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Abstract

The routing of commodities is a tactical problem in supply chain management that aims

to synchronise transportation services connecting a network of warehouses and consolidation

locations. This paper considers the routing of commodities in a transportation network

that is flexible in response to demand through changes to regional warehouse clustering

and the designation of consolidation locations. Traditionally, warehouse clustering and

consolidation locations are determined as part of strategic planning that is performed months

to years in advance of operations—limiting the flexibility in transportation networks to

respond to changes in demand. A mathematical programming-based algorithmic framework

is proposed to integrate the strategic decisions of location planning with tactical decisions of

vehicle routing and synchronisation. A multi-armed bandit problem is developed to explore

warehouse clustering decisions and exploit those that lead to small transportation costs. An

extensive computational study will show that the proposed algorithmic framework effectively

integrates strategic and tactical planning decisions to reduce the overall transportation costs.

Key words: supply chain management, vehicle routing, location, synchronisation, multi-

armed bandit
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1 Introduction

Supply chain networks are complex systems comprised of many interconnected facilities and

resources. Facilities that share similar characteristics are typically grouped into tiers, where

commodities flow down through the tiers—from the manufacturer to the shop front. Efficiency

in supply chains is highly dependent on the effective storage, consolidation and transportation

of commodities. This paper aims to improve supply chain efficiency with a focus on the consol-

idation and transportation of commodities between facilities within a single tier of the supply

chain network.

Warehouses are large consolidation points that are used to store commodities prior to their

transportation to distribution depots. Figure 1 shows the possible movement of commodities

through the final three tiers of the supply chain network. Traditionally, the inter-warehouse

transfer of commodities relies on point-to-point transportation—providing little opportunity for

consolidation. By introducing consolidation at warehouses, the inter-warehouse transportation

network can be adapted to reduce operational costs through the clustering of warehouses,

selection of consolidation locations and construction of multi-stop vehicle routes.

This paper considers an inter-warehouse transportation problem encountered by our project

partner where the warehouse clusters, consolidation locations and transportation schedules are

flexible and determined with respect to demand. Our project partner previously constructed

Warehouse

Depot

Shop

Figure 1: Three tiers in a supply chain network.



1 INTRODUCTION 3

numerous large warehouses to consolidate commodities and relied on point-to-point transporta-

tion between the warehouses. Since the number of pickup and delivery requests between each

pair of warehouses is related to demand, this method of operation has become inefficient. This

has prompted a change in operations to design an inter-warehouse transportation network that

is adaptable to changes in demand. The warehouses will be redesigned so that they can be

simply converted into consolidated locations as required—which are selected after a monthly

review of the demand forecasts. Our study develops the tools necessary to identify warehouse

clusters and consolidation locations with respect to the forecast demand. The problem consid-

ered in this paper integrates location clustering, transshipment and vehicle routing problems,

which will be described as the supply chain and service network design problem (SCSNDP).

The contributions of this paper are as follows: We (i) present a new supply chain manage-

ment application that exploits demand-based location clustering to reduce operational costs in

adaptive transportation networks. To address the scale of this application (ii) a mathematical

programming-based algorithmic framework is developed to formulate the SCSNDP that effec-

tively integrates location clustering, transshipment and vehicle routing problems. The adaptive

nature of the underlying application motivates the development of a reinforcement learning

problem. To this end, (iii) a multi-armed bandit (MAB) problem is proposed as a method to

explore and exploit warehouse clustering solutions that lead to reduced intra- and inter-cluster

transportation costs. Most importantly, (iv) a novel iterative algorithm is developed to syn-

chronise intra- and inter-cluster transportation routes at consolidation locations. The proposed

solution algorithm is enhanced by various algorithmic techniques to improve the solution qual-

ity of the SCSNDP. Finally, (v) an extensive set of computational experiments will demonstrate

the effectiveness of the SCSNDP at reducing transportation costs.

The definition of the SCSNDP and a discussion of related work is presented in Section 2. The

mathematical programming problems modelling the major operational decisions of the SCSNDP

are presented in Section 3. A description of the solution algorithm and novel techniques used

to improve the solution quality of the SCSNDP is provided in Section 4. Section 5 presents the

computational experiments that demonstrate the potential of the proposed solution algorithms

to reduce transportation costs.
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2 The supply chain and service network design problem

The SCSNDP comprises a set of warehouses and a set of pickup and delivery requests between

each pair of warehouses. To support the efficient transfer of goods between warehouses, a set of

clusters can be defined based on the geographical proximity of the warehouses. Within each of

these clusters, any of the warehouses can be selected as a consolidation location for the intra-

warehouse transportation of commodities. The combination of the clustered warehouses and the

size of the considered geographical region is such that the pickup and delivery of commodities

may require transportation on more than one vehicle route. This paper considers the problem

of selecting warehouse clusters and consolidation locations and identifying synchronised intra-

and inter-cluster routes to satisfy all pickup and delivery requests at the lowest cost.

2.1 Related work

The integration of location, transshipment and vehicle routing in the SCSNDP draws upon

concepts from many different supply chain management applications. In particular, location-

routing [11,17], vehicle routing with synchronisation [10], service network design (SNDP) [8,26],

multi-echelon vehicle routing [18] and vehicle routing with pickup and delivery (PDP) [9, 23]

all exhibit characteristics that are observed in the SCSNDP.

The integration of clustering, location and routing is a core feature of the location-routing

problem [11, 17]. In response to the difficulty of solving the integrated location and routing

problems, Barreto et al. [2] proposed various different clustering methods to improve the solution

quality. The impact of the clustering approach is further discussed by Lam and Mittenthal [13]

in the context of a multi-depot location-routing problem. Specifically, the location clustering is

shown by Lam and Mittenthal [13] to significantly impact the overall vehicle routing cost. The

results from Barreto et al. [2] and Lam and Mittenthal [13] motivate the cluster-based adaptive

transportation network underlying the SCSNDP.

A major limitation of traditional location-routing problems is that the transportation of

commodities between the clusters is typically ignored. The combination of multi-echelon vehicle

routing and location-routing problems, as described by Contardo et al. [5], aims to address this

limitation. Wang et al. [24] further investigate the multi-echelon location-routing problem by

developing alternative customer clustering techniques. While the multi-echelon vehicle routing

problem introduces movement of commodities between clusters, this movement is only one
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directional until the last-mile delivery. Hence, the possibility to transport commodities to and

from warehouses located in different clusters is not considered.

An extension of the location-routing problem that introduces adaptive transportation net-

works is presented by Salama and Srinivas [21]. Specifically, Salama and Srinivas [21] investigate

a novel vehicle routing application that integrates truck and drone routing for last-mile delivery.

The customer locations are clustered based on demand and whether they can be served by a

drone for last-mile delivery. However, the drone capacity restricts the intra-cluster routes to

direct links between the cluster centres and the delivery locations.

The cluster-based adaptive transportation network of the SCSNDP draws upon may fea-

tures from facility location and network design problems. Melkote and Daskin [15] discuss a

uncapacitated facility location and network design problem that is a precursor to many loca-

tion routing problems. In a broader investigation, Contreras et al. [6] propose a framework

for classifying problems that combine location and network design. The SCSNDP fits within

the framework presented by Contreras et al. [6]; however, the synchronisation of intra- and

inter-cluster routes introduces an extension beyond the classes of problems that are discussed.

Focusing on less-than-truckload freight operators, the SNDP is tasked with identifying a

transportation schedule for the movement of goods between consolidation locations. Extensive

reviews of formulations and solution approaches for the SNDP are provided by Crainic [8] and

Wieberneit [26]. Since intra-cluster transportation is largely ignored, previous results for the

SNDP that are relevant for the SCSNDP are limited; however, there are some exceptions.

Medina et al. [14] present an extension to the SNDP that involves the integration of long-haul

and local transportation. Building on the work of Medina et al. [14], Wolfinger et al. [28]

consider a multi-modal routing problem that integrates a scheduling component for the first-

and last-mile journeys. Heggen et al. [12] describe a more comprehensive model integrating

long-haul and local transportation, where a set of regions are prescribed, with long-haul routes

transporting commodities between regions. Pickup and delivery routes are then identified to

perform the first- and last-mile transportation of commodities within each region. The proposed

SCSNDP builds upon the previous work of Medina et al. [14], Wolfinger et al. [28] and Heggen et

al. [12] by incorporating flexibility within the warehouse clusters, resulting in a transportation

network that is adaptive to changes in commodity demands.

The PDP is a well studied variant of the VRP that shares many characteristics with the

SCSNDP. For a general overview of the PDP, the reader is referred to Savelsbergh and Sol [23]
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and Desaulniers et al. [9]. While the classical PDP is broadly related to the SCSNDP, the

variants incorporating cross-docking locations and transshipment are most relevant. Wen et

al. [25] and Santos et al. [22] present examples of the PDP that incorporate a single cross-docking

location. Thus, transshipment may be required at most once when transporting a commodity

between the pickup and delivery locations. An effective large-neighbourhood search heuristic for

the PDP with a single cross-docking opportunity was developed by Petersen and Ropke [19].

An extension of the PDP with cross-docking opportunities is presented by Buijis et al. [4],

where multiple cross-docking locations exist and synchronisation constraints are introduced to

incorporate transshipment between these locations.

The PDP with transshipment is an alternative model that incorporates the transfer of

commodities between vehicles, as presented by Mitrović-Minić and Laporte [16] and Rais et

al. [20]. Mitrović-Minić and Laporte [16] employ transshipment to restrict the geographical

regions that the local distribution vehicles cover. Alternatively, Rais et al. [20] present a variant

of the PDP with transshipment where it is possible for the vehicles to end at a depot that is

different from the origin depot. A more comprehensive approach to the PDP with transshipment

is described by Wolfinger [27]—incorporating time windows, split loads and transshipment.

Incorporating transshipment in the PDP through the integration with the SNDP is a major

contribution of the SCSNDP.

A common theme of the vehicle routing and location problems presented above is the syn-

chronisation between vehicles. Drexl [10] presents an extensive survey on the use of synchro-

nisation constraints in vehicle routing problems. Most relevant to the work presented in this

paper is the operational synchronisation, where vehicle schedules arriving a consolidation loca-

tions must be synchronised to enable transshipment. The development of an iterative solution

algorithm is motivated by the existence of such synchronisation constraints in the SCSNDP.

While inter-warehouse transportation is the focus of this paper, the developed methods are

applicable in various different settings throughout the supply chain network. In particular,

the direct transportation links between consolidation locations—the inter-cluster routes—are

synonymous with long-haul routes. Also, the routes originating and terminating at a consol-

idation location that visit one or more warehouses within the one cluster—the intra-cluster

routes—correspond to local routes. Combining intra- and inter-cluster routes has been the

focus of recent work on the SNDP [12, 14, 28] and the PDP with cross-docking and transship-

ment [4, 16,19,22,25,27]. As such, the modelling and solution methods proposed in this paper
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aim to contribute to this rich field of research. A major contribution of the SCSNDP is the

adaptive transportation network through the selection of consolidation locations. It is the flex-

ibility in the consolidation locations considered in this paper that extends previous approaches

integrating intra- and inter-cluster routes.

3 Mathematical modelling

The operational decisions of the SCSNDP will be modelled as three mathematical programming

problems—warehouse clustering problem (WCP), SNDP and PDP. The underlying transporta-

tion network is modelled as a complete directed graph G = (A,N ), where N is the set of

warehouse locations and A represents all direct transportation links between the warehouses.

Each warehouse either supplies or requests commodities to or from another warehouse, where

the set of commodities is given by K. Commodity k ∈ K has an origin location ok and a des-

tination location dk, where ok, dk ∈ N , and a total quantity qk that needs to be transported.

Commodities are either transported completely within a cluster or must be transferred from

one cluster to another via inter-cluster routes. The commodities where the origin and destina-

tion locations are in the same region are described intra-cluster commodities (ICC). Similarly

commodities that have an origin and destination in two different regions are described as out of

cluster commodities (OCC). A time window is specified for both the pickup and delivery of each

commodity. The pickup time window is denoted by W p
k = [epk, l

p
k] and the delivery time window

is given by W d
k = [edk, l

d
k]. While it is common to associate the time windows with the warehouse

locations, it is more practical for the SCSNDP to define the time windows with respect to the

commodities. Finally, the arrival and departure of vehicles at consolidation locations is not

restricted by commodity time windows, but the specification of business hours. The set of time

windows corresponding to the business hours is denoted by B, where business hours b is defined

as [eb, lb].

3.1 Warehouse clustering problem

The aim of the WCP is to cluster warehouses into local groups as measured by some distance

function. This is achieved by selecting a set of warehouses to be designated as consolidation

locations and assigning each warehouse to exactly one consolidation location. An illustrative

example of warehouse clustering is given in Figure 2, where the consolidation locations are
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(a) Locations (b) Clustering

Figure 2: Warehouse locations with clustering

marked in orange. Most importantly, the consolidation locations form the nodes of the inter-

cluster transportation network that will be used when solving the SNDP. The clusters also

define the intra-cluster transportation networks that will be used when solving the PDP.

The variables zj are defined to equal 1 if warehouse j ∈ N is selected as a consolidation

location. Each warehouse must be assigned to exactly one consolidation location. The assign-

ment of warehouses to consolidation locations is indicated by setting the variable wij to 1 if

warehouse i ∈ N is assigned to consolidation location j ∈ N . The parameter αij is defined as

the distance from warehouse i ∈ N to consolidation location j ∈ N . Finally, the number of

clusters is set by the parameter γ. Using the above notation, the WCP is given by

minimise
∑

(i,j)∈A

αijwij , (1a)

subject to
∑
j∈N

zj = γ, (1b)

∑
j∈N

wij = 1 ∀i ∈ N , (1c)

∑
i∈N

wij ≤ |N |zj ∀j ∈ N , (1d)

zj ∈ {0, 1} ∀j ∈ N , wij ∈ {0, 1} ∀(i, j) ∈ A. (1e)

The objective is defined to minimise the sum of distances between the consolidation locations

and all connected warehouse locations. It is important to note, that since the clusters define

the consolidation locations that support both the intra- and inter-cluster transportation, this

measure can have a big impact on the overall cost of the transportation network. The restriction

on the number of clusters is enforced by constraint (1b). Constraints (1c) ensures that each

warehouse is assigned to exactly one cluster. Finally, constraints (1d) ensure that warehouses

are assigned to cluster j only if warehouse j is selected as a consolidation location.
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3.2 Service network design problem

The solution to the WCP identifies a set of disjoint geographical regions and associated con-

solidation locations. The consolidation locations are denoted by N̄ ⊆ N . The inter-cluster

transportation network Ḡ = (Ā, N̄ ) is formed as a complete directed subgraph of the trans-

portation network, where Ā = A(N̄ ) is the set of directed arcs between the consolidation

locations. Building on the illustrative example from Figure 2, the inter-cluster transportation

network is presented in Figure 3. Each arc (i, j) ∈ Ā connects locations i ∈ N̄ and j ∈ N̄ and

has an associated travel time of ttij .

Figure 3: The inter-cluster transportation network underlying the SNDP.

Let K̄ denote the set of OCC. Every commodity k ∈ K̄ has an origin and destination

consolidation location. Let Θ : N → N̄ define a mapping from warehouse locations to the

associated consolidation location given by the solution to the WCP. Thus, the origin and

destination locations for commodities in the inter-cluster network are given by ōk = Θ(ok) and

d̄k = Θ(dk) respectively. Finally, ēk and l̄k are the earliest delivery start time and latest delivery

end time for commodity k at ōk and d̄k respectively. These departure and arrival times are

related to the time windows W p
k and W d

k , where ēk ≥ epk and l̄k ≤ ldk.

The SNDP is modelled using a time expanded network. The planning horizon is defined

by the range [E,L], where E is the earliest departure of any commodity and, similarly, L is

the latest arrival of any commodity. The set of time points is given by T = {E + m∆|m ∈

Z≥0, E+m∆ < L}, where ∆ > 0 is a time discretisation interval. The network is given by a set

of nodes N̄T for every time point, denoted by (i, t), where i ∈ N̄ and t ∈ T . The arcs connecting

the nodes in N̄T are contained in ĀT and are of the form ((i, t), (j, t̄)), where (i, j) ∈ Ā and

t ∈ T and t̄ ∈ Tijt. The set Tijt = {dt + ttij + m∆e∆ |m ∈ Z≥0,m∆ ≤ B}, where d·e∆ rounds

the time up to the nearest discretisation interval, provides flexibility in the travel times between

i and j by introducing some buffer time B. Finally, an additional set of arcs HT is defined to

represent a vehicle waiting at a given node, which are of the form ((i, t), (i, t+∆)), where t ∈ T

and t+∆ ≤ L. The time expanded transportation network is denoted by GT = (N̄T ,HT ∪ĀT ).
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The solution to the SNDP identifies the capacity of the arcs required to transport all com-

modities from their origin cluster to their destination cluster. The use of inter-cluster vehicles

is indicated by variables ytt̄ij , which equals the number of vehicles departing i at t and arriving in

j at t̄. Only a single type of vehicle is considered in the SNDP, the capacity of which is denoted

by U . The flow of commodities through the inter-cluster network is given by the variables

xktt̄ij , which equal 1 to indicate that delivery request k is transported along arc (i, j) and has

departure time t and arrival time t̄ . It is only possible for a commodity to move between i

and j if an inter-cluster vehicle is also traversing the same arc at the same time. The fixed cost

of a vehicle using arc (i, j) is given by f and the cost of transporting one unit of a commodity

along (i, j) is given by cij . Using the above notation, the SNDP is given by

minimise
∑

((i,t),(j,t̄))∈ĀT

fytt̄ij +
∑
k∈K

∑
((i,t),(j,t̄))∈ĀT

cijqkx
ktt̄
ij , (2a)

s.t.
∑

((i,t),(j,t̄))∈ĀT ∪HT

xktt̄ij −
∑

((j,t̄),(i,t))∈ĀT ∪HT

xkt̄tji =


1 (i, t) = (ōk, ēk)

−1 (i, t) = (d̄k, l̄k)

0 otherwise

∀k ∈ K, (i, t) ∈ N̄T , (2b)∑
k∈K

qkx
ktt̄
ij ≤ Uytt̄ij ∀((i, t), (j, t̄)) ∈ ĀT , (2c)

xktt̄ij ∈ {0, 1} ∀((i, t), (j, t̄)) ∈ ĀT , k ∈ K, (2d)

ytt̄ij ∈ Z≥0 ∀((i, t), (j, t̄)) ∈ ĀT . (2e)

The objective of the SNDP is to minimise the fixed cost of using inter-cluster vehicles and

costs of transporting all delivery requests. Constraints (2b) balance the flow of commodities

through the time expanded transportation network. The capacity restrictions on arc (i, j) ∈ Ā

are enforced by constraints (2c).

3.3 Pick-up and delivery problem

The intra-cluster transportation networks are induced by the solution to the WCP. For each

cluster of warehouses r ∈ R, intra-cluster transportation routes must i) transport commodities

between warehouse locations within the region and ii) transport commodities between the

consolidation location and connected warehouse locations. The intra-cluster transportation

network in region r is denoted by Gr = (Ar,N r), where N r ⊆ N are the warehouse locations
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within region r and Ar = A(N r) are the transportation links connecting these warehouse

locations. An example of the transportation networks that will be used for the PDP is presented

in Figure 4.

Figure 4: The disjoint intra-cluster networks used for solving the PDP

The set of commodities considered in the PDP for cluster r, denoted by Kr, are the ICCs

pertaining to r and OCCs that have either an origin or destination within N r. For the OCCs,

inter-cluster routes will be required to transport them to or from the cluster. Thus, either the

origin or destination location of the OCCs will be the consolidation location and not the initial

origin or final destination of the commodity. Let Φ : R×N×N → N×N define a mapping from

a given cluster and initial commodity origin and destination locations to the pickup and delivery

location for the PDP. Further, let ôr and d̂r denote the origin and destination consolidation

locations for the PDP (typically, ôr = d̂r). For the PDP in region r, the origin and destination

of commodity k ∈ Kr is given by:

Φ(r, ok, dk) =


(ok, dk) ok ∈ N r, dk ∈ N r,

(ôr, dk) ok /∈ N r, dk ∈ N r,

(ok, d̂
r) ok ∈ N r, dk /∈ N r.

(3)

For conciseness, the origin and destinations for commodity k in the PDP for cluster r are

denoted by ôrk and d̂rk respectively, i.e. Φ(r, ok, dk) = (ôrk, d̂
r
k).

Each commodity is assigned a time window for pickup and delivery at its origin and desti-

nation, respectively. For commodities where ok ∈ N r, the pickup time window is given by W p
k .

Similarly, for commodities where dk ∈ N r, the delivery time window is given by W d
k . If ôrk = ôr

or d̂rk = d̂r, then the time windows are connected to the solution of the SNDP. At the consoli-

dation location, the time window for the OCCs are one-sided, since they must synchronise the

intra- and inter-cluster vehicles. For commodity k, if ôrk = ôr, then the pickup time window is



3 MATHEMATICAL MODELLING 12

given by [êpk, L], where êpk corresponds to the inter-cluster vehicle arrival time. If d̂rk = d̂r, then

the delivery time window is given by [E, l̂dk], where l̂dk corresponds to the inter-cluster vehicle

departure time. In the formulation of the PDP, [êpk, l̂
p
k] denotes the pickup time window at ôrk

and [êdk, l̂
d
k] denotes the delivery time window at d̂rk for commodity k.

The set of all vehicles available in region r is denoted by Vr and the variables yv equals 1 if

vehicle v is used and 0 otherwise. The variables xvij equals 1 if vehicle v uses arc (i, j) in a route,

and 0 otherwise. Further, if vehicle v picks up commodity k, then variable hvk equals 1. A fixed

cost of f , which is the same as in Section 3.2, and a variable cost proportional to total travel

time, at a rate of κ > 0, is applied for using vehicle v. An important feature of the PDP is the

tracking of the vehicle travel time and load to ensure the time windows, total travel time and

the vehicle capacity are respected. The variables T vi and Qvi denote the cumulative travel time

and load, respectively, of the vehicle on the route up to location i. The cumulative travel time

must also incorporate the processing time to load and unload the commodities picked up and

delivered at location i ∈ N r, which is denoted by gi. The maximum travel time and capacity of

vehicle v is denoted by T v and Qv respectively. Finally, to incorporate the warehouse business

hours, the variables mvb
i equal 1 if vehicle v visits location i during business hours b, and 0

otherwise.

The formulation of the PDP used in this paper is based upon the mathematical models

presented by Desaulniers et al. [9] and Cordeau et al. [7], which is given by

minimise
∑
v∈Vr

fyv +
∑
v∈Vr

∑
(i,d̂r)∈Ar

κT v
d̂r
xv
id̂r
, (4a)

s.t.
∑
j∈N r

xvôrkj
≤ hvk ∀k ∈ Kr, ∀v ∈ Vr, (4b)

∑
v∈Vr

hvk = 1 ∀k ∈ Kr, (4c)

∑
j∈N r

xvôrkj
−

∑
j∈N r

xv
jd̂rk

= 0 ∀k ∈ Kr, ∀v ∈ Vr, (4d)

∑
j∈N r

xvij −
∑
j∈N r

xvji =


yv i = ôr

−yv i = d̂r

0 otherwise

∀i ∈ N r,∀v ∈ Vr, (4e)

T vj ≥ (T vi + gi + ttij)x
v
ij ∀(i, j) ∈ Ar, ∀v ∈ Vr, (4f)
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Qvj ≥ Qvi +
∑
k∈Pr

ôrk=i

qkh
v
k −

∑
k∈Pr

d̂rk=i

qkh
v
k ∀(i, j) ∈ Ar, ∀v ∈ Vr, (4g)

T vôrk
+ gôrk + ttôrkd̂

r
k
≤ T v

d̂rk
∀k ∈ Kr,∀v ∈ Vr, (4h)

êpk ≤ T
v
ôrk
≤ l̂pk ∀k ∈ Kr,∀v ∈ Vr, (4i)

êdk ≤ T vd̂rk
≤ l̂dk ∀k ∈ Kr,∀v ∈ Vr, (4j)

max{0, q̂i} ≤ Qvi ≤ min{Qv, Qv + q̂i} ∀i ∈ N r,∀v ∈ Vr, (4k)

T vi ≤ T vyv ∀i ∈ N r,∀v ∈ Vr, (4l)

xvij ≤
∑
b∈B

mvb
i ≤ 1, ∀(i, j) ∈ Ar, ∀v ∈ Vr, (4m)

ebmvb
i ≤ T vi ≤ lb +M(1−mvb

i ) ∀i ∈ N r,∀v ∈ Vr, ∀b ∈ B, (4n)

xvij ∈ {0, 1} ∀(i, j) ∈ Ar, ∀v ∈ Vr, (4o)

yv ∈ {0, 1} ∀v ∈ Vr, (4p)

mvb
i ∈ {0, 1} ∀i ∈ N r,∀v ∈ Vr, ∀b ∈ B, (4q)

T vi ≥ 0, Qvi ≥ 0 ∀i ∈ N r,∀v ∈ Vr. (4r)

This objective is the linear combination of a fixed cost for each vehicle used and a cost propor-

tional to the travel time. The pickup of the commodity must be performed by a single vehicle,

which is enforced by constraints (4b) and (4c). Further, the subsequent delivery of all com-

modities is enforced by constraints (4d). The flow balance of the vehicles at each node is given

by the constraints (4e). Constraints (4f) and (4g) are bookkeeping constraints for the vehicle

travel time and capacity respectively. Each commodity must be picked up prior to delivery,

which is enforced by constraints (4h). Constraints (4i) and (4j) enforce the pickup and delivery

windows for each commodity. Each vehicle has a maximum capacity and travel time, which

is enforced by constraints (4k) and (4l). Finally, constraints (4m) states that a vehicle can

only visit a warehouse location once and (4n) ensures that this visit occurs during the business

hours.

3.4 Direct deliveries by third-party vehicles

The clustering of warehouses and selection of consolidation locations may impact the ability to

satisfy all pickup and delivery requests using the synchronised intra- and inter-cluster trans-

portation routes. There are four conditions that lead to an infeasible pickup or delivery request.
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If any of these conditions are satisfied, then a third-party vehicle is required to deliver the com-

modity. Note that since the commodity transportation could span an overnight period, business

hours must be considered for each condition. The four direct delivery conditions are:

1. Unsatisfied pickup time window: The latest arrival time for a commodity at the pickup

location is exceeded by the minimum travel time from the consolidation location to the

pickup location. For a given cluster r ∈ R, the pickup of commodity k ∈ Kr is unsatisfied

if l̂pk < E + ttôr ôrk .

2. Unsatisfied delivery time window with pickup and delivery in the same region: The latest

arrival time for a commodity at the delivery location is exceeded by the minimum travel

time from the consolidation location to the delivery location via the pickup location.

For a given cluster r ∈ R, the delivery of commodity k ∈ Kr is unsatisfied if l̂dk <

E + ttôr ôrk + ttôrkd̂
r
k
.

3. Unsatisfied delivery time window with pickup and delivery in different regions: The lat-

est arrival time for a commodity at the delivery location is exceeded by the sum of

the minimum travel times from the pickup location to a consolidation location, between

consolidation locations and from a consolidation location to the delivery location. Let

rp, rd ∈ R denote the pickup and delivery regions respectively, rp 6= rd. The delivery of

commodity k ∈ K is unsatisfied if l̂dk < dE+ ttôrp ôrpk
+ ttôrpk d̂rp + ttd̂rp ôrd eB+ ttôrd d̂rdk

, where

dteB rounds time t up to nearest business hours time window.

4. Exceeding the operation time of an inter-cluster vehicle: Given the latest pickup time of a

commodity, its earliest arrival time at the destination consolidation location, with respect

to business hours, requires an inter-cluster vehicle to exceed the maximum operation time.

The delivery of commodity k ∈ K is unsatisfied if l̂pk+ttôrpk d̂rp +T < dl̂pk+ttôrpk d̂rp +ttd̂rp ôrd eB.

4 Solution algorithm

A MAB problem [3] has been formulated to integrate warehouse clustering with the intra- and

inter-cluster transportation problems. An overview of the solution algorithm, independent of

selection strategies for the MAB problem, is presented in Figure 5. The bandit actions are

defined by different selections of the total number of clusters γ when solving the WCP. For

a given value of γ, the WCP is solved to identify a clustering of the warehouse locations and
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Figure 5: The SCSNDP solution algorithm

specify the consolidation locations. The algorithm then iterates between the SNDP and the

PDP to identify and synchronise feasible inter- and intra-cluster transportation routes. Iteration

between the SNDP and PDP is essential for finding feasible solutions to the SCSNDP, since

the synchronisation of the inter- and intra-cluster transportation is not guaranteed from the

solutions of the individual problems. Perturbations to the consolidation locations and vehicle

arrival/departure times are employed to diversify the search for improving solutions.

The solution algorithm for the SCSNDP comprises of two major phases. An initialisation

phase is employed to find a subset of values for γ that define the actions for the MAB algo-

rithm. The initialisation phase consists of a line search combined with a local search, described

in Section 4.1, that solves the SCSNDP for different values of γ. The values of γ with the best

initial feasible solution are selected as the action set, denoted by Γ, for the MAB algorithm.

The main phase executes the MAB algorithm by selecting γ from Γ and solving the SCSNDP.

A detailed overview of the MAB problem and selection strategy will be provided in Section

4.2. During both phases the SNDP and PDP are iteratively solved to identify a feasible syn-

chronisation of the intra- and inter-cluster routes. Section 4.3 details the transformation of the

consolidation location time windows into soft constraints to allow for flexibility in the SCSNDP

solution algorithm. In each iteration, the arrival and departure times of commodities at the

consolidation locations are updated to repair the violation of these soft constraints. This time

window update procedure is described in Section 4.4. To diversify the search of the feasible

region, the perturbation techniques presented in Section 4.5 are employed. Finally, the solution

methods for the WCP, SNDP and PDP will be described in Section 4.6.
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4.1 Initialisation phase

The first stage of the initialisation phase executes a line search algorithm that samples selections

for γ to identify promising regions for the local search. Initially, the feasible choices of cluster

limits in the WCP is given by {2, 3, . . . , |N |/2}. Starting with γ = 2, the line search solves

the WCP, and then the SNDP and PDP are iteratively solved until a feasible solution to

the SCSNDP is found. The value of γ is then increased by ϕ, which is set to |N |/10 in our

experiments, and the process to find a feasible solution for the SCSNDP is repeated. The line

search terminates when a local minimum is found from the evaluated selections of γ, which is

triggered by an increase in the objective value for two consecutive selections of γ.

The second stage of the initialisation phase executes an adaptive local search around the

best cluster limit identified during the line search, denoted by γ∗. Similar to the line search,

the local search finds feasible solutions to the SCSNDP by solving the WCP, SNDP and PDP.

The search neighbourhood is given by γ ∈ [γ∗ − bϕ/2c, γ∗ + bϕ/2c], where b·c corresponds to

rounding down. If the best objective value is improved, γ∗ and the neighbourhood for γ are

updated. Feasible solutions must be found for all γ in the updated neighbourhood. The local

search continues until no improvement in the best objective value is found for γ in the defined

neighbourhood.

Following the initialisation phase, the three values of γ that resulted in the best objective

values for the SCSNDP are selected as the set of actions for the MAB algorithm, denoted by Γ.

4.2 Multi-armed bandit problem

A MAB problem is defined as the sequential selection of actions, from a predefined set of actions,

that maximise the total reward for a given payoff function. In a given round t, a player selects

an action γt from the set of possible actions Γ. The reward from selecting γ in round t is

denoted by rγtt, where rγt ∈ [0, 1]. The objective of an MAB problem is to maximise the total

payoff from the actions selected across all rounds T , i.e. max
∑

t∈T rγtt.

In the context of the SCSNDP, the predefined set of actions is given by a set of cluster limits

found during the initialisation phase. The reward from selecting γ is given by rγtt = Z/Zt, which

is the ratio between the current best objective value and objective value of the best solution for

the SCSNDP found during round t. Since the iterative algorithm integrating the SNDP and

PDP employs perturbation techniques, solving the SCSNDP for a given γ is a random process.
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Thus, the MAB problem for the SCSNDP is a stochastic bandit problem.

Selection strategies for MAB problems aim to balance the exploitation of promising actions

and the exploration of alternative actions. In this paper, the selection strategy is based on upper

confidence bounds (UCB) [1]. A UCB is computed as the summation of the expected reward

and the confidence interval. The expected reward, denoted by r̄γt, is the arithmetic mean of

the rewards from all rounds up to t where action γ was selected. The confidence interval is

given by

CI =

√
α

ln(t+ 1)

Tγ + 1
, (5)

where α is the width of the confidence interval and Tγ is the number of rounds where action γ

was selected. In round t, the next action selected is the one with the largest UCB, given by

γt+1 := argmaxγ∈Γ{r̄γt + CI}. (6)

The termination of a round in the MAB algorithm is based upon the number of iterations

since the last improvement in the objective value when using action γ. A single round of the

MAB algorithm will involve one or more iterations solving the SNDP and PDP. Let i′γ denote

a no improvement-counter and Zγ as the best objective found for action γ. At the beginning

of each round using action γ, i′γ = 0 and is incremented each iteration that the objective value

Zt is greater than Zγ . If an improving solution for action γ is found, then Zγ = Zt and i′γ = 0.

The round terminates when i′γ exceeds a no improvement limit given by R.

A number of perturbation techniques are described in Section 4.5 that impact the execu-

tion of SNDP and PDP iterations, and, consequently, the termination of a round in the MAB

algorithm. Specifically, the perturbation techniques described in Section 4.5.2 may select con-

solidation locations that produce inferior solutions and thus triggering the early termination

of a round. As a result, an additional condition is imposed in the MAB algorithm whereby a

round can only end when the consolidation locations are set to those that achieved an objective

value of Zγ . The handling of this additional condition will be described in Section 4.5.2.

4.3 Connection between the SNDP and PDP

The primary link between the SNDP and the PDP is the commodity departure and arrival

times at the consolidation locations. It is through these times that penalties will be imposed

within the iterative algorithm.
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4.3.1 Adding penalties to the SNDP

The addition of penalty terms in the SNDP requires a modification to constraints (2b). First,

the variables z̄ekt are defined to equal 1 if commodity k departs from origin ōk at time t.

Similarly, the variables z̄lkt equal 1 if commodity k arrives at destination d̄k at time t. These

variables are used to identify whether a penalty must be applied for the departure or arrival of

commodity k. To impose the penalty term, constraints (2b) are replaced with

∑
((i,t),(j,t̄))∈ĀT ∪HT

xktt̄ij −
∑

((j,t̄),(i,t))∈ĀT ∪HT

xkt̄tji =


z̄ekt i = ōk, t ∈ {t|t ∈ T , t ≤ ēk}

−z̄lkt i = d̄k, t ∈ {t|t ∈ T , t ≥ l̄k}

0 otherwise

∀k ∈ K, (i, t) ∈ N̄T , (7a)∑
t∈{t|t∈T ,t≤ēk}

z̄ekt = 1 ∀k ∈ K, (7b)

∑
t∈{t|t∈T ,t≥l̄k}

z̄lkt = 1 ∀k ∈ K. (7c)

z̄ekt ∈ {0, 1} ∀t ∈ {t|t ∈ T , t ≤ ēk}, k ∈ K, (7d)

z̄lkt ∈ {0, 1} ∀t ∈ {t|t ∈ T , t ≥ l̄k}, k ∈ K. (7e)

Constraints (7a) are the modification of constraints (2b). The addition of the z̄ekt and the z̄lkt

variables permit the inter-cluster routes to depart before and arrive after the earliest start and

latest arrival times respectively. Constraints (7b) and (7c) ensure that exactly one departure

and arrival time is selected per commodity, respectively.

In order to penalise early (late) departures (arrivals), objective function (2a) is appended

with the terms ∑
k∈K

∑
t∈{t|t∈T ,t≤ēk}

φkt z̄
ek
t +

∑
k∈K

∑
t∈{t|t∈T ,t≥l̄k}

θkt z̄
lk
t . (8)

The penalty for early departure is defined as φkt = Y (ēk − t)2 and the penalty for late arrival

is defined as θkt = Y (t − l̄k)
2, where Y is a constant penalty factor. However, the penalty

coefficients can be defined in any way that drives the iterative algorithm towards a feasible

solution.
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4.3.2 Adding penalties to the PDP

Similar to the SNDP, penalty terms are included in the PDP to allow flexibility in the departure

and arrival of intra-cluster routes at the warehouse and consolidation locations. The variables

ẑepk and ẑlpk are defined to equal the amount of time that the start or end of the pickup time

window for commodity k is violated, respectively. Similarly, the violation at the start or end of

the delivery time window for commodity k is given by the variables ẑedk and ẑldk respectively. The

inclusion of these variables transforms all time windows from hard to soft constraints, which

are given by replacing constraints (4i)–(4j) with

êpk − ẑ
ep
k ≤ T

v
ôrk
≤ l̂pk + ẑlpk ∀k ∈ Kr, ∀v ∈ Vr, (9a)

êdk − ẑedk ≤ T vd̂rk
≤ l̂dk + ẑldk ∀k ∈ Kr,∀v ∈ Vr, (9b)

ẑepk , ẑ
lp
k , ẑ

ed
k , ẑ

ld
k ≥ 0 ∀k ∈ Kr. (9c)

The violation of the time windows is imposed by appending the terms∑
k∈K

Ŷ p
k {(ẑ

ep
k )2 + (ẑlpk )2}+ Ŷ d

k {(ẑedk )2 + (ẑldk )2} (10)

to the objective function (4a). While the squared terms in (10) transform the PDP into a

quadratic program, the solution algorithms developed for the PDP effectively handle this mod-

elling feature.

There are two types of time windows of the PDP, those specified at the warehouse locations,

i.e. the pickup and delivery windows given by W p
k and W d

k , and those at the consolidation

locations that are determined from the solution to the SNDP. Since the former time windows

are structural constraints of the PDP, these must be satisfied with a higher priority than the

latter synchronisation time windows. As such, for commodity k the value of Ŷ p
k is set to 9Y

if ôrk is the consolidation location and 10Y otherwise. Similarly, the value of Ŷ d
k is set to 9Y

if d̂rk for commodity k is the consolidation location and 10Y otherwise. This setting for the

penalty factor drives feasibility in the intra-cluster transportation while enabling adaptation in

the synchronisation with the inter-cluster transportation schedule.

4.4 Updating pickup and delivery time windows

The solution to the SNDP identifies a set of inter-cluster routes transporting commodities

between consolidation locations whose departure and arrival times are used to define the delivery

and pickup time windows for the OCCs. Specifically,
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• if the inter-cluster vehicle transporting commodity k departs ōk at t′, then for the PDP

the delivery time window at d̂rk is set to [E, t′] (note ōk = d̂rk),

• if the inter-cluster vehicle transporting commodity k arrives at d̄k at t′′, then for the PDP

the pickup time window at ôrk is set to [t′′, L] (note d̄k = ôrk).

Given a solution to the PDP for region r, the earliest departure and latest arrival times for

the OCCs that must be transported from and to region r are updated as follows,

• if the intra-cluster vehicle transporting commodity k, which has been transferred from

another region, departs from ôrk at t′, then in the SNDP the latest arrival time at d̄k is

set to l̄k = bt′c∆ (note ôrk = d̄k),

• if the intra-cluster vehicle transporting commodity k, which will be transferred to another

region, arrives at d̂rk at t′′, then in the SNDP the earliest departure time at ōk is set to

ēk = dt′′e∆ (note d̂rk = ōk).

The functions d·e∆ and b·c∆ round the time up and down, respectively, to the nearest discretisa-

tion interval based on ∆. Note that the earliest departure and latest arrival times are updated

regardless of whether there is a time window violation.

4.5 Perturbation techniques

The primary goal of the iterative algorithm is to identify feasible solutions to the SCSNDP.

However, it is also desired to find high quality solutions to reduce transportation costs. As

such, perturbation techniques are employed to escape local optimal solutions and search other

neighbourhoods for improving feasible solutions.

4.5.1 Shifting earliest departure and latest arrival times

The earliest departure and latest arrival times are shifted when the iterative algorithm appears

to have stalled. We define algorithm stalling as follows:

Definition 1. Let Zq be the objective value of the SCSNDP in iteration q of the iterative

algorithm and Q := {Zq−1, Zq−2, . . . , Zq−Q} be the set of objective values for the SCSNDP for

the preceding Q iterations. In iteration q the algorithm has stalled if

Zq ∈ Q or Zq > maxQ.
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Once the algorithm has stalled, the departure and arrival times of the OCCs at the consoli-

dation location are perturbed following the next solve of the PDP. Algorithm 1 is employed to

identify which departure and arrival times will be perturbed and the magnitude of this pertur-

bation. The earliest departure and latest arrival times of the SNDP are then updated according

to the perturbed and unperturbed times, as explained in Section 4.4. In the implementation of

the iterative algorithm Q is set to 10.

Algorithm 1: Perturbing the departure and arrival times
Data: Let T r

D and T r
A be the set of OCC departure and arrival times at consolidation location r.

Result: The sets T r
D and T r

A where are subset of the times have been perturbed.

1 Select ρ% of the times from each of T r
D and T r

A uniformly at random.

2 Denote these selected times as T̄ r
D and T̄ r

A respectively.

3 for t ∈ T̄ r
D ∪ T̄ r

A do

4 Sample t′ from a normal distribution with a mean of 0 and standard deviation of ∆.

5 Set t← t+ t′

6 Update T r
D and T r

A with the perturbed times in T̄ r
D and T̄ r

A .

4.5.2 Changing the consolidation locations

The designation of warehouses as consolidation locations has a major impact on the intra-

and inter-cluster transportation costs. In regards to the inter-cluster transportation schedule,

an alternative set of consolidation locations could result in a transportation network Ḡ with

smaller transportation distances. However, there is a trade-off with respect to the distances in

the intra-cluster transportation networks and the number of direct deliveries that are required.

Perturbing the consolidation locations during the iterative algorithm enables the exploration of

different transportation network configurations.

The mechanisms for perturbing the consolidation locations are presented in Algorithm 2.

The behaviour of this perturbation scheme is connected with the selection of actions in the

MAB algorithm. It can be seen on line 4, that the next action for the MAB algorithm is se-

lected before any perturbation is performed. As described in Section 4.2, i′ is used to represent

a no improvement-counter (the γ subscript has been dropped for notational convenience). Ad-

ditionally, this perturbation scheme depends on the algorithm iteration when the best solution

was found, denoted by i∗. The perturbation of the consolidation locations is triggered if R

iterations of the iterative algorithm are performed without an objective value improvement, i.e.
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i′ > R. However, this perturbation only occurs if γ does not change as a result of the MAB

action selection process.

Since it is not guaranteed that a change in the consolidation locations will lead to an

improved solution, mechanisms are included to restore the consolidation locations. If a pertur-

bation has been performed, then at least R iterations are executed to find improving solutions.

The consolidation locations are restored to those corresponding to the best solution if both

i − i∗ > R and i′ > R, where i is the current iteration. If the consolidation locations are

restored, then the no improvement-counter is decreased by a factor of 2.

Algorithm 2: Changing consolidation locations

Data: The iteration where the best solution was found i∗, no improvement counter i′

Result: Perturbation or restoration of consolidation locations, update the no improvement counter i′

1 Set bestCentres ← TRUE if the current consolidation locations are the same as those in iteration i∗, and

FALSE otherwise

2 if i′ > R then

3 if bestCentres is TRUE then

4 Select next bandit action

5 if No new action selected, i.e. γt = γt−1 then

6 Randomly select a cluster r with probability |N r|/|N |, ∀r ∈ R

7 Randomly select a consolidation location for cluster r from the set N r

8 Set i′ ← 0

9 else if R iterations have been performed since i∗ then

10 Restore the consolidation locations to those in iteration i∗

11 Set i′ ← i′/2

4.6 Solving the mathematical programs

A major feature of the proposed solution algorithm is the use of MIP solvers to make optimal

decisions within the heuristic algorithms. Specifically, the WCP and SNDP are both solved

directly as MIPs. Alternatively, an insertion heuristic has been used to solve the PDP, which

is presented in Algorithm 3 with the key details explained below.

Insertion heuristic for the PDP The delivery route of vehicle v represented by xvij are

determined using an insertion heuristic and the travel time T vi of the vehicle v on the route

up to the location i are determined using an exact algorithm. The insertion heuristic uses
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Algorithm 3: Insertion heuristic for the PDP

Data: Evaluation value of the first commodity selection gk, evaluation value of the additional

commodity selection gkv, set of unassigned commodities K′, set of insertable commodities IK

Result: Delivery route xvij and travel times of the vehicle on the route up to the location T v
i

1 for k ∈ K do

2 Calculate gk

3 Add k to K′

4 while K′ is not empty do

5 Select commodity k that has the minimum gk

6 Set v ← empty vehicle

7 Add k to IK

8 while IK is not empty do

9 Select commodity k and delivery routes that has the minimum gkv

10 Remove k from K′

11 Determine T v
i using a MIP solver

12 Set IK ← empty

13 for k ∈ K′ do

14 Calculate gkv and delivery routes xviok , xvokj , x
v
idk

and xvdkj

15 if k is insertable then

16 Add k to IK

two evaluation values to select an inserted commodity. The first value is used to select the

commodity to add to an empty vehicle. It is calculated for each commodity k and is represented

by gk. The value of gk is computed as the sum of the earliest delivery time and the length of

delivery time window. The value gkv is used to select the commodity k to add to vehicle v, to

which one or more commodities are assigned.

Let iq be the qth location of the current route, qp and qd be the inserting position of

pickup and delivery locations, respectively. To determine whether the pickup and delivery of

commodity v should be inserted into the route of vehicle k, gkv is given by

gkv = min
k∈Kr,v∈Vr

{
gkvqpqd

}
. (11)

The value of gkvqpqd is the sum of travel time increase, arrival delay, and violation time, which is

computed using the following system of equations

gkvqpqd = α1gt
kv
qpqd

+ α2gd
kv
qpqd

+ Ŷ p
k {(ẑ

ep
k )2 + (ẑlpk )2}+ Ŷ d

k {(ẑedk )2 + (ẑldk )2}, (12a)
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gtkvqpqd = ttiqp−1ok + ttokiqp − µttiqp−1iqp + ttiqd−1dk + ttdkiqd − µttiqd−1iqd
, (12b)

gdkvqpqd = T̂ viqp − T
v
iqp

+ T̂ viqd
− T viqd . (12c)

Let T̂ vi be the travel time of the vehicle v on the route up to the location i. Since, the aim of

the insertion heuristic is to find low cost routes with respect to travel time and time window

violations, the weights α1 and α2 are set to penalise any increase in the travel time and arrival

delay respectively. Finally, µ is the weight for total travel time of the current route.

4.7 Termination conditions

Since there is no guarantee of convergence of the proposed algorithm, a run time limit is required

to ensure that solutions are delivered within a reasonable time frame. Alternatively, an early

termination could be triggered if the solution is not expected to improve further. This point

is identified by counting the number of times the best objective value has been encountered

during the search. If the best objective value is encountered a specified number of times, then

the algorithm terminates.

5 Computational experiments

The computational experiments evaluate the benefit from the integration of location clustering

with transshipment and vehicle routing. First, the improvement in the objective value observed

as a result of the integration will be analysed. Second, the run time of the complete algorithm

and individual components will be investigated, comparing that to the overall improvement in

the best found feasible solutions. Additionally, the behaviour of the MAB algorithm will be

analysed with respect to the improvement in the objective value. Finally, the practical features

of the results, such as the distribution of costs and the vehicles used, will be discussed.

The solution algorithm proposed in the paper has been implemented in C++. All MIPs

are solved using SCIP 7.0.2, with SoPlex 5.0.2 as LP solver. The computational experiments

have been performed on a computational cluster comprised of Intel(R) Xeon(R) CPU E5-2640

v3 @ 2.60GHz CPUs and 125GB RAM per node.

5.1 Problem instances

The problem instances have been generated based upon the business practices of our industry

partner. In current practice, the industry partner guarantees that all pickup and delivery
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requests are completed within 1-2 business days. As such, the planning horizon considered in

the problem instances has a time horizon of 2 days. The key features and parameters used to

generate the problem instances are displayed in Table 1.

An important characteristic of the instances is the warehouse locations. Two different

methods are used to generate the warehouse locations. The first is to randomly select N points

within a square using a uniform distribution. The second defines C subregions within the

square, and for each warehouse a location is selected at random within one of these subregions.

This second method for generating the warehouse locations is to model the real-world settings

Table 1: Parameters for generating instances

Parameter Type Description

Planning horizon 2 days.

Business hours 6:00 until 20:00 each day.

Warehouse locations Either randomly within a square or within subregions of a square. The total number

of warehouses used in the experiments: N ∈ {25, 50, 100}. The number of subregions

is given by C ∈ {1, 2, 5, 10}, where C = 1 is an instance with no subregions.

Commodities The total number of commodities is given by K ∈ {N, 2N, 4N}, where K ≤ 200. The

load qk of each commodity is selected uniformly at random from the set {1, 2, 3}.

The origin and destination is selected uniformly at random, with 0.25/N origin-

destination pairs are selected.

Pickup time window W p
k : epk selected uniformly at random between 6:00 and 22:00. lpk = epk + α, where α

is selected uniformly at random between 2 and 18 hours, ∀k ∈ K.

Delivery time window W d
k : edk selected uniformly at random between 6:00 and 44:00 (could deliver the next

day). ldk = edk +α, where α is selected uniformly at random between 2 and 18 hours.

Also, ldk ≥ lpk+ travel time between pick-up and delivery (ttôr
k
d̂r
k
) + load time (gôr

k
)

+ unloading time (gd̂r
k
), ∀k ∈ K.

Note: the time windows are generated to be within the business hours.

Travel Distance Haversine distance.

Travel Time ttij : Selected uniformly at random in the range [sβ − 0.3sβ, sβ + 0.3sβ], where β is

the travel distance and s is the travel speed of 60km/h, ∀(i, j) ∈ A.

Vehicle Data

Loading time gi = 30 minutes, ∀i ∈ N .

Unloading time gi = 10 minutes, ∀i ∈ N .

Fixed costs f = 6000.

Capacity U = Qv = 100 units, ∀v ∈ Vr.

Operation time T v = 10 hours, ∀v ∈ Vr.
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where multiple warehouses could be located within each province, state or prefecture.

The instances are identified by the tuple (N,K,C) where N is the number of warehouses,

K is the number of commodities and C is the number of subregions (C = 1 represents an

unclustered instance). With respect to the formulations of the WCP, SNDP and PDP N = |N |

and K = |K|. For each combination of (N,K,C) from the parameters given in Table 1, 5

different instances are generated. This is to provide a diverse test set to evaluate the proposed

solution algorithm. This is particularly important since differences in warehouse locations or

time windows can have a significant impact on the intra- and inter-cluster transportation costs.

A total of 160 instances have been generated for the computational experiments.

A maximum run time for the algorithm is set to 3600 seconds and the best solution limit

is set to 20. In each of the presented figures, the reported values are the arithmetic mean

over the 5 random instances for each (N,K,C) combination. To improve the readability of the

figures, results are grouped by the tuple (N,K) and the values of C have been replace with the

mapping: a : 1, b : 2, c : 5 and, d : 10. In all cases, times are reported in seconds.

5.2 Evaluating benefits from integration

The selection algorithm of the MAB problem is designed to facilitate the search of clustering

solutions to best balance the intra- and inter-cluster transportation costs. Figure 6 presents

the objective value of the best found solution for the SCSNDP and the improvement achieved

by the MAB algorithm with respect to the first feasible solution. As expected, the increase

in the number of warehouse locations and commodities leads to an increase in the overall
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Figure 6: The best objective value and the improvement observed during the algorithm.
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transportation cost. Interestingly, it can be seen in Figure 6(a) that the instances where the

locations were clustered into 2 subregions (the columns labelled b) have the lowest costs in each

of the instance groups. This is likely due to the fact that the number of clusters in the best

solution is the same as the prescribed number of regions. Thus, less effort is required to search

for improving numbers of clusters compared to instances with a prescribed number of regions

of 1, 5 and 10.

The benefit of integrating clustering, transshipment and routing is highlighted by the results

presented in Figure 6(b). The bars represent the percentage improvement in the objective,

where blue and orange are with respect to the first feasible solution where γ = C, i.e. the

prescribed number of regions, and γ = γ∗, i.e. the best number of clusters, respectively. The

first feasible solutions are the equivalent to using a sequential approach to solve the integrated

problem: The WCP is solved, followed by the SNDP and then finally the PDP.

The results presented in Figure 6(b) demonstrate that the integrated problem significantly

improves upon the sequential algorithm. When considering the total objective improvement—

the blue bars—the improvement in the objective value exceeds 30% for 5 instance sets, with

greatest average improvement of 43.02%. For all instances with 25 sites, the objective im-

provement is greater than 10%, ranging between 10.02% and 39.56%. As the number of sites

and commodities increase, the largest improvement is observed for instances where the sites are

distributed randomly within a single region (the column labelled a). This observation can be ex-

plained by the number of cluster in the best solution and the change from the prescribed number

of regions, shown in Figure 7. By comparing Figures 6(b) and 7(b) the greatest improvement

in the objective values is directly proportional to the difference between the prescribed regions

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

Instance

0

1

2

3

4

5

6

7

Nu
m

be
r o

f c
lu

st
er

s

(25,25) (25,50) (25,100) (50,50) (50,100) (50,200) (100,100) (100,200)

(a) Number of clusters

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

Instance

8

6

4

2

0

2

4

6

Ch
an

ge
 in

 n
um

be
r o

f c
lu

st
er

s

(25,25) (25,50) (25,100) (50,50) (50,100) (50,200) (100,100) (100,200)

(b) Change from initial

Figure 7: The number of clusters in the best solution.



5 COMPUTATIONAL EXPERIMENTS 28

and the best number of clusters. This result highlights the significant potential from applying a

MAB algorithm to search for the best number of clusters, even when a geographical clustering

may already exist.

Figure 6(b) also assess the improvement in the objective value if the best number of clusters

is known in advance—shown by the orange bars. This result assesses the potential of the

algorithmic techniques presented in Section 4 to reduce transportation costs. The improvements

in the objective value range from 2.15% (100, 200, 1) to 17.37% (25, 25, 10). As the number of

sites and commodities increase, the improvement in the objective value decreases. This is due to

the fact that larger instances are more difficult to solve. As such, less iterations are performed,

limiting the search for improving solutions. However, across all instances the application of the

iterative algorithm leads to a significant reduction in transportation costs.

5.3 Performance of the iterative algorithm

The run time consumed by each of the WCP, PDP and SNDP is presented in Figure 8. An

important observation from the Figure 8 is that while many of the instances require the full

3600 seconds of run time, some smaller instances terminate due to the best solution limit.

When comparing Figures 6(b) and 8, these instances are able to achieve a large decrease in the

transportation costs for the SCSNDP in reasonable run times.

The most striking observation from Figure 8 is that a significant proportion of the run time

is consumed by the PDP. On average, the PDP requires 77% of the run time supplied to the

MAB algorithm. In comparison, the SNDP requires between 8% and 29% of the run time—with

an average of 18.5%. This difference in the run time requirement is a result of the complexity
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in solving the corresponding problems. As seen in Figure 7, the number of clusters in the best

solution is less than 7 on average across all instances. As a result, the formulations of the

SNDP are very small and easy to solve. In regards to the PDP, the increase in the number

of warehouse locations and commodities results in a more complex mathematical programming

problem, irrespective of the number of clusters. These results point to an area of future work

to reduce the run time devoted to solving the PDP.

The number of algorithm iterations presented in Figure 9 highlights that the difficulty to

solve the SCSNDP is affected by the number of warehouse locations and commodities. Specif-

ically, the time per iteration, presented in Figure 9(b), suggests that the increase in problem

difficulty is more influenced by the number of commodities than the number of warehouse loca-

tions. For a fixed number of commodities, the time per iteration is similar across instances with

different numbers of warehouse locations. However, for a fixed number of warehouse locations,

the time per iteration increases super-linearly with the increase in the number of commodities.

The results presented in Figure 9 supports the analysis of Figure 8, since the complexity of the

PDP is directly related to the number of commodities.
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Figure 9: The number of iterations between the SNDP and PDP and the time per iteration.

5.4 Behaviour of MAB algorithm

The ability of the MAB algorithm to search different numbers of clusters and improve the

objective value is demonstrated with the examples in Figure 10. The first aspect of the devel-

oped solution algorithm that can be observed from these examples is the initialisation phase

during the early stages of computation. This phase is characterised by the rapid reduction in

the objective value and the many changes to the number of clusters. The benefit of the MAB
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algorithm can be observed after the initialisation phase, during the main solving process of the

developed solution algorithm. Specifically, the MAB algorithm enables the search for solutions

to the SCSNDP for a range of values for γ. The impact of this diverse search can be seen by the

fact that the initial best value of γ does not lead to the best solution for the SCSNDP. Further,

changes in the value of γ can trigger perturbations that helps escape regions of local optima.
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Figure 10: Objective value improvement (compared to the first initial solution) and the number

of clusters.

5.5 Overview of the best solutions to the SCSNDP

The average objective value of the SCSNDP is presented in Figure 6(a). This objective is

the sum of costs from direct deliveries (DD), the inter-cluster transportation (SNDP) and the

intra-cluster transportation (PDP). The contribution of each component of the SCSNDP to

the overall transportation costs for the initial and best solutions are presented in Figure 11.

First, considering the initial feasible solutions, the use of different transportation options is

very mixed across the instance set. However, this variation is mostly related to the number of

clusters in the initial solution. It can be seen that for smaller values of γ, there is a reliance

on direct deliveries. As the value of γ increases, costs shift towards the usage of inter-cluster

transportation.

A comparison of Figures 11(a) and 11(b) highlights the behaviour of the proposed algorithm

and its impact on the solutions to the SCSNDP. Across all instances, the contributions of the

DD, intra- and inter-cluster transportation to the objective are fairly consistent. It appears that

the variations in the costs are due to inferior final solutions for the SCSNDP. This is evidenced

by instances (100, 100, 2) and (100, 200, 2), where a relatively small number of iterations
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Figure 11: The distribution of the transportation costs across the different transportation types

for the initial feasible and best solution.

are performed (see Figure 9(a))—limiting the efficacy of the developed solution algorithm.

Interestingly, a large proportion of the costs are attributed to direct deliveries. Ideally, these

costs should be reduced to zero; however, the nature of the problem instances requires their use

to satisfy the pickup and delivery requests.

A major goal of the industry partner is to reduce the number of vehicles required to satisfy

all pickup and delivery requests. Figure 12 highlights the effectiveness of the developed solution

algorithm at achieving this goal. Comparing Figures 12(a) and 12(b), there is a clear decrease

in the number of required vehicles across all instances. Similar to the results presented in

Figure 11(a), Figure 12(a) shows that there is a reliance on DD vehicles for instances with a
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Figure 12: The distribution of vehicles across the different transportation types.
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smaller number of initial subregions—the instances labelled a. Alternatively, for instances with

a larger number of subregions—instances c and d—there is a greater dependence on inter-cluster

transportation. The distribution of vehicles for the best solutions, shown in Figure 12(b), is

much more consistent within a (N,K) instance grouping. It can be observed that the number

of warehouse locations and commodities has the biggest impact on the vehicle type usage, and

not the number of initial subregions.

6 Conclusions

This paper investigates the integration of location clustering with transshipment and vehicle

routing to form an adaptive transportation problem. A collection of mathematical programs

have been developed as the basis of an algorithmic framework to find high-quality solutions

for the SCSNDP. The integration of location clustering with transshipment and vehicle routing

is achieved by formulating an MAB problem. The number of possible actions for the MAB

solution algorithm is reduced using a line/local search technique to quickly identify the number

of clusters that will lead to a small transportation costs. The synchronisation of intra- and inter-

cluster transportation routes is effectively handled through an iterative solution algorithm.

The computational experiments highlight the potential of the MAB problem in reducing

the transportation costs for the SCSNDP. The MAB algorithm successfully explores different

settings for the number of clusters while exploiting the best performing setting. In many

instances, then number of clusters differs from the geographically defined subregions, which

leads to a significant reduction in costs. The use of the iterative algorithm and perturbation

techniques is capable to reducing the overall transportation costs, typically resulting in a higher

utilisation of intra-cluster transportation. Overall, the number of vehicles required to perform

all pickup and delivery requests is significantly reduced.

The proposed SCSNDP algorithm exploits the power of mixed integer programming solvers

within an iterative algorithmic framework. However, the computational results highlight a

number of bottlenecks in the effectiveness of the approach. The most prominent of these is the

solution time of the PDP, which greatly limits the number of iterations that can be performed

in the given time limits. Through the application of parallel computing and decomposition

techniques, we strive to reduce the run times of the PDP and accelerate the solution algorithm

of the SCSNDP. It is expected that a decrease in the per iteration time will lead to a large
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reduction in transportation costs. Decomposition techniques and algorithm enhancements will

play a crucial role in delivering high-quality supply chain management solutions.
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