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Finding Minimum Balanced Separators
- an Exact Approach

Ralf Borndörfer, Stephan Schwartz, William Surau

Zuse Institute Berlin, Takustr. 7, 14195 Berlin

Abstract

Balanced separators are node sets that split the graph into size bounded
components. They find applications in different theoretical and practical
problems. In this paper we discuss how to find a minimum set of balanced
separators in node weighted graphs. Our contribution is a new and exact
algorithm that solves Minimum Balanced Separators by a sequence
of Hitting Set problems. The only other exact method appears to be a
mixed-integer program (MIP) for the edge weighted case. We adapt this
model to node weighted graphs and compare it to our approach on a set of
instances, resembling transit networks. It shows that our algorithm is far
superior on almost all test instances.

1 Balanced Separators

The definition of balanced separators is not consistent in the literature. Here we use
the following:

Definition 1. Let G = (V,E) be a graph with node weights w ∈ RV
≥0, X ⊆ V , and

α ∈ [0,1]. We call X an α-balanced separator if any connected component C in
G −X satisfies w(C) ≤ α ⋅w(G).

Other definitions only consider unit node weights or require that X separates G into
two disjoint vertex sets A,B ⊆ V such that no edge between a vertex in A and B exists,
V = A ⊍B ⊍X, and ∣A∣, ∣B∣ ≤ α ⋅ ∣V ∣. In the latter definition we call X an α-balanced
biseparator. Note that for α ≥ 2

3
both definitions intersect. We consider the problem

of finding balanced separators of minimum cardinality.

Definition 2. Let G = (V,E) be graph with node weights w ∈ RV
≥0 and α ∈ [0,1]. The

Minimum Balanced Separators problem is to find a set X ⊆ V such that X is an
α-balanced separator and ∣X ∣ is minimum.
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Observe that Minimum Balanced Separators is NP-hard. By setting w ≡ 1 and
α = 1

∣V ∣
we basically search for a minimum vertex cover, which is one of the classical

NP-hard problems.
Solving Minimum Balanced Separators is usually done by approximation algo-

rithms [3] or even pseudo approximation algorithms with relaxed upper bounds [9]. In
[5] the authors found kernels for unweighted graphs. The problem is also studied for
different graph classes like planar graphs [10] or graphs with maximum degree 3 [4].
In [13] they propose an exact approach to find minimum balanced biseparators.

Balanced separators have a variety of applications. They are used in approximation
algorithms to find tree decompositions [7]. In many graph algorithms based on the
divide and conquer paradigm [11] finding balanced separators of small size is important.
Separators are also used to indicate bottlenecks in communication systems [1].

Our work is motivated by covering or partitioning a graph with connected subgraphs
subject to lower and upper bounds. These problems occur in many districting [12],
waste collection [6] or toll control enforcement [2] problems and can be solved by
compact MIPs as presented in [8, 14]. Enforcing connectivity in MIPs is crucial and
can be done by declaring vertices as roots from which connected subgraphs are formed.
A naive approach is to allow every vertex to operate as a root. Since every considered
root increases the number of variables and constraints, we aim to minimize the set
of roots. Here we can exploit the lower weight bound L of each connected subgraph.
If we set α = L−ε

w(G)
(for ε sufficiently small) then each connected subgraph S with

w(S) ≥ L shares at least one vertex with any α-balanced separator. Therefore, finding
a minimum set of roots reduces to Minimum Balanced Separators.

2 Compact Flow Formulation

Elijazyfer [8] proposes an exact method for finding α-balanced separators in edge
weighted graphs. For the sake of completeness we present the adapted version to the
node weighted case. The MIP is based on a flow formulation, which requires directed
graphs. To turn G into a directed graph we define A as the bidirected arc set of
the edges in E. The idea is to search for an arc partition such that each component
induces a connected subgraph and its cumulative weight does not exceed α ⋅ w(G).
The set of vertices occurring in more than one component constitutes an α-balanced
separator. Therefore, the objective is to minimize the cardinality of this vertex set. We
introduce variables x ∈ {0,1}V for the indication of the α-balanced separator, variables
y ∈ {0,1}V ×A for the arc partition, variables q ∈ NV ×A0 for flows ensuring connectivity
of the components, and variables s ∈ {0,1}V ×V and c ∈ {0,1}V ×V to determine the
weight of a component.

Constraints (1b) partition the arcs and (1c) force both directions of an arc to be in
the same component. In (1d) it is ensured that both endpoints of an arc are in the
same component as the arc. Lines (1e) and (1f) specify a flow to ensure connectivity,
for more details see [2]. If a vertex is in more than one subgraph it has to be a
separator, which is forced by (1g). The upper bound of each component is set in (1h).
The variable crv indicates if vertex v in the component rooted at r is excluded in the
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cumulative weight. This is only possible if srv = 1 (1i) and v is a separator (1j).

min
x,s,c,y,q

∑
v∈V

xv (1a)

s.t. ∑
r∈V

yra = 1 ∀a ∈ A, (1b)

yr
(u,v) = yr

(v,u) ∀r ∈ V ∀(u, v) ∈ A, (1c)

2 ⋅ yr
(u,v) ≤ sru + s

r
v ∀r ∈ V ∀(u, v) ∈ A, (1d)

qra ≤ yra ⋅ (∣V ∣ − 1) ∀r ∈ V ∀a ∈ A, (1e)

∑
v∈δ+(v)

qra − ∑
v∈δ−(v)

qra ≥ srv ∀r ∈ V ∀v ∈ V ∖ {r}, (1f)

1 + xv ⋅ (∣V ∣ − 1) ≥ ∑
r∈V

srv ∀v ∈ V, (1g)

∑
v∈V

(srv − c
r
v) ⋅wv ≤ α ⋅w(G) ∀r ∈ V. (1h)

crv ≤ srv ∀r ∈ V ∀v ∈ V, (1i)

crv ≤ xv ∀r ∈ V ∀v ∈ V. (1j)

We can see that the model contains a large number of variables and constraints and
uses many big M constraints. In particular, for the connectivity it considers a flow
emerging from every vertex, while our main motivation is to avoid this necessity.

3 Exact Algorithm

We propose a different exact approach that circumvents these issues. While our for-
mulation still has a large number of constraints we present a separation routine that
dynamically generates necessary constraints. To this end, we define S as the set of all
connected subgraphs of G with a cumulative weight greater than α ⋅w(G). The master
problem has the following form:

min
x

∑
v∈V

xv (2a)

s.t. ∑
v∈V (S)

xv ≥ 1 ∀S ∈ S, (2b)

xv ∈ {0,1} ∀v ∈ V. (2c)

The variable xv indicates if v is part of the balanced separator. Our objective is to
minimize the cardinality of the balanced separator (2a). Constraints (2b) ensure that
each subgraph in S contains at least one separating vertex.

Model (2) solves Minimum Balanced Separators. Let X ⊆ V be a solution of
(2), then every connected component C in G −X fulfills w(C) ≤ α ⋅ w(G), otherwise
X would not be feasible since C ∈ S. Let X∗ be a solution of Minimum Balanced
Separators. Any subgraph S ∈ S has to have a common vertex with X∗, otherwise
a connected component C ⊇ S in G − X∗ exists with w(C) > α ⋅ w(G). Therefore,
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model (2) is correct. Observe that this model is the well known Hitting Set, which
is defined as:

Definition 3. Let U be a set and S ⊆ P(U). The Hitting Set problem is to find a
set X ⊆ U such that for any S ∈ S holds X ∩ S ≠ ∅ and ∣X ∣ is minimum.

The algorithm starts by solving Hitting Set(V,∅) and adds iteratively violated
constraints, corresponding to the connected components exceeding the upper bound.

Algorithm 1 Minimum Balanced Separators

Input: G = (V,E),w ∈ RV
≥0, α ∈ [0,1]

Output: X ⊆ V s.t. X is an α-balanced separator and ∣X ∣ is minimum.

1: S,X ← ∅

2: while in G −X exists a connected component C with w(C) > α ⋅w(G) do
3: for all connected component C in G −X do
4: if w(C) > α ⋅w(G) then
5: S ← S ∪ {V (C)}

6: X ← Hitting Set(V,S)

7: return X

Proposition 4. Algorithm 1 is correct.

Proof. Let X∗ be a minimum α-balanced separator and X be a solution from Algo-
rithm 1. Since G−X contains no connected component C with w(C) > α ⋅w(G), X is
an α-balanced separator. If ∣X∗∣ < ∣X ∣, then X is not an optimal solution of Hitting
Set, because at any iteration X∗ is a feasible solution.

In each iteration one or more subgraphs from S are added to S, otherwise we stop.
Since at least one vertex of every subgraph in S is in X no subgraph gets added twice.
Therefore, and since ∣S∣ is finite, we conclude that Algorithm 1 terminates.

We have improved Algorithm 1 by only adding minimal connected subgraphs that
are violating the upper bound. Let S ′ ⊆ S be the set of all connected subgraphs, such
that no proper connected subgraph is in S as well. Let X ⊆ V be the current solution
and C be a connected component in G −X with w(C) > α ⋅ w(G). We search for an
arbitrary covering of C with subgraphs of S ′. This can be done by a simple breadth first
search (BFS) on C. Starting at any vertex we construct a subgraph following the BFS.
As soon as the current subgraph violates the upper bound we start to construct a new
subgraph from an uncovered vertex. We achieve another improvement by bounding
the objective value of Hitting Set in each iteration. Let us say we are at the i-th
iteration of the while loop. Let X ′ ⊆ V be the solution of Hitting Set in the previous
iteration. We know that the current solution X ⊆ V fulfills ∣X ′∣ ≤ ∣X ∣. Therefore, we
can add the constraint ∑v∈V xv ≥ ∣X ′∣.
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Figure 1: Computational results of RG and MIP on tree lg (red), voronoi medium lg

(blue), and voronoi large lg (orange). The order of the instances is sorted
independently.

4 Computational Study

We ran the experiments on machines equipped with Intel Xeon E3-1234 CPUs with
3.7GHz and 32GB RAM. The code is written in Python 3.6 and to solve MIPs Gurobi
9.1 is used. The time limit is set to 2 hours.

We consider test instances that resemble transit networks of different complexity.
All test instances are described and can be found in a GitHub repository1, and our
instance-wise computational results in an online supplement2. We only use the node
weighted instances labeled with ” lg” (for line graph). Inspired by a real world problem
from [2], we set parameter α such that α ⋅w(G) = 100 − ε, where ε = 10−4. This leads
to values of α ranging from 0.12 to 0.21. The instances are split into three groups,
tree lg, voronoi medium lg, and voronoi large lg. By MIP we denote model (1)
and RG refers to Algorithm 1.

In Figure 1a we see the running time of RG. The time limit is marked by a horizontal
dashed line. If an instance exceeds the time limit, the corresponding bar ends with a
dotted line. Our algorithm finds an optimal solution within the time limit for all but
6 instances. Note that the scale is logarithmic and the running times lie in a broad
range, even within the same group. The MIP, on the other hand, exceeds the time
limit on all 75 instances. Our algorithm is not only much faster but also provides
better solutions. In Figure 1b we see that the incumbent separator set in MIP after 2
hours is significantly larger than the optimal solution from RG. Again, the instances
are ordered by ratio and grouped. While MIP only finds an optimal solution for one
instance it could not find a corresponding dual bound better than 0. In fact, the dual

1https://github.com/stephanschwartz/vertex covering with capacitated trees
2https://github.com/williamsurau/finding minimum balanced separators-an exact approach
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bound for MIP is still 0 on all instances after 7200 seconds. Moreover, we ran MIP on
several selected instances with a time limit of 24 hours, and it was not able to close
the gap for any of those. Once again, this illustrates the superiority of the presented
approach.
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