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Optimal Line Planning in the Parametric City
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Abstract. We formulate the line planning problem in public transport
as a mixed integer linear program (MILP), which selects both passen-
ger and vehicle routes, such that travel demands are met with respect to
minimized travel times for both operators and users. We apply MILP
to the Parametric City, a generic city model developed by Fielbaum et
al. [2]. While the infrastructure graph and demand are entirely rotation
symmetric, asymmetric optimal line plans can occur. Using group the-
ory, we analyze the properties of symmetric solutions and introduce a
symmetry gap to measure their deviation of the optimum. We also de-
velop a 1+ M—approximation algorithm, depending only on the cost
related parameter g. Supported by computational experiments, we con-
clude that in practice symmetric line plans provide good solutions for
the line planning problem in the Parametric City.

Keywords: line planning, city modelling, symmetry, mixed integer pro-
gramming, approximation algorithm

1 Introduction

The goal of line planning is to determine the most efficient routes, as well as
frequencies of service in order to satisfy travel demands in a city. We do so with
the help of a mixed integer linear programming problem (M ILP) formulation,
whose objective is to minimize both operator as well as passenger travel times
combined by a scalarization parameter. It considers all circuits in a graph as
potential lines and all simple paths as passenger routes. Good line plans must
generally be computed — at great expense due to the model size — for each city
individually, their solutions are difficult to compare and cannot be applied to
other cities. Our approach is therefore use the Parametric City, a generic model
developed by Fielbaum et al. [2] for the purpose of designing transportation
services. It can be adjusted to represent the most characteristic aspects of the
city, such as its geography, as well as the degree of mono-, polycentricity and
dispersion. The Parametric City is entirely rotation symmetric — it is therefore
natural to assume that this symmetry is reflected in the optimal line plans.
However, there are cases, in which the optimal line plans are asymmetric. Our
main attention is on this influence of symmetry: On the optimal solutions and
how much a symmetric solution deviates from its optimum. We examine in which
cases optimal solutions must be symmetric, when they can be utilized as good
approximations and in which cases it is detrimental to assume symmetry in the
line plans.
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2 The Parametric City

We choose the Parametric City [2] as city representative, since this model bal-
ances generality and simplicity — it can represent any city and its prominent
features, while remaining simple enough to be analyzable. It is comprised of a
infrastructure graph G = (V, A) (see Fig. 1) with 2n + 1 vertices and a demand
ds ¢, (s,t) € V xV (see Table 1). Table 2 gives an overview of the parameters.

n no. of subcenters/peripheries
T  l|arc length (SC;,CD)

g, T |factors for arc length

(SC;, P,),(SC;, SC;+1)

Y  [|total patronage

a f.o.t. from P;
a(a&)|f.o.t. from P; (SC;) to CD
Fig. 1: Graph G with n =6 B |fot. from P; to SC;
i
BSf) winy | o S TIT ST ATA=T,
SC;| 0 | U-aby |U=al¥g a/y=aly

Table 1: Demand d, ; (not listed vertex- Table 2: Parameters in the Parametric
pairs correspond to ds; = 0) City, f.o.t.=fraction of travelers € [0, 1]

2.1 Rotation Symmetry

The graph G is evidently rotation symmetric. While the demand matrix is not
symmetric in the usual sense, the demand itself is rotation symmetric as well:
E.g., the demand from a periphery P; to the central business district C'D is the
same as that of any other periphery P; to C'D. This notion of symmetry can be
precisely defined with the help of group actions:

The group G = Z/nZ acts on the vertices of G by rotation around C'D. This
action extends to any tuple of vertices, in particular arcs, path, and lines. We
denote by G - x the group orbit of a vertex (tuple) z. E.g., G - SCy corresponds
to the set of all subcenters, and G - CD = {CD}. With this group action, we
describe the rotation symmetry of the demand by the property of d,; = ds v
for all (s',t') € G- (s,t) for any vertex tuple (s,t) € V x V.

3 The Line Planning Problem

We formulate the line planning problem (MILP) as a mixed integer program
using two types of variables: y, € R for the passenger flow on path p € P, and
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fi € N for the frequency of line [ € L. P is the set of all simple paths, while L is
the line pool consisting of all simple directed cycles in G. We denote the sets P,
and L, as the set of paths and lines which use arc a € A. Further, Ps_,; is the
set of all s-t-paths. This follows [1], with a few minor changes: We restrict to
only one mode of transport, do not include line-activation costs, and expand the
line pool to include all circular, not only bidirectional lines.

(MILP) (MILPy) (1)
min chlfl +(1—-p) Z cpYp min p Z oo +(1—p) Z CpYp (2)
leL peEP a€A peEP
s.t. Z Yp =dsy s.t. Z Yp =dsy V(s,t) € VXV (3)
PEPs ¢ PEPs ¢
- > HK<0 > yp—F.K<0 VacA (4)
pEP, l€L, pEP,
Y hi<A F, <A Va € A (5)
€L,
Y Fo=Y F.=0%eV (6)
aG&T acd,
fieN Viel F,eN Yae A (7)
yp >0 Yp >0 Vpe P (8)

For a solution (f,y) of MILP, f = (f)icr is called the line plan and y =
(yp)pep the passenger flow. A line [ is part of the line plan if and only if f; > 0,
analogously for the passenger flow.

We refer to [5] for an explanation of the constraints. The objective is a com-
bination of operator and user costs respectively and are scalarized by parameter
i € [0,1]. The larger p, the more focus lies on the minimization of operator
costs, while a small p aims at user-friendly line plans. We consider the running
and travel times as the total length of a line or path, ie., ¢; = ), ¢, and
cp = Zaep Ca, Where ¢, is the length of arc a € A as defined in the Parametric
City, cf. Fig. 1.

As costs depend on the arc-lengths of the routes only, we can reformulate
and hence reduce the model size significantly: Instead of considering the large
line pool as variables, one can consider the frequencies of all aggregated lines
traversing an arc, i.e., by considering F, := ), 1, Ji- To model the circulations
of the lines, we can impose standard flow conservation constraints (6), where &,
and ¢, denote the set of out- and incoming arcs at node v respectively. The entire
arc-based mixed integer linear programming problem MILP,4 can be found on
the right of Definition 3. In fact, the following holds:

Lemma 1. MILP and MILP,4 are equivalent, in the sense that for a feasible
solution (F,y) to MILP, there exists a feasible solution (f,y) to MILP with
costa(F,y) = cost(f,y) and vice versa.
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4 Symmetry

Definition 1 (Symmetric Solution). Consider a solution (f,y) to MILP
and the equivalent solution (F,y) to MILP4. Then

1. (f,y) is line-symmetric if f; = fi for olll' € G-1,l € L,

2. (f,y) or (F,y) is path-symmetric if y, =y, for allp’ € G-p,p € P,

3. (f,y) is arc-symmetric if Y . fi = ZZGLQ, fiforalld € G-a,a€ A,

4. (F,y) is arc-symmetric if F, = Fy for alla’ € G- a,a € A.

The solution (f,y) is symmetric if it is line- and path-symmetric, while (F,y) is
symmetric if it is arc- and path-symmetric.

Proposition 1 (Sufficient condition for symmetry). A line-symmetric,
arc-symmetric or path-symmetric optimal solution is sufficient for the existence
of an entirely symmetric optimal solution.

Thus, to determine an optimal value of symmetric solutions, it is enough to im-
pose symmetric arc-frequency conditions (Def. 1,4) on MILP4. We denote the
model as MILP,,,,. As we have only six orbits on the set of arcs in the Paramet-
ric City, M 1L Pk, reduces to a problem with a fixed number of variables. Due
to further geometric properties, this number gets reduced even further to only
three variables. This has significant consequences: As was proven by Lenstra [4],
a mixed integer programming problem with a fixed number of variables can be
solved in polynomial time. Hence:

Proposition 2. The symmetric line planning problem MILPs,, is solvable in
polynomaal time.

Given a feasible general solution (F,y), it is always possible to construct
a feasible symmetric solution (F*,y*) by taking (rounded) averages per orbit.
This allows for an estimate of how much the optimal solution deviates from a
symmetric one at most:

cost(F?,y®) — cost(F,y) < u2T(1 +r,)(n — 1). 9)

Consequently, if we optimize for user comfort only, i.e., if u = 0, the existence of
a symmetric optimal line plan is guaranteed. However, for other values of u we
introd th ¢ I = OptVal(MILP;ym,)
mtroauce e symmeiry gap = m

measure the quality of a symmetric solution compared to an asymmetric one.

. This gives us the means to

Proposition 3. The relative symmetry gap I is bound by:

r<Culan) <G <1+ 05V

g
The values of C,, (v, y) and C,, can be computed efficiently by using the bound (9)
and the optimal value of the LP-relaxation, which can be computed analytically;
a detailed description can be found in [5]. Due to MILP,,, being solvable in
polynomial time and in combination with Propoisiton 3, we can formulate the
following proposition:
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Proposition 4. The algorithm that arises from restricting the line planning

problem to symmetric solutions is a 1+ M-app7"0:1:2'mation algorithm for the
Parametric City if the cost related parameter g is fized.

To ascertain how the gap behaves when g goes to 0, consider the following in-
stance: Set g = 1/n, u = 1 and choose a very large capacity, e.g., set K =Y. In
other words, the entire patronage can fit into a single vehicle. Regardless of any
other parameter choice, the optimal frequency plans of MILP, and MILPsyy,
are the ones displayed in Fig. 2 on the left and right respectively. The correspond-
ing gap becomes arbitrarily large for n — co. However, this extreme example is

i i

J 7. DA
- N

T AN

Fig. 2: Optimal frequency plans: general vs. symmetric model

constructed and does not reflect realistic input data. To assess whether and how
often in practice purely asymmetric solutions occur, and how large the gap be-
comes, we solved multiple large batches of Parametric City instances for realistic
parameter choices.

4.1 Computational Results

We performed multiple computations, choosing various geometry-related param-
eters in the Parametric City, as well as different values of u. For each choice,
we computed the optimal solution for all demand parameters a,~y € [0.025,0.95]
and a step size of 0.025. Each problem was solved with Gurobi 9 [3] to optimal-
ity (with a tolerance of 10~* in the relative MIP gap)in three variations: the
standard MILP,, its symmetric version MILP;,,,, as well as the restriction to
both rotation and reflection symmetric solutions by imposing additional reflec-
tion symmetry constraints. See below a representative example for the choices
of n =8,9g =1/3,Y = 24000, K = 100, x = 1,a = 0.8. Surprisingly, even with
realistic results, purely asymmetric solutions can be found, as becomes evident
on the left of Fig. 3. When comparing different values of 1, one can also observe
that their number increases with p. For a more in-depth comparison see [5]. Also
noticeable is the fact that reflection symmetry occurs in the rotation symmet-
ric solutions roughly as often as not. This observation is unexpected, since the
demand is also reflection symmetric. When looking at the symmetry gap I" how-



6 Berenike Masing

=0,
B=1, e Cg
y=0) o Ca(ay)
2 *  Asy
. Rot
o0y e Rot+Ref 116
.'.:;ﬁ.“" 114
“:... ...:'a 112
o o 110
e "....- " eee 1.08
Sestitiernlie
o T e T N 104
e e )
PPt s S L g o) 100
=1 psemselscdmilomisionatss, (1-0
B2 Fndenguilpnertnipentitlie P20

Fig. 3: Realistic input data

ever, it becomes evident that the difference in costs is extremely small. For this
instance, the actually computed deviation of symmetric solutions from the opti-
mal is less than 2%, as becomes evident on the right of Fig. 3 and is significantly
smaller than the theoretical upper bounds also depicted (cf. Proposition 3).

We conclude that in practice, city planners are justified in assuming sym-
metric solutions: The line plans can either be considered as optimal, due to the
somewhat idealized underlying city model, or one can use them as good and
easy to compute approximations. With the exception of when operator costs are
ignored, the possibility of asymmetric solutions should be kept in mind however,
as unfortunate parameter choices can lead to a large deviation in costs.

References

1. Borndérfer, R., Grétschel, M., Pfetsch, M.E.: A column-generation approach to line
planning in public transport. Transportation Science 41(1), 123-132 (2007). doi:
10.1287 /trsc.1060.0161

2. Fielbaum, A., Jara-Diaz, S., Gschwender, A.: A parametric description of cities for
the normative analysis of transport systems. Networks and Spatial Economics 17
(2016). doi: 10.1007/s11067-016-9329-7

3. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2020). http://www.
gurobi.com

4. Lenstra, H-W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8(4), 538-548 (1983). http://www.jstor.org/stable/3689168

5. Masing, B.: Optimal line planning in the parametric city. Master’s thesis, Technische
Universitat Berlin (2020)


http://www.gurobi.com
http://www.gurobi.com
http://www.jstor.org/stable/3689168

	Optimal Line Planning in the Parametric City

