
Zuse Institute Berlin Takustr. 7
14195 Berlin

Germany

RICARDO EULER1, RALF BORNDÖRFER2, TIMO STRUNK,
TUOMO TAKKULA

ULD Build-Up Scheduling with
Dynamic Batching in an Air Freight

Hub

1 0000-0001-5112-4191
2 0000-0001-7223-9174

ZIB Report 21-31 (September 2021)

https://orcid.org/0000-0001-5112-4191
https://orcid.org/0000-0001-7223-9174

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30 84185-0
Telefax: +49 30 84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

ULD Build-Up Scheduling with Dynamic
Batching in an Air Freight Hub

Ricardo Euler1, Ralf Borndörfer1, Timo Strunk2, and Tuomo Takkula2

1 Zuse Institute, Takustraße 7, 14195 Berlin, Germany,
2 Ab Ovo Germany GmbH, Prinzenallee 9, 40549 Düsseldorf, Germany

Abstract. Air freight is usually shipped in standardized unit load de-
vices (ULDs). The planning process for the consolidation of transit cargo
from inbound flights or locally emerging shipments into ULDs for out-
bound flights is called build-up scheduling. More specifically, outbound
ULDs must be assigned a time and a workstation subject to both work-
station capacity constraints and the availability of shipments which in
turn depends on break-down decisions for incoming ULDs. ULDs sched-
uled for the same outbound flight should be built up in temporal and spa-
tial proximity. This serves both to minimize overhead in transportation
times and to allow workers to move freight between ULDs. We propose
to address this requirement by processing ULDs for the same outbound
flight in batches.
For the above build-up scheduling problem, we introduce a multi-com-
modity network design model. Outbound flights are modeled as com-
modities; transit cargo is represented by cargo flow volume and unpack
and batch decisions are represented as design variables. The model is
solved with standard MIP solvers on a set of benchmark data. For in-
stances with a limited number of resource conflicts, near-optimal solu-
tions are found in under two hours for a whole week of operations.

Keywords: Logistics, Airline Applications

1 Introduction

Air freight is usually shipped in standardized unit load devices (ULD). Often
these ULDs are routed through a hub airport. As they frequently contain freight
for multiple destinations, they need to be unpacked (break-down) and reconsoli-
dated (build-up). An intricate scheduling problem thus arises at the hub airport:
Outbound ULDs need to be scheduled for reconsolidation in time for their depar-
ture while respecting constraints imposed by the availability of workstations and
workforce. The amount of available shipments in turn is a function of break-down
decisions for inbound ULDs subject to similar resource constraints.

Since many shipments cannot be stacked arbitrarily and also often come in
odd shapes, it is desirable to build up multiple ULDs destined for the same flight
simultaneously and in spatial proximity in order to facilitate better packing op-
tions. An easy model of proximity is a partition of the workstations into groups.

2 Euler et al.

We refer to a set of identical ULDs for the same flight scheduled at the same time
in the same workstation group as a batch. In general, it is not allowed to keep
shipments that do not fit into an ULD in the build-up area. Instead, they have
to be moved back to the warehouse. Hence, a welcome side effect of build-up in
batches is a reduction in the number of movements necessary between the ware-
house and the build-up area. From a modeling perspective, considering batches
instead of individual ULDs reduces the amount of variables to consider, since
outgoing ULDs of the same type (e.g. a container or pallet) are indistinguishable
and need no longer be represented individually. Inbound ULDs, however, can be
distinguished by their freight and also do not benefit from being deconsolidated
in batches. Hence, they are not treated as such. We call the resulting scheduling
problem the build-up scheduling problem with dynamic batch building (BSP).

Build-up scheduling (without batches) is categorized as one step of the se-
quential air cargo load planning problem in [3], which also contains a comprehen-
sive literature review of related problems. The authors survey three modeling
approaches for the scheduling of personnel for ULD build-up [7,5,6]. Among
these, [6] also schedules workers for break-down operations. However, build-up
and break-down demand are parameters and not interdependent in their model.
All of these models only consider personnel scheduling and do not take individual
ULDs, batches or workstations into account. A variant of build-up scheduling
without batches is studied in [2]. The same author also introduced the benchmark
instances [8] on which we base our computational study. Recently, [4] studied
the problem of scheduling both personnel and batch build-ups under constraints
on the availability of workstations. Their model treats the creation of batches
from incoming cargo as a preprocessing step such that batches appear as jobs
with a definite release time, dead-line and resource consumption. Here, work-
stations are not split into groups. Our approach differs from both [4] and [2] in
several key aspects. First, we do not consider explicit personnel constraints but
assume these to be implicitly given by the availability of workstations. Secondly,
we also consider break-down processes and, thirdly, we aim to maximize the size
of batches in workstation groups. To the best of our knowledge, this is the first
work to incorporate dynamic batch building and interdependent build-up and
break-down scheduling into a single model.

Despite the name, BSP is difficult to classify using classical scheduling no-
tation (see e.g. [1]). BSP consists of two parallel processor scheduling problems
connected by cargo flow constraints. Here, the value of a build-up job in the
objective function depends on the amount of freight made available by finished
break-down jobs. Note however, that this is not a precedence relationship. In
fact, outbound ULDs might be constructed even if few or no relevant inbound
ULDs are unpacked and maximizing the amount of cargo placed in an outbound
ULD is part of the objective function.

ULD Build-Up Scheduling 3

2 A Multi-Commodity Network Design Model with Edge
Activity

BSP can be addressed using a network design approach. Let T = (t1, . . . , t|T |)
be a discretized time horizon for which ULD build-ups and break-downs need
to be scheduled. We are given a set of ULD types V with capacities cv ∈ N and
build-up times bv for all v ∈ V . We denote the set of departing flights by K.
Each departing flight k ∈ K has a departure time δk, a freight demand dk, a
(financial) cost of one unit of unshipped cargo lk and a number of pre-planned
ULDs pv,k for all v ∈ V . Each ULD requires a workstation for consolidation.
We aggregate workstations that are close to each other into disjoint workstation
groups W . The number of workstations in a group w ∈ W is its capacity cw.
Inbound ULDs I are already assigned a type and an inbound flight in the input
data. Therefore, we directly assign each of them a break-down duration βi, a
freight volume λi,k for all outgoing flights k ∈ K and an arrival time αi.

Batch
Storage
Unpack
Waste

i1 i2

st1 st2 st3 st4 st5

k

Fig. 1. The time-expanded cargo flow network of the build-up scheduling problem
for two inbound ULDs and one departing flight. Here, i1 and i2 are sources and k is a
sink. The time horizon consists of five time points. Build-up, break-down durations and
departure and arrival times of flights are factored into the construction of the graph
and determine the presence of edges.

We define a candidate batch decision b ∈ B to be a five-tuple (tb, nb, kb, vb, wb)
where nb ∈ N is the number of ULDs in the batch, tb ∈ [0, δkb − bvb] ∩ T the
starting time of build-up, vb ∈ V the ULD type used, kb ∈ K the outgoing flight
and wb ∈W the assigned workstation group. An ULD unpack decision u ∈ U is
a tuple (t, i) with i ∈ I and t ∈ [αi, t|T |] ∩ T .

Now, BSP can be formalized as finding a set of decisions D = B̄ ∪ Ū with
B̄ ⊂ B and Ū ⊂ U such that no flight k is assigned more ULDs of type v than
pk,v, no more than cw ULDs are scheduled for any workstation group w ∈W at
any given point in time, the general storage capacity is never exceeded and no
inbound ULD i is unpacked more than once while both minimizing the amount
of unshipped cargo and maximizing the average batch size. Minimizing freight
losses is essential for customer satisfaction, while maximizing batch size has
organizational benefits. Hence, we treat the BSP as a single-objective problem
using a parametrization that prioritizes loss avoidance over batch building.

4 Euler et al.

To solve BSP, we propose a time-expanded fixed-charge multi-commodity
network design model in which the arcs represent unpack and batch decisions
or the storage unit. Consider the network N = (I ∪ S ∪K,A), where nodes in
S = {st1 , . . . , st|T |} represent the storage facility at various time points. Then,
we define the arc set A as follows. For each unpack decision u = (t, i) ∈ U
an arc (i, st+βi

) is created. For each batch decision b = (tb, nb, kb, vb, wb) ∈ B,
an arc (stb , kb) is created if tb + bvb ≤ δkb . Note that this introduces multi-
arcs and that the multiarcs between st and k represent all possible batches one
can start building for k at time point t. Arcs (stj , stj+1) are introduced for all
tj ∈ {t1, . . . , t|T |−1} representing cargo kept in the storage facility during the
time interval [tj , tj+1]. Finally, arcs (i, k) are added for all i ∈ I, k ∈ K. Cargo
that is routed along these arcs is considered unscheduled and penalized with
high weights. We write A ⊂ A with A := B ∪ U . The set A are the design arcs,
while arcs in A\A are always active. An example of the resulting network can
be found in Figure 1. In our MIP formulation, all batches that differ only in
their size correspond to columns that are multiples of each other. To mitigate
this degeneracy, we introduce activity variables and reduce batches b ∈ B to
four-tuples b = (tb, kb, vb, wb) ∈ B.

Then, the build-up scheduling problem can be formulated as the following
MIP:

min
∑
a∈A waxa +

∑
k∈K

∑
a∈A w

k
af

k
a (1)

s.t
∑
k∈K dkf

k
a ≤ ca ∀a ∈ A\A (2)∑

k∈K dkf
k
a ≤ caya ∀a ∈ A (3)∑

a∈δ+(v) f
k
a −

∑
a∈δ−(v) f

k
a = γkv ∀k ∈ K ∀v ∈ V (4)

fka ≤ xa ∀k ∈ K ∀a ∈ A (5)∑
a∈A α

r
aya ≤ Lr ∀r ∈ R (6)

ya ≤Maxa ∀a ∈ A (7)

xa ∈ {0, 1} ∀a ∈ A (8)

ya ∈ [0,Ma] ∩ Z ∀a ∈ A (9)

fka ∈ [0, 1] ∀a ∈ A∀k ∈ K. (10)

Here, fka is the amount of cargo for flight k passed along an arc a ∈ A, xa indi-
cates whether a is active and ya represents the number of ULDs constructed on
a. Depending on the arc type, constraints (2) and (3) impose bounds on storage
or ULD capacity. Constraints (4) ensure flow conservation with γkv := λi,k/dk if
v ∈ I, γkv := 1 if v ∈ K and γkv := 0 otherwise. Note that

∑
i∈I γi,k = 1∀k ∈ K.

Constraints (5) ensure that flow only passes through active arcs. Finally, con-
straints (6) summarize resource limits on active arcs. These are: Ensuring that
for each i ∈ I only one unpack arc is active, that batch activity for flight k ∈ K
and ULD type v ∈ V is smaller than pk,v and finally that for all t ∈ T and w ∈W
the workstation utilization is at most cw. By introducing costs on the slack of the
second type of resource constraints, penalties for planned but offloaded ULDs
can be introduced. Constraints (7) limit the activity of active arcs. Here, for a

ULD Build-Up Scheduling 5

batch arc b ∈ B we have Mb = min{cwb
, pvb,kb ,

⌈
dkb

cvb

⌉
}. Note that Mu = 1 for all

u ∈ U . In the objective function, we set wka = dklk if a = (i, k) ∈ I × K and
wa = 0 otherwise. Also wa = 1 if a ∈ B and wa = 0 otherwise. Hence, we aim
to minimize the number of batches in order to maximize the average batch size.
As a consequence, late build-up is incentivized.

3 Computational Study

We based our computational study on the data set provided in [2,8]. The data
set consists of shipments extracted from anonymized real-world booking data
that is randomly assigned to a real flight schedule of one week with 82 outbound
flights. In cooperation with our industry partner Ab Ovo Germany GmbH, we
augmented this data as follows. We created 28 time horizons from the week con-
sisting of all possible combinations of between one and seven consecutive days.
In the original data set each shipment has a release time at which it becomes
available. We grouped shipments with similar arrival times together to form an
inbound ULD using a randomly drawn ULD type. The ULD’s arrival time is its
earliest shipment’s release time minus its break-down time. Workstation groups
are not part of the data set. We modeled these around settings which appeared
sensible to us and our industry partner. We created three different set-ups with
12, 24 and 48 workstations partitioned in groups of six. Hence, the testset con-
sists of 84 instances in total. We did not apply any storage capacity or other

Free Enum Activ
#WS Off Cap Opt Gap t Opt Gap t Opt Gap t
12ws • 66 1 2.16 6943.85 0 13.12 7205.23 0 4.78 7201.80
24ws • 66 28 0.00 13.31 28 0.00 156.96 25 0.01 2229.53
48ws • 66 28 0.00 22.97 28 0.00 152.62 28 0.00 1501.74
12ws • 90 4 1.83 6174.67 0 13.17 7206.93 0 5.84 7202.44
24ws • 90 28 0.00 58.55 28 0.00 151.91 28 0.00 137.02
48ws • 90 28 0.00 202.59 28 0.00 129.86 28 0.00 117.86
12ws ◦ 66 7 4.29 5405.67 3 12.65 6447.57 3 7.28 6511.30
24ws ◦ 66 28 0.00 8.85 5 0.04 5926.12 8 0.03 5468.70
48ws ◦ 66 28 0.00 15.27 5 0.07 6011.70 7 0.05 5644.11
12ws ◦ 90 28 0.00 204.73 5 15.26 6128.94 4 8.72 6255.31
24ws ◦ 90 28 0.00 44.97 6 1.55 5966.61 5 1.53 5959.77
48ws ◦ 90 28 0.00 147.67 4 2.02 6444.38 4 1.87 6193.93

Table 1. Computational results. Activ and Free refer to the formulation as defined
in Section 2 with and without batch costs, respectively. Enum refers to a standard
network design formulation with batch costs. For all 12 scenarios defined by the number
of workstations (#WS), offload penalties (Off) and usable ULD capacity (Cap), we
report the number of instances solved to optimality (Opt), the average gap (Gap, %)
and the average run time (t) in seconds. Run times (of the MIP solver) were capped
at 7200s.

restrictions to ULD break-down in this study. Thus, the problem is reduced to
a variant of the problem studied in [2] without personnel constraints but using
the additional batching objective and workstation groups. We investigated sce-
narios both with offload penalties for unscheduled outbound ULDs calculated
following [2] and without. In line with [2], we assumed that 66% of nominal

6 Euler et al.

ULD capacity is available. As this resulted in severe overbooking of some flights,
we additionally investigated scenarios with 90% capacity. We implemented the
MIP model of Section 2 with (Activ) and without nonzero (Free) costs for batch
variables. Additionally, we implemented a standard network design formulation
without activity variables, where batch sizes are explicitly enumerated (Enum).
All implementations were carried out in Python3 using Gurobi 9.1.2. All tests
were conducted on a Dell PowerEdge M620v3. Results are reported in Table 1.
We found that BSP becomes easier when more workstations are available. If 48
workstations are present, this effect diminishes, most likely due to the increased
number of integer variables. BSP is generally easier when minimizing the number
of batches is not part of the objective. This effect is distinctly more pronounced
in scenarios without offload penalties. In general, offload penalties result in more
instances solved to optimality and lower run times. We believe this to be due to
a reduction in dual degeneracy. Without penalties, scheduling additional empty
ULDs has no effect on the objective function, which can lead to the presence of
a high number of optimal solutions. Comparing Enum and Activ, we find that
introducing activity variables gives mixed results. Activ reports a lower gap in all
but one scenario. In scenarios without offload penalties, Activ solves three more
instances to optimality and reports lower run times in four out of six scenarios.
When offload penalties are applied, however, Activ reports significantly higher
run times than Enum for ULD capacities of 66% while being slightly faster for
ULD capacities of 90%. These scenarios differ mainly in the amount of offloaded
freight. The reason for this variation in performance is not yet well understood.

In conclusion, the BSP proves challenging especially when workstation re-
sources are scarce and offloads are not penalized. The uneven performance of
the activity-based formulation warrants further investigation. Future work will
also include the scheduling of break-down operations.

References

1. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on
scheduling: from theory to applications. Springer Science & Business Media (2007)

2. Brandt, F.: The air cargo load planning problem. Ph.D. thesis, Karlsruher Institut
für Technologie (KIT) (2017). DOI 10.5445/IR/1000075507

3. Brandt, F., Nickel, S.: The air cargo load planning problem - a consolidated problem
definition and literature review on related problems. European Journal of Opera-
tional Research 275(2), 399–410 (2019). DOI https://doi.org/10.1016/j.ejor.2018.
07.013.

4. Emde, S., Abedinnia, H., Lange, A., Glock, C.H.: Scheduling personnel for the build-
up of unit load devices at an air cargo terminal with limited space. OR Spectrum
42(2), 397–426 (2020). DOI 10.1007/s00291-020-00580-2.

5. Nobert, Y., Roy, J.: Freight handling personnel scheduling at air cargo terminals.
Transportation Science 32(3), 295–301 (1998). DOI 10.1287/trsc.32.3.295.

6. Rong, A., Grunow, M.: Shift designs for freight handling personnel at air cargo
terminals. Transportation Research Part E: Logistics and Transportation Review
45(5), 725–739 (2009). DOI https://doi.org/10.1016/j.tre.2009.01.005.

ULD Build-Up Scheduling 7

7. Yan, S., Chen, C.H., Chen, M.: Stochastic models for air cargo terminal manpower
supply planning in long-term operations. Applied Stochastic Models in Business
and Industry 24(3), 261–275 (2008). DOI https://doi.org/10.1002/asmb.710.

8. ACLPP Instances. https://github.com/fbrandt/ACLPP. Commit: 3516c2b

https://github.com/fbrandt/ACLPP

	ULD Build-Up Scheduling with Dynamic Batching in an Air Freight Hub

