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Visual Analysis of Molecular Conformations
by Means of a Dynamic Density Mixture

Model

Johannes Schmidt-Ehrenberg Hans-Christian Hege

We propose an approach for transforming the sampling of a molecular conformation
distribution into an analytical model based on Hidden Markov Models. The model
describes the sampled shape density as a mixture of multivariate unimodal densities.
Thus, it delivers an interpretation of the sampled density as a set of typical shapes
that appear with different probabilities and are characterized by their geometry, their
variability and transition probabilities between the shapes. The gained model is
used to identify atom groups of constant shape that are connected by metastable
torsion angles. Based on this description an alignment for the original sampling is
computed. As it takes into account the different shapes contained in the sampled set,
this alignment allows to compute reasonable average shapes and meaningful shape
density plots. Furthermore, it enables us to visualize typical conformations.

1 Introduction

Molecules are flexible structures. They move, vibrate, and interact with other molecules and
their environment. Understanding these movements and interactions is essential for the complete
comprehension of structure-function relationships, including many aspects of drug design and
intermolecular interactions. Information about possible shapes of a molecule is carried by a
density in the molecule’s state space. Given some reasonably sized molecule, Hybrid Monte
Carlo (HMC) simulation techniques allow to compute a set of molecular configurations that
approximates this probability density of molecular shapes in thermodynamic equilibrium (see,
e.g., [10]). Thanks to the molecular dynamics step in the HMC algorithm, the resulting sequence
of states (trajectory) also contains dynamic information. Thus, the molecule’s space of shapes
can be analyzed [15] for metastable subsets, i.e. for regions in shape space that will be left by the
molecule with very low probability.

These metastable subsets of shape space can be understood as the different rough shapes
the molecule typically can take. However, the subsets can still contain more than one mode of
the shape density. These modes can again be understood as typical shapes between which the
molecule can change easier than between metastable sets. Overall, this constitutes a hierarchy
of metastable sets.

For the visualization of metastable conformations, a partitioning of the shape space is of interest
that also separates the modes inside a metastable subset. A further challenge is to find a suitable
alignment of the single configurations to each other. In particular, this is important for reasonable
averaging and visualization of shapes.
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In this paper we will present a method for analyzing molecular dynamics trajectories with
respect to typical molecular shapes. After shortly surveying related work (Sect. 2), we will
give some background on the treatment of circular coordinates (Sect. 3), in particular dihedral
angles, on Hidden Markov Models (Sect. 4), and on the concept of Perron cluster cluster analysis
(Sect. 5). Based on this we present

• a technique for partitioning the shape variations of a molecular dynamics trajectory into
long-time changes and thermal fluctuations using Hidden Markov Models (Sect. 6)

• a method to determine a hierarchical decomposition of the molecule into rigid sets of inter-
connected atoms that are connected by metastable degrees of freedom (Sect. 7)

• a new alignment strategy that clearly separates the long-time shapes in cartesian coordi-
nates while minimizing the variance induced by thermal fluctuations (Sect. 8).

Application of the approach is demonstated in Sect. 9. Conclusions and future work are presented
in Sect. 10.

2 Related Work

Visual molecular analysis is well established and widely used in research and industry. The mul-
tifarious demands in chemical, biochemical and pharmaceutical applications have been addressed
by commercial and academic software packages, offering a variety of visual representations of
molecules as well as editing functions. However, specific tools for visual shape analysis based on
molecular trajectories seem not to exist.

Identification of molecular conformations is a current research topic, see e.g. [16, 4, 3]. Recently,
in [6] a method has been proposed - similar to our analysis step - for identification of the most
important conformations of a biomolecular system from Metropolis Monte Carlo time series. The
authors, however, do not aim at alignment and visualization of long-time shapes.

Alignment is a classical task in molecular science. When two molecules are to be compared in
3D space, alignment is necessary in order to eliminate differences caused by global rigid transfor-
mations. Kabsch [8, 9] gives a straightforward method for computing an alignment between two
point sets. Pennec [11] develops an approach to align multiple point sets iteratively. Both meth-
ods are characterized in more detail in Sect. 8. Huitema and van Liere [7] describe techniques
for interactive visualization of protein dynamics, utilizing the concept of essential dynamics [1].
They interpret the dynamics of a protein as a trajectory in a high dimensional space and employ
covariance analysis to filter out large concerted motions. Results on visual analysis of metastable
molecular conformations on base of time series have been presented in [14].

3 Statistics of Molecular Shapes

For the analysis of molecular shapes some coordinate system is needed that represents the essential
aspects of a molecular shape. Since we are not interested in a molecule’s absolute position
or orientation in 3D space, Cartesian coordinates of the atom positions are not appropriate.
Neglecting the need to distinguish between mirror symmetric molecular shapes, it would be
sufficient to consider intra-molecular distances between atoms. However, it turns out that the
triple of bond lengths, bond angles and dihedral angles is more suitable. Bond lengths and angles
can be regarded as nearly constant with respect to the shape variations of interest here. The
interesting changes thus can be expressed via dihedral angles, which are defined by a sequence of
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four atoms where the respective angle is the angle between the two planes spanned by the first
three and the last three atoms. Regarding the three bonds that sequentially connect the four
atoms, the dihedral describes the rotation of the third bond relative to the first around the axis
defined by the middle bond.

As bond lengths and angles are not of interest, we can describe molecular shapes in a coordinate
space build by dihedral angles, which have a bounded and periodic value range [0, 2π). For
statistical analyses this periodicity has to be taken into account. To get statistical informations
about our data we cannot apply standard techniques. Naive averaging of angular values may
lead to invalid results, because periodicity is ignored. To overcome this problem, we can interpret
every angular value α as a point z(α) = eiα on the unit circle in the complex plane. This
representation intrinsically reflects the periodicity of angular values and is independent of the
choice of an interval of periodicity. Averaging this set of points in the complex plane, we can
define a reasonable mean angle ᾱ by

R̄ eiᾱ =
1
N

N∑
j=1

eiαj . (1)

As we want to set up a Hidden Markov Model in the space of dihedral angles, we need a prob-
ability density function for circular variables. The circular analogon to the normal distribution
is the von-Mises- or circular normal distribution:

f1D(α;φ, κ) =
1

2πI0(κ)
exp {κ cos(α − φ)} with φ ∈ [0, 2π) and κ ≥ 0 (2)

where In is the modified Bessel function of order n. f1D is a unimodal distribution with maximum
at α = φ and is symmetric on the interval [φ−π, φ+π]. The mean angle ᾱ from (1) turns out to
be a maximum likelihood estimator for the mean direction φ. The respective maximum likelihood
estimator for the concentration parameter κ is based on the amplitude R̄ of the complex mean in
Eq. (1): I1(κ)/I0(κ) = R̄. High values of κ correspond to narrow distributions, while the minimal
value (κ = 0) makes the von-Mises distribution uniform. For description of multidimensional
distributions of angles we use a tensor product of von Mises distributions.

4 Hidden Markov Models

A Markov chain is a sequence of random variables S1, S2, S3, . . . with state space I that fulfills
the so called Markov property :

P (Sn+1 = in+1|S1 = i1, . . . , Sn = in) = P (Sn+1 = in+1|Sn = in) (3)

with i1, . . . , in+1 ∈ I. If this conditional probability is independent of n, it can be described by
a stochastic matrix T = {tij} with tij := P (Sn+1 = j|Sn = i) where i, j ∈ I and

∑
j∈I tij = 1.

Such a Markov chain is called homogeneous.
Hidden Markov Models (HMM), see e.g. [13], are a two-stage probabilistic concept for ex-

plaining the course of a time series. The primary assumption of a HMM is that a given time
series is based on the realization of a homogeneous Markov Chain with finite state space I. This
realization is not directly observable, but only by its influence on the second stage of the model.
The HMM associates every state of its Markov chain with a probability density function defined
on the value space of the time series to be explained. Depending on the state of the Markov
chain realization at a given instant in time, a sample of the respective probability density is
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drawn as the observable value of the time series. A HMM is completely specified by the following
parameters:

1. Markov chain start distribution πi = P (S1 = i), (i ∈ I),

2. Markov chain transition matrix T = {tij}, (i, j ∈ I), and

3. probability density functions associated to the states of the Markov chain.

Dealing with HMMs two questions are typically of interest: First, given a sequence of observa-
tions, what are the optimal parameters of the HMM to explain this sequence? And second, given
a sequence of observations and the parameters of the HMM, what is the underlying sequence of
Markov states? Both question are answered by maximum likelihood estimation, i.e. by choosing
the unknown parameters such that the likelihood of the observation sequence gets maximal.

For the first question this leads to the Baum-Welch-algorithm, which is a special case of the
iterative Expectation-Maximization algorithm [2]. The iteration assumes a given set of model
parameters. In a first step probabilities for the hidden parts of the model, in our case the states
of the Markov chain realization, are computed. In a second step new model parameters are
computed based on these probabilities. In every iteration cycle the likelihood of the observation
given the model parameters increases. The iteration is terminated when the amount of increase
drops under a threshold.

Maximum likelihood estimation for the second question is done via the direct Viterbi algorithm.
The estimated sequence of states is called Viterbi path.

The construction of a HMM for a given series of observations requires the choice of the form
of the probability density functions. We use tensor products of von Mises distributions, Eq. (2).

Further, the number of states of the hidden Markov chain has to be determined. In general,
there is no way to measure whether a used number of states is appropriate. The achievable likeli-
hood, which is the optimization criterion of the Baum-Welch-algorithm, monotonously increases
with the number of states. Thus, it does not have a local maximum that would define an optimal
number. In Sect. 6 we will use the concept of metastability to find a suitable number of states.

5 Perron Cluster Analysis

The phrase metastable conformation indicates a dynamic aspect of molecular behavior: it denotes
approximate molecular geometries that survive the fast oscillations of molecular dynamics. In
mathematical terms a metastable conformation is an almost invariant set of the ensemble, i.e. a
subset of the molecular state space, that a molecular trajectory will only leave after a long time.

To find these metastable subsets of the state space, molecular dynamics is described using
a transfer operator approach [5]. The state space is decomposed into subsets and a transfer
operator is constructed, that specifies transition probabilities between these sets. Due to the
reversibility of the dynamics, spectral analysis of the transfer operator leads to a real valued
spectrum with maximal eigenvalue λmax = 1, while the corresponding eigenvector is constant. If
the state space contains l metastable subsets, the l − 1 next largest eigenvalues are very close to
1. This so called Perron Cluster of eigenvalues can be identified by a spectral gap that separates
it from the remaining smaller eigenvalues.

If l has been determined, the metastable subsets can be constructed using the l corresponding
eigenvectors, which define a mapping of the states to an approximate simplex in l-dimensional
Euclidean space (cf. [3] for details). We can associate the l simplex vertices with the l metastable
subsets we are looking for. Applying a linear transformation in the l-dimensional space mapping
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the simplex vertices onto the l vectors of an orthonormal basis, we get components for all the
mapped sample points with respect to the orthonormal basis that approximately lie between 0
and 1 [18]. These can be interpreted as measures of membership to the respective metastable
set. To turn this fuzzy and thereby ambiguous assignment into a definite one, we define a state
space element to belong to the metastable set with the maximal membership value.

6 Adapting Hidden Markov Models

As the effort of fitting a HMM to a time series depends quadratically on the number of hidden
states, we are interested in models with small numbers of states. Therefore we try to find as
small as possible groups of dihedral angles that can be treated as independent from the rest of
the molecule. In the first step we combine all dihedral angles into one HMM that rotate around
the same bond, as these typically have a strong coupling.

To estimate the number of hidden states we start with a definite overestimate. After the
Baum-Welch-iteration, we have a probabilistic decomposition of the molecule’s shape space that
is defined by the probability densities of the HMM. The transition matrix of the HMM defines a
transfer operator on this decomposition and we can apply Perron cluster analysis (cf. Sect. 5).
This groups the Markov states into metastable sets. In [6], these sets were reduced to single
states with mixture densities. In contrast to that, we replace the mixtures by single von Mises
distributions. The resulting HMM is again optimized using the Baum-Welch-algorithm.

To find further correlations, we determine the Viterbi paths of all HMMs and compute for
every two paths x and y the following entropy based measure of association [12]:

U(x, y) = 2
H(x) + H(y)−H(x, y)

H(x) + H(y)
(4)

where H(x) and H(y) are the state distribution entropies of the single paths and H(x, y) denotes
the entropy of the combined state distribution. The value of U(x, y) will range between 0 and
1, with 0 representing complete independence; U(x, y) = 1 on the other hand indicates complete
dependence. Thus, pairs of HMMs with high values of U are merged into one common HMM.
An intial value for this merged HMM can be generated by building all possible combinations of
states from both original HMMs. After the optimization, this HMM is again reduced by Perron
Cluster Analysis.

7 Rigid Substructures

In the following, we will propose a policy to divide the shape variations of a molecular dynamics
trajectory into long-time changes that lead to substantially different shapes, and thermal fluctu-
ations around those shapes. We will use information from the HMMs that describe the various
groups of dihedral angles in the molecule.

We distinguish between trivial HMMs with only one state and HMMs with multiple states. In
case of a single state HMM, no hidden Markov chain exists and any shape variability is expressed
by the variance of the corresponding probability density of this single state. For our purposes,
we consider dihedral angles that are described by a single state HMM to be of constant shape,
i.e. we interpret their complete shape variation as thermal noise.

If a dihedral angle is described by a HMM with multiple states, it changes between different
shapes that are characterized by the corresponding probability densities. Therefore, the four
atoms of the dihedral cannot be altogether in one rigid structure. Nevertheless, if we consider
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parts of the trajectory where the Viterbi path remains in the same state, the dihedral can be
treated as constant in these subtrajectories.

In order to perform an alignment that takes these insights about rigid substructures into
account, we build up a tree that specifies for every step of the trajectory to which other steps it
has to be aligned and with respect to which atoms. Every node specifies a set of atoms, every
edge corresponds to a HMM. The atoms of a node are considered to build a substructure of
constant shape. The atoms of a child node can be added to this structure, if the trajectory is
resolved into subtrajectories whose Viterbi paths with respect to the connecting node’s HMM
stay constant.

After the preliminary determination of all maximal rigid sets of interconnected atoms, we
perform the following steps:

1. Choose a rigid structure containing central atoms of the molecule to be the root node.

2. For all leaf nodes of the tree:

• Follow the root path of the current leaf node and collect all atoms contained in the
nodes along the path. We will call this the current rigid structure.

• Check all unused HMMs for a dihedral angle that overlaps in three atoms with the
current rigid structure. If a HMM meets this criterion, collect all atoms of the dihedrals
described by this HMM and remove those atoms, that are already contained in the
tree. From these atoms build a child node of the current leaf node and associate the
connecting edge with the HMM.

• Check all unused rigid substructures for an overlap of at least 3 atoms with the union
of the current rigid structure and one of the newly created nodes. If you find such a
rigid substructure add it to the respective newly created node.

3. While unused rigid structures exist, repeat step 2

8 Alignment

Since visualization of conformations takes place in Cartesian coordinates, it is necessary to assign
global positions and orientations to the geometries and thereby to define a relative alignment
between them. As has been detailed for example in [14], this can be done by superimposing
the atomic positions via rigid-body transformations. On the one hand, a reference shape can be
chosen to which all other shapes are pairwise aligned. On the other hand, an iterative algorithm
can be used that in every step aligns a shape to the current mean of all other shapes. Although
requiring some higher computational effort, this approach is superior to the first one, as it does
not depend on the arbitrary choice of a reference.

In the following, we will introduce an extension of the second approach that uses the hierarchy
of rigid structures constructed in Sect. 7. The tree of rigid structures specifies a hierarchy of
atom sets together with sets of time steps in which the respective structure is considered to be
constant. Therefore, we keep one mean for the atoms connected to the root node. If the HMM
that connects a child node with the root has three possible states, we compute three means for
the atoms corresponding to the child node. Only those time steps contribute to one of these
means that have the same state in the Viterbi path of the HMM. If a grandchild node of this
child node is connected by another HMM that again has three states, we have to deal with nine
different mean structures for the atoms of the grandchild, because now two Viterbi paths with
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three states each have to be considered and, as the HMMs are independent, all nine combinations
can arise.

In the following, M will denote the number of atoms in the molecule and N the number of time
steps in the trajectory. Further, we write T for the tree constructed in Sect. 7 and C1, . . . , CL

for the rigid groups of atoms that correspond to the nodes of T . It holds: Ck ∩ Cl = ∅, (k 6= l)
and

⋃L
k=1 Ck = {1, . . . ,M}.

If Ck is a rigid group of atoms, then C∗
k is the union of all groups of atoms corresponding to

the nodes of T that build the connecting path from the root of T to the node corresponding to
Ck. Gk is the number of subtrajectories for which C∗

k is considered to be of constant shape. We
denote with Skg (g ∈ {1, . . . , Gk}, k ∈ {1, . . . , L}) the set of time steps that are in the respective
subtrajectories. It holds Skg ∩ Skh = ∅, (g 6= h; g, h ∈ {1, . . . , Gk}) and

⋃Gk
g=1 Skg = {1, . . . , N}.

With Sk(t) we denote the set of time steps that contains a step t with respect to a C∗
k .

Let the original cartesian coordinates of all time steps be x(t)
a , where t ∈ {1, . . . , N} indicates

the time step and a ∈ {1, . . . ,M} the atom. Associated with every time step t we assume
a weight factor wt and define Wkg =

∑
t∈Skg

wt and Wk(t) =
∑

t∈Sk(t) wt. We also define the
weighted barycentric coordinates

x̂(t)
a = x(t)

a −

L∑
k=1

(1− wt

Wk(t)
)

∑
b∈Ck

x
(t)
b

L∑
k=1

(1− wt

Wk(t)
) · |Ck|

, (5)

where |Ck| is the number of atoms in Ck.
The aligned coordinates are x̃(t)

a = R(t)x̂(t)
a + q(t), with R(t) a rotation matrix and q(t) a

translation vector. The determination of R(t) and q(t) for t ∈ {1, . . . , N} will be described in the
following. We seek an alignment that minimizes

V =
L∑

k=1

∑
a∈Ck

∑
g∈Gk

Wkg

∑
t,s∈Skg

t6=s

wtws

W 2
kg

(x̃(t)
a − x̃(s)

a )2. (6)

This is the sum of variances of all atoms of the molecule, but, for rigid groups of atoms where the
trajectory decomposes into different sets of time steps (Gk > 1), the variances are computed per
set (Skg) and then summed up using the set weights Wkg. Solving ∇q(r)V = 0 for r ∈ {1, . . . , N}
we get

q(r) =

L∑
k=1

∑
a∈Ck

∑
t∈Sk(r)

t6=r

wt

Wk(r)
x̃(t)

a

L∑
k=1

∑
a∈Ck

(
1− wr

Wk(r)

) (r ∈ {1, . . . , N}) (7)

In order to determine R(r), we isolate those parts of V that depend on R(r):

−2wr

L∑
k=1

∑
a∈Ck

 ∑
t∈Sk(r)

t6=r

wt
Wk(r)(x̃

(t)
a − q(r))

R(r)x̂(r)
a . (8)
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To minimize this term we have to perform a pairwise alignment of the barycentric coordinates of
time step r to the barycentric coordinates of the mean of all other time steps that belong to the
same alignment groups Sk(r). On this basis, we perform the following algorithm:

1. Set R(1) = 1 and q(1) = 0.

2. Initialize all R(r) and q(r) for r ∈ {2, . . . , N} by aligning time step r to time step 1 with
respect to C1.

3. Loop over all time steps r ∈ {1, . . . , N} and recompute q(r) using (7) and R(r) by minimizing
Eq. (8), but assuming L = 1 in Eq. (7) and Eq. (8).

4. Repeat step 3, thereby continuously increasing the influence of atoms group Ck with k > 1,
but keeping the maximal change of an atom position under a threshold by increasing the
influence slow enough.

5. Stop the iteration when all atoms have full influence and the maximal change of an atom
position drops under another, lower threshold.

The computation time of a single iteration depends linearly on the number of time steps and
the number of atoms.

9 Results

To demonstrate the described algorithm we use a Hybrid Monte Carlo sampling of a pentane
molecule with 15,000 samples and another sampling of trialanine with about 500,000 samples. The
density of pentane describes nine shape clusters of which seven are metastable conformations.
The relevant shape variations of pentane are described by two dihedral angles, each of which
consists of four of the five carbon atoms. Both have three typical values 0.4π, π, and 1.4π which
are found by fitting an HMM as described in Sect. 4. The analysis by HMMs took about 15
minutes. Hence, the first three atoms of the first dihedral angle can be considered to be a rigid
structure. Fig. 1 shows a comparison between (1) an alignment that only superposes these three
atoms and (2) our new approach that takes the three atoms as root structure and aligns the other
two carbons with respect to their shape groups.

The first alignment looks only on three atoms and shifts most of the trajectory’s shape vari-
ance to the disregarded rest of the molecule. Thus, it gives a clearly defined geometry for the
aligned carbons, but blurs the rest of the molecule. Our new method results in more variance
for the positions of the three base atoms, but delivers a much clearer image of the rest of the
molecule. The structure of all the nine shape clusters is clearly visible. The computation of
the new alignment took about 15 seconds on a Pentium4 1.8 GHz Notebook. To visualize the
aligned trajectories we accumulate the density over all geometries [14], where a geometry is the
wireframe representation of an aligned time step. In accumulating the density, we count for every
node of a uniform grid, how many geometries overlap with it. The densitiy is then visualized
using isosurfaces or direct volume rendering (Fig. 1). The respective visualization for the bigger
molecule trialanine is depicted in Fig. 2.

10 Conclusion and Future Work

We have presented an algorithm that divides the shape variations of a molecular dynamics trajec-
tory into long-time changes which lead to substantially different shapes and thermal fluctuations
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Figure 1: Comparison of alignment strategies for a trajectory of the pentane molecule
with 15,000 time steps that can be divided into 9 shape clusters. All images
of a row depict the same 3D geometry from different viewing perspectives,
while the two images in a column show approximately the same view on the
geometries resulting from the two alignment strategies. In the left and middle
column, the clusters are visualized by isosurfaces of their corresponding con-
figuration densities. In the right column, the complete density is visualized
by direct volume rendering. Top row: alignment by minimizing the positional
variance of three carbon atoms. Bottom row: the new approach taking the
same three carbons as the root structure which has constant shape over the
whole trajectory. For the fourth carbon, three possible positions relative to the
root structure are assumed and nine for the fifth atom.

around those shapes. Groups of dihedral angles are analyzed by fitting Hidden Markov Models.
In contrast to Perron cluster analysis based on uniform discretizations of dihedral angles, HMMs
allow metastable clusters with fuzzy borders. We identified the fluctuation of the HMMs’ distri-
bution functions with thermal fluctuations of the molecule, while the state changes of multistate
HMMs were interpreted as long-time changes. Thus, the combination of the different states of
the multistate HMMs defines classes of different shapes. Using this decomposition we defined an
alignment strategy that tries to mimimize the variance induced by thermal fluctuations. Thus, we
got a clear depiction of the different shapes that the molecule takes on in its long-time changes.
For the entire aligned trajectory, as well as the subtrajectories belonging to the long-time shapes,
we accumulated configuration densities. These were visualized using isosurfaces and direct vol-
ume rendering. All the described techniques are integrated in the visualization system Amira
[17]. Application to larger biochemically relevant molecules will be subject of further investiga-
tion. The algorithmic complexity of the analysis by HMMs depends linearly on the trajectory
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Figure 2: Comparison of alignment strategies for a trajectory of trialanine with about
500,000 time steps. The 4 most important clusters are visualized by isosur-
faces of their corresponding configuration densities. Left image: alignment by
minimizing the positional variance of 5 selected atoms. Right column: the new
approach taking the same 5 atoms as the root structure which has constant
shape over the whole trajectory.

length and the number of atoms. The number of necessary Markov states increases with the
number of atoms and quadratically increases the computational effort. While we succeeded in
lower dimensions by using random start condition we expect this to be problematic in higher
dimensions. Regarding the alignment, we are not expecting relevant problems, as it has a linear
dependence on the problem size.
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