! 5 R" defined by

g(u,\) := MTF(Mu,))

is called the symmetrical normal form of F with respedt to H.



The name symmetrical normal form is justified by the fact that the Jacobian
D,g(u, A) has block diagonal form for every H—invariant point = Mu.

In these coordinates we have in analogy to (1), (4) with 9(t) = MT ()M

g(9(t)u, \) I(t)g(u,\) VieG,ueR*AelR,
() Dyug(u, A) Dyg(u,A)9(t) Vte H,YH —invariant u (5)
H(t)Drg(u,A) = Dig(u, ) Vt € H,VH — invariant u.

Il

-Symmetry reduced systems

~ Let 9! denote the trivial representation. Then each H-invariant z € IR"
corresponds to one u = MTz = (#,0) with & € IR%. Because F is equivari-
ant (1), the set of H~invariant solutions of (2) is equivalent to the solution
set of the H-reduced equations

33, 3) = MTg(Myii, A) = 0, o ®

. where g : IR®*! — [R®, This is a well known fact and is often used.

Then

Dyg(%,0,A) = MTD,F(MFa, )M = diag(B),
MID . F(MTa, )My = Ai(d,N),
D/\g(avo,)‘) = (Dz\g(aw)‘)TaO)T) (7)
D3g(#,\) = MED F(Mi@,\)M; = Ay (4,N),
Dy§(8,)) = M{DyF(Mii,)),
D§(#,A) = (A1, Dxg(%,7)).

Bifurcation graph

If a block A; (i # 1, 9* of real type) becomes singular, a symmetry breaking
bifurcation point may occur. Because the kernel of DF has dimension n;,
-~ multidimensional irreducible representations gives raise to a multiple bifur-
cation point. In the equivariant branching lemma of VANDERBAUWHEDE [22]
. and CICOGNA (see also [9], p. 82 and [2]) the multiple problem is reduced
" to a simple bifurcation phenomena. DELLNITZ and WERNER [2] introduced
- the definition of a bifurcation subgroup.

" Definition 2.3 : Let ¢ : H — GL(IR™) be a real irreducible representation
of real type. K is called a bifurcation subgroup of H of type 3, if



a,) 04 v e R esists with K = H,,

b.) for every K —-invariant w € IR™ ezists a € IR with w = av.

Definition 2.4 : A group H is called a bifurcation supergroup of K, if K
18 a bifurcation subgroup of H of some type.

If on a branch of solutions (u(A), A) = (@(A),0, A) with isotropy group H one
block A;,: > 2 becomes singular at (u*, A*) then it follows from the equivari-
ant branching lemma that generically branches of solutions emanate having
the isotropy of bifurcaticn subgroups K of H of type 3. \These' branches are
solutions of the K-reduced problem. ‘

A deeper result from analysis is that the blocks A; corresponding to a real
irreducible representation of complex type generically do not become singu-
lar. The main reason is that A; is equivalent to a complex matrix consisting
of to blocks which are complex conjugate to each other. A singular block
A; indicates a turning point, a symmetry preserving bifurcation point or
a symmetry breaking bifurcation point where z* has the isotropy of a bi-
furcation supergroup of H. In the last case a branch with the isotropy
of the bifurcation supergroup intersects in (z*, A*) Definition 2.3 leads to
the definition of a bifurcation graph showing all bifurcation subgroups and
bifurcation supergroups (see Fig. 2).

The first aim of automation is the computation of the bifurcation graph.
But the numerical pathfollowing applied to the reduced systems and the
evaluation of Jacobian blocks is needed only for the isotropy groups of a
given equivariant system (2). Thus Section 3 is devoted to the algorithmic
determination of the relevant part of the bifurcation graph.

3. Computation of relevant bifurcation subgroups

In this and the next section the relation of irreducible representations of a
group H with the irreducible representations of its subgroups is fundamental.
We start with a technical definition. The restriction of a representation
9 : H — GL(IR™) to a representation ¥ | K of a subgroup K of H is given
by

[FLK)(t)=9(t) ViteK. -



Innerconnectivity multiplicities

The real irreducible representations 19},,2' =1,...,hyg of H may be resﬁricted
to representations ¥} | K of K. Then a canonical decomposition with respect
to K exists, i. e. integers d;; € N exists with

. hx .
glK =3 dij%, i=1,...,hxy, (8)

=

where 191}'(, J = 1,...,hk are the real irreducible representations of K. For
clarification indices corresponding to the subgroup K are underlined.

Definition 3.5 : The integers d;j,i = 1,...,hy, j=1,...,hk, are called
innerconnectivity multiplicities.

The innerconnectivity multiplicities d;; are easily computed by a formula
for multiplicities (see [20]). They have two applications. For the given
representation 9 : G — GL(IR™) in (1) the multiplicities ¢§ in the canonical
decomposition

ha
I=>) cfol
i=1

are obtained by the formula mentioned above. (c§ is the dimension of the
G-reduced system and c{ are the dimensions of the Jacobian blocks A;.)
Computing H-invariant solutions of (2) means consideration of

hyg .
IILH =3 cf o5 9)

j=1

The multiplicities cJH for subgroups H may be obtained easily with the
innerconnectivity multiplicities with respect to G and H:

hg
cH:Zd,‘iC?, ,i=1,~"1hH' (10)

i=1

|~

Second the innerconnectivity multiplicities enable the computation of bifur-
- cation subgroups.



Lemma 3.6 : Let # : H — GL(R™) be a non-trivial irreducible repre-
sentation and 9 | K its restriction to a subgroup K of H. Then K is a
bifurcation subgroup of H of type ¢, if

. hk ,
PIK =Y di; 0%,
=1
with d;y = 1 and if K is mazimal with this property.
Bifurcation subgroups of type i are isotropy groups of ¥%. But by this

definition it is not considered whether they are isotropy groups for the given
representation ¥:G - GL(R") in (1)

Relevant subgroups

Definition 3.7 : A subgroup H of G is called a relevant bifurcation sub-
group of ¥ : G — GL(RR") of level 1, if

a.) c? > 1, where 9 = Y1, F oL,

1=1 ¢

b.) i€ {2,...,hg} exists, such that H is a bifurcation subgroup of type i',
and

c)cf>1

Definition 3.8 : A subgroup K of G is called a relevant bifurcation sub-
group of ¥: G — GL(R™) oflevel v (v > 1), if

a.) a relevant bifurcation subgroup H of ¥ of level v — 1 exists and

b.) i € {2,...,hy} ezists, such that K is a bifurcation subgroup of H of
type ¢ and

c.) ¢ > 1, where 9| H = M2 H v,

For finite groups G there is a level p such that there are no relevant bifur-
cation subgroups of level v > p for all linear representations of G.

Definition 3.9 : The relevant bifurcation subgroups of ¥ : G — GL(RR") of
all levels v > 1 are called relevant subgroups of G with respect to 9.
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Figure 2: Bifurcation graph for Dg
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Lemma 3.10 : The relevant subgroups of G with respect to ¥ are isotropy
groups of J. '

The relevant subgroups of G give the relevant part of the bifurcation graph
(compare Fig. 2 and Fig. 3) which is needed in the numerical computation
of the complete bifurcation scenario of an equivariant system (2).

Remarks:

1.) The type ¢ of a bifurcation subgroup is not unique. Zj is a bifurcation
subgroup of Ds of types 3 and 4.

2.) The level of a relevant bifurcation subgroup of ¥ is not unique. Z; is
a relevant bifurcation subgroup of Dg of level 1 and 2.

3.) In contrast to [2], the bifurcation graphs in [4] show the relation be-
tween bifurcation subgroups and their irreducible representations.

4. Innerconnectivity

Once the transformation matrix M = M€ for the absolute supergroup G is
computed by means of projections, the transformation matrices M¥ | where
H is a relevant subgroup of G, are easily obtained in the following way.

Recall that for each 7 = 1,...,hg the restricted irreducible representations
9% | H have a canonical decomposition (see (8)). Furthermore there exist
coordinate transformations C* € IR™"™ such that (C*)T9%(t) C* are simulta-
neously block diagonal for all ¢ € H, where the blocks consist of d;; matrices

V()i =1,....hg
(CIYT05(t) CF = diag(Wh(2)), Vie H, i=1,...hs. (11)

These matrices innerconnectivity matrices C* are computed as usual by
means of projections applied to 9% | H. Note that the columns of C* form
a symmetry adapted basis of IR™.

Transformation to block diagonal structure wrt different groups

Based on d‘i and C* a connection matriz Cgp € IRf"“ is defined such that
MH=MGCGH,A _ - (12)

12




is a coordinate transformation matrix for H in the sense of Theorem 2.1.
The computation of M¥ or its parts Mff using the connection matrix is
much easier than by application of the projections, but the definition of
Com i 1s tedmus to describe in detail. For this we introduce the notation

D:=HD;=(D1,...,D,,.), (13)
=1
where D; are given n X j; matrices and D denotes the matrix with n rows
and 327, j; columns consisting of the collection of the ma,tnces D;. In this
notatlon a decomposition exists :

. hH .. .. ni o ‘ »
ct= I ¢%, Ci=]IC%, i=l..hs, (14)
i=1 o
dij #0

where C*L are real ni X (nj-di;) matrices and C'E are n; x di; matrices. nj is

the dimension of 9% - ci correspond to the irreducible representations 0% -
Note that for d,, > 1 the matrix C* is not unique. Recall the partitions of

MG and MH with respect to the irreducible representations
=19 MF, ME=1Ty, MS,

= 11, M7, M = LI M,

- Thén the innerconnectivity of irreducible representations of G and H (see
(8), (11)) implies

dij p;

wi= i IS mgc, (15)

B i=1 #=li=t
d,'i #0
which is written in(12) in compact form.

If H is a proper subgroup, the innerconnectivity matrices C* are given, and
ME was already computed, then M¥ is uniquely defined by this procedure.
We prefer (15) to (12) because only the parts M f{ are needed for the com-
putation of reduced equations and Jacobian blocks. In IKEDA and MUROTA
[13] the rearrangements of M for the subgroups of Dg are explicitly given.

13
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0 0 0 }1
1
ik
0 * A% * 0 )
~~ ~~ ~~
1 i hG ng
0 0 0 the )
~~ ~ ~ d S~
1 i hy
ik ijk ijk e} G
Cil -+ Cug I ALE € Mat(nicf , dijef’)
Alk — ik i with  C%: ¢ Mat(n;, d;;)
Cn_.II toe CnT‘E.‘ J'I )

I € Mat(cf,cf

1%

Figure 4: Connection matrix with respect to G and H
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For a proper subgroup K of H which is a proper subgroup of G the problem
arises that M¥ may be computed by M9CgyCri or M®Cgxk which may
happen to be different. In [18] it is stated that one should rearrange the order
of irreducible representations and choose right bases for them and choose
between conjugate groups such that there is a maximal chain of subgroups
G > H > K > ... with the property that the same transformation matrix
M = MS = MH = M¥...is valid. But the relevant subgroups are not
arrangeable in one chain in general. The counterexample of Dg shows that
it is not possible to determine one common matrix M for all non-conjugate
subgroups. In SYMCON the transformation matrices M¥ = MSCgg are
used.

Coordinate transformation

By ¢ = MS%ug and z = MPupg two coordinate transformations are defined.
One may switch between G- and H-coordinates by ‘

ug = Cag um (16)

This coordinate change may be written more concrete avoiding the multi-
plications and additions with zero:

h
(uIG,...,uGG),

ug =
uy, = (u@,...,ug’), i=1,...,hq,
ug = (u} uh“')
H = Hee* 2 BH /3 (17)
i sl i -
uH = ('MH,...,'UH ), l= 1,...,hH,
ik _ k1 ikhg
vy = (H LI Bl 7 S
Jki kil akidij
r = (ug ,..oug 7)), i=1..,ka,
i = 1,...,hqg,
ikiv _ ik 4 4 = ..., hu,
B =20 % % = 1. n (18)
et k yeena Mg,
v L...,dij.
Writing
hy
CGH=HCGH,
=1



this gives

i I \T
ug = (Cgn) ue- (19)
The inverse operation is given by

hy ™ %

=SS CEEEY i=1,.. kg l=1,...,m.  (20)

i:l k=1v=1

Offset directions

The formulas (18), (19) and (20) for the coordinate changes are helpful to
determine the directions of emanating branches which -are used for offset
of the numerical pathfollowing. From the numerical determination of a
bifurcation point (@}, A*) with isotropy group H and type ¢ corresponding
to an irreducible representation 9% the kernel of DgH (#¥,0,A%) is known
to be spanned by vectors ty,...,t,; with

;"H = 0 Veo=1,...,n,Yi=1,...,hg, i #14,

iy = 0 Wi=1,..,n,l#p, (21)
th = 2, zeRY.

Then a K-invariant vector in the kernel in reduced K—coordinates, where
K is a bifurcation subgroup of H of type i, is given by

i
i=thk = (Ctx)"Cqn (Z by - ti) ; (22)

=1
where b; are arbitrary numbers (for example b; = 1,b; = 2,b5 = 1).
Symmetry monitor

While numerical pathfollowing a branch of solutions with isotropy X a sym-
metry breaking bifurcation point (%*,0,A*) with the isotropy of a bifurca-
tion supergroup H has to be detected. This is done by a symmetry monitor
Sfunction

sm: R — R =T |

16



Let ug = (#,0) = (uk,0) be a K-invariant point in K—coordinates which
we have chosen. If G = H then ug is decomposed as in (17). This is not
ascertained for H # G. Then

a = (Chx) (Con)  Chr ui (23)
is a reduced K—-invariant vector in such coordinates that
(i N =0, Vi=1+cH, ... f, (24)
if this vector is H—-invariant. Thus

sm(@) = (a2, ..., atH). (25)

5. Action of G on the bifurcation graph

The aim of this section is to show how symbolic and numerical ccmputations
are saved by the principle of conjugacy. Recall the linear representation 9 :
G — GL(IR™), and the system F(z,)) = 0 in (2) which is equivariant with
respect to 9. G acts on IR™ by ¥(t). If for a given z € IR™ the transformed
J(t)z # z, then J(t)z is called a conjugate vector to z. If = is a solution of
(2), then also its conjugates are solutions. G acts on the set of subgroups of G
by tHt~! which in case tHt™! # H is called conjugate subgroup of H. Both
fit together in the sense that the isotropy group of 9(t)z is tHt™! = Gy(t)e-

Computation of conjugates in a cycle

The conjugate elements of z form the orbit O,. The order of O, is equal to
the tndez m of H = G in G, which is the number of left cosets of H in G.
Once a solution 2z is found numerically the conjugates are easily obtained
by a cycle of group operations

o = I,
. 26
z, = I(r)zi-1, i=1,...,m-1, (26)
where s; := r; -...-7; are representatives of the left cosets of G/H and

Tm = S, gives the original vector ¥(r;,)zm—1 = = (see Fig. 5).
Symmetrical subgroups

The. group
Ng(H):={t€ G| tHt™! = H},

17



symbolic procedure mk!_cycle(superg,subgid);
begin
scalar Nset, elem, ris, ri;
Nset :=subsetminus(get!*elements(superg),get!*elements(subgid));
elem:=’id;
ris:=nil;
while Nset do
<< ri:=search!_ri! _coset(superg,get!*elements(superg),elem,Nset);
ris:=append(ris, list(ri));
elem:=get !*product(superg,ri,elem);
Nset:=subsetminus (Nset,mk!_left!_coset (superg,elem,subgid));
>>;
ris:=append(ris,list(get!*inverse(superg,elem)));
set!_cycle(subgid, ris);
end;

Figure 5: Function choosing some group elements which give the conjugate
solutions in a cycle

is called the normalizer of H in G. For z with isotropy group H = G,
the conjugate element ¥(t)z, t € Ng(H) — H has the same isotropy group
H = Gy(p)s-

If K is a bifurcation subgroup of H there are only two possibilities for the
normalizer.

Theorem 5.11 ([2]): Let K be a bifurcation subgroup of H of type i. Then
either
Nyg(K)/K2Z; or Nyg(K)=K.

The first case Ny(K)/K = Z; corresponds to a pitchfork bifurcation point
and K is thus called symmetrical. -

These two cases are distinguished by computation of the normalizer ¥, H(K ).
While the action of G on the subgroups is determined the normalizer Ng(K)
is derived which easily gives Ng(K) = Ng(K)Nn H.

18



Conjugate representations
The action of G on its subgroups is much more sophisticated. Let
en(s) := {r € H| 3s; € H with r = s;587"}

denote the equivalence classes of H and £(H) the set of classes. Fort € G
and a proper subgroup H of G a mapping

te(H) — e(tHt™), 1°(s) = espe-1(tst™),

is induced which is a permutation of equivalence classes of H,if t € Ng(H).
Let x(H) denote the set of class functions x : H — R, (x(r) = x(s) Vr €
en(s)) then t € G induces the mapping

t  x(H) = x(@HE™),  95(x(s)) = x(tst™!) = x(s) . (27)

Because the characters x* of irreducible representations 19% are special class
functions this gives conjugate class functions t%(x') : tHt~! — IR, which
are again characters of irreducible representations of the conjugate group
tHtL.

Definition 5.12 ( see [15]) : Let H be a subgroup of G, p: H — GL(V) a
linear representation, t € G.
plitHt™ = GL(V), pi(tst™)) :=p(s), VseH,

is called the conjugate representation of p.

Of course it may happen that p' is equivalent to p. The group operations
with this property form the inertia group H? of p. For each irreducible
representation 9% the conjugate representation (9%;)! is an irreducible rep-
resentation of the conjugate group tHt~! and thus equivalent to one Vipre-1-
- For t € Ng(H) this is a permutation of irreducible representations. By

thi (L ba = (L), (O~ 0ED) @)

we denote the induced mapping between indices of irreducible representa-
tions.
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Because it is not convenient to handle with the equivalence of representa-
tions, the mapping L is determined with the characters x*. For each 7 and
¢ one has to check whether ‘ '

(X)) = Xip -

If equality holds then t£(3) = &.

Proposition 5.13 : Let H be a proper subgroup of G and K a proper
subgroup of H. Let d;; and C'L denote the innerconnectivity multiplicities
and matrices with respect to H and K. Let cF denote the multiplicity of 9%
of 9| H for a given representation 9 : G — GL(IR™). Then

a.) d"i:'dtf;(i)if((i) VteG Vi=1,...,hg,j=1,...,hk

b.) 95(t)C* is for all t € H the innerconnectivity matriz with respect to
H and tKt™1.

c.) ¢ :czg(”.;l VtedG.

Proposition 5.14 : If K is a bifurcation subgroup of H of type i, then
VYt € G the conjugate group tKt™! is a bifurcation subgroup of tHt™! of type
tL(i). If H is a relevant subgroup with respect to 9 : G — GL(R™) then
tHt™1,VYt € G are relevant subgroups.

Restriction to non-conjugate groups

. This principle of conjugacy has consequences for the numerical computations

as well as for the preparing group theoretic computations. The numerical
‘pathfollowing procedure is applied to the reduced systems (6) with respect
to non-conjugate relevant subgroups only.

Solutions of (2) including symmetry breaking bifurcation points are conju-
gated by cycle elements. Because the type and bifurcation subgroups are
stored together with a bifurcation point, a sophisticated administration of
bifurcation points is needed. This necessitates the knowledge of t; and the
‘action of ¢ on the subgroups of G.

Q;lce a symmetry breé,king bifurcation point with isotropy of a non-conjugate
. H is computed formula (22) gives the directions of emanating branches. In
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Symcon the offset directions are computed for all bifurcation subgroups K
which are non-conjugate with respect to H. The other directions are given
by conjugation. Computation of offset directions for subgroups K which
are non-conjugate in G could have the disadvantage that the bifurcation su-
pergroup is a conjugate group of H and thus more of the innerconnectivity
matrices C*Z are needed in the symbolic part (see below).

Pathfollowing a branch with non-conjugate isotropy the symmetry monitor
functions with respect to all bifurcation supergroups havé to be considered.

Consequences for group theoretic computations

Recall
. hx 3
HlK =) dijdk.

J=1
The innerconnectivity multiplicities d;; are computed with respect to non-
conjugate subgroups H and non-conjugate subgroups K of H (conjugacy
in H!). The others are given by conjugation. Especially for ¢t € Ny(K)
the relation di; = d; 1 1.(5) for the conjugate irreducible representations with

numbers j and t(j). Moreover Clifford’s theory ( [1], [15]) states: if K is
normal in H (which means Ny(K) = H) then j € {1,...,hy} exists with

VylK=dy 3 oD, (29)
teH/K

As few as possible innerconnectivity matrices C'i should be computed. They
have to be computed for G and all non-conjugate H. Additionally, some
other C*! are needed. Because conjugate solutions with isotropy H are
computed numerically using M#, in the symbolic preparation of M} A the
matrices C*! with respect to G and conjugate groups of H are needed. In
the computation of these C*! itself Proposition 5.13 is applied. Secondly,
these includes matrices C*! which are needed for the determination of offset
«directions. K being a bifurcation subgroup of a non-conjugate subgroup
* H and K being non-conjugate in H, the matrices C*! with respect to G
- and K are needed. Thirdly, some'C"1 are needed for the symmetry monitor
functions. To avoid the use of C'Z,j > 2 with respect to G and conjugate
subgroups H, the formulas (23) and (24) for the symmetry monitor functions
“have to be modified. On a branch of solutions with non-conjugate xsotropy
group K the monitor functions recognize H-invariant points, where H is
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not known to be a member of the chosen non-conjugate relevant subgroups.
Let H be a chosen nonconjugate relevant subgroup which is conjugate to H.
Then t € G exists with H = tHt™! and K = tKt™1.

. .
i = (Chz) (Com)T 9t ) Chruk, - (30)

gives an alternative symmetry monitor, which is equivalent to the detection
of points with isotropy H on the branch with isotropy K.

For this formula the matrices C*! with respect to non-conjugate H and its
bifurcation subgroups K are necessary. Computing these C*! itself again
Propostion 5.13 b.) may be used.

During the numerical computations the action ti—r on irreducible representa-
‘tions (28) is needed only for some group elements ¢ and subgroups H, if H
is a non-conjugate relevant subgroup and ¢t = r; a member of its cycle with
8$=8;_1="i—1+...-71 and H = sHs™ 1.

6. Overview of the algorithm

The group theoretic computations in SYMCON simulate a mathematician
‘who has read the analysis (equivariant braching lemma), looks up the irre-
ducible representations of the group, and then prepares and implements a
given equivariant system (2).

" For the second point the SYMMETRY Package ([6]) is used which contains
functions for the computation of symmetry adapted bases and a database

. containing irreducible representations for the small dihedral groups, the sym-
metric group S4 and others.

‘Problem independent part

The first step is the determination of all subgroups which is implemented like

the other grouptheoretic computations in RLISP. Starting with an arbitrary

set of elements of fixed order including a known subgroup (e.f. { id })
. elements are eliminated and new are chosen with a weighting procedure
( until a subgroup is found. This works fine for the small groups from the
" 'SYMMETRY Package.

A group isomorphism between these computed subgroups and a stored ab-
, stract one from the Package are constructed based on a search of equivalent
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generators. This enables the use of the stored irreducible representa.tlons for
the subgroups.

While conjugacy is exploited the rest of the action of G on the subgroup
tree is determined giving the normalizers as well. The algorithm from repre-
sentation theory gives the innerconnectivity multiplicities d;; and matrices
C' which determines with Lemma (3.6) the bifurcation graph. The com-
putation of cycles terminates the problem mdependent part which ran only
once. .

Organization of numerical:computations

Based on some stored information (9%, d;;, Cij, tk;, bifurcation graph with
conjugate and symmetric groups, cycles) _the_equivaria,nt systems (2) are
tackled starting with determination of multiplicities ¢, cF (10), the relevant
subgroups (see 3.9) and parts M of the transformation matrix.

During these computations and the foll"owing C code generation the intensive
exploitation of conjugacy was the important aim.

First the group operations J(t) including its action on the tree of relevant
subgroups and the actions on irreducible representations tf; (see 28) needed
for bifurca.tion point administration are generated with GENTRAN.

Then for each relevant subgroup coordinate transformation (15), symmetry
monitors (25) and offset directions (22) are generated.

A clear distinction between a set of non-conjugate relevant subgroups and
their conjugates are made as the reduced system (6) and Jacobian blocks
A; are generated for the non-conjugates only.

Their evaluation is a difficult point, see below. In the numerical part the
pathfollowing of non-conjugate solutions is done with ALCON (see [3],[4])
applied to the reduced systems. The conjugate solutions are computed by
group operatxons in a cycle.

While pathfollowmg the symmetry monitor functxons and determinants of
- Jacobian blocks are evaluated detecting bifurcation points leading to higher
- or smaller symmetry. The block structure is exploited as well for the compu-
. tation of eigenvalues giving the stability of solutions and detection of Hopf
points. The third use is the modification of step length by subcondition of
the blocks A;.

Independent on whether the detectxon is done w1th determma.nts or ‘bor-
dering, the computation of blfurcatxon points is done with an a.ugmented
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static void gD6D313(U,g)

double *U, *g;

{
transformD6D313(U,ygID) ;
ELEM_RD6(ygID,ygRD6) ;
g[1]1=£3(ygID);
g[2]=(SQRT3*SQRT2*f4 (ygRD6) +SQRT3*SQRT2+£4 (ygID))/2.0;
g [31=(SQRT3*SQRT2*£6 (ygRD6) +SQRT3*SQRT2*£6 (ygID) ) /2.0;
g[41=(-(SQRT3*SQRT2*£4 (ygRD6) ) +SQRT3*SQRT2*f4 (ygID))/2.0;
g[6]1=(-(SQRT3*SQRT2*£6 (ygRD6) ) +SQRT3*SQRT2*£6 (ygID))/2.0;

Figure 6: D3-reduced equations for the hexagonal lattice dome

system where A; appears directly ([4], [23]) or indirectly in a testfunction
([24]) the use of the block structure is essential.

No extra work has to be done to avoid multiplication with zeros in M;;. So
the extra work in [18] is superfluous.

Exploitation of quasi-permutation representation

If the matrices 9(¢) contain a lot of zeros, 1 and -1, then an evaluation of
§(@,A) = (MFYT F(MFa,A) and A(3,) = (ME)TD, f(MFa, )M by
evaluating f and df at (z,A) = (Mi%,)) numerically and numerical ma-
trix multiplications means an unnecessary computation with the complete
system. Thus in the new version of SYMCON the functions fi(t,z,A) and
dfyu(t, z, X) are generated for a set of indices which are computed with Com-
puter Algebra methods. For the case of a pure permutation representation
see also [10].

Because the matrix multiplications with M‘If are done in REDUCE, the

numerical evaluations of §(i, \) and A; consist of function calls of fx and
df,,, with different conjugate vectors 9(t)M{7i, where ¢ are representatives
of the left cosets of H in G ( see Fig. 6). This is also the best way in view
of minimization the amount of Code.

It remains to mention that for the trivial group instead of M = M GC’g{;d}
no coordinate transformation is done.
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static void invtransformD6D312(Y,u)
double *Y,*u;

{

ul[1]=Y[3];
ul2]=(Y[19]*SQRT3*SQRT2+Y [16]*SQRT3*SQRT2+Y [13]*SQRT3*SQRT2+Y [10] *SQRT3*
SQRT2+Y[7]*SQRT3*SQRT2+Y [4] *SQRT3*SQRT2)/6.0;
ul[3]=(Y[21]*SQRT3*SQRT2+Y [18]*3QRT3*SQRT2+Y [15]*SQRT3*SQRT2+Y [ 121 *SQRT3*
SQRT2+Y[9]*SQRT3*SQRT2+Y [6]*SQRT3*SQRT2) /6.0;
u[4]=(‘(Y[20]*SQRT3*SQRT2)+Y[17]*SQRT3*SQRT2—(Y[14]*SQRT3*SQRT2)+Y[

11]*SQRT3

*SQRT2-(Y[8]*SQRT3*SQRT2)+Y[6]1*SQRT3*SQRT2)/6.0;
ufs]=Y[22];

Figure 7: Coordinate transformation (i, ) = (MP?)T(z, ) for the hexago-
nal lattice dome

dimension degree 2 3 4
10 6600 28600 100100
20 92400 | 708400 4250400
50- 3315000 | 58565000 | 790627500

Table 1: Number of possible terms in a Jacobian consisting of polynomials

example | REDUCE compile link numeric file
brussD3 | 20150 ms 9.2u sec | 6.5u sec 2.3 sec | 16960 Bytes
-brussD4 | 55280 ms | 19.3u sec | 6.3u sec 8.38 sec | 33211 Bytes
brussD6 | 350980 ms | 73.7u sec | 6.7u sac 16.8 sec | 101741 Bytes
brussS4 | 127570 ms | 43.0u sec | 6.7u sec 8.28 sec | 61168 Bytes
dome 52 min | 333.2u sec | 8.4u sec | 1558.6 sec | 308723 Bytes

Table 2: Performance of Symcon on a Data General
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group | subgroup search | identify subgroups | bifgraph
K4 30 ms 50 ms 250 ms
D3 170 ms 90 ms 560 ms
D4 330 ms 340 ms 1370 ms
C4 50 ms 30 ms 70 ms
C5 20 ms 20 ms 200 ms
C6 110 ms 90 ms 490 ms
D6 3440 ms 850 ms | 7240 ms
A4 6270 ms 420 ms | 1830 ms
S4 216510 ms 9530 ms | 17630 ms

Table 3: Performance of computation of bifurcation graphs on a Data Gen-
. eral

7 The battle between REDUCE and C

For evaluation of the mixture of symbolic and numeric computations one has
to take into account that the symbolic part is normally done by hand. In
¢ontrast to numerical computations the algorithmic complexity of symbolic
computations is much higher (see Table 1). Nevertheless the bottleneck is
not REDUCE or GENTRAN but the compiler that cannot compile expres-
sions larger than a certain size — the assumption obviously being that hand
.written code of such size cannot be correct anyway.

So the compilation of the Jacobian matrix of the hexagonal lattice dome
in a former version of SYMCON was only possible after modifications of
GENTRAN and thus changing the way of C Code generation.

Hence our most important aim was to produce as few as code as possi-
ble, which is done in SYMCON by exploitation of the quasi-permutation
- structure of the representation.

The advantages of symbolic computation in this context are
o the equivariance check (safety of implementation),

- o generation of matrices avoiding unnecessary operations with zero
(see Fig. 6 and 7),

e symbolic differentiatjon,
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e handling of abstract functions (see Section 6.).

Table 2 gives the computing times for the hexagonal lattice dome mentioned
in Section § and ‘the brusselators with respect to different groﬁ;s which
have been often treated.. The definition is given for example in [4]. The
table shows that the computmg time is an important criterion for ranking
of numerical algorithms for larger problems only. For smaller problems the
criteria of reha.blhty, robustness, easy implementation, and transparency are
other important criteria. .

8. Example: Hexagonal lattice dome

In HEALEY [11] an example of a deformation of an hexagonal lattice dome
is given. It was also treated in [21]. There are seven free nodes I €
{A,B,C, D, E,F,G} with displacement .vectors z; € IR? which form the
unknowns z = (z4,...,zg) € IR? of the system. In [5] the example is fully
described and an overview of stable solutions is given. We found more than
- 600 symmetry breaking bifurcation points of different types which are con-
nected by ca.-200 branches of solutions with non-conjugate isotropy groups.
‘Figure 8 gives an impression of the complexity of this problem ‘
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