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Abstract
We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are
only known to lie in an interval. More precisely, we want to decide for each arc whether it is part
of some shortest path tree for some realization of costs. We show that this problem is solvable in
polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks.
Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to
a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in
public transport.
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1 Introduction

The shortest path problem is fundamental to combinatorial optimization, and appears in
various shapes in numerous applications, not only limited to the field of transportation.
Although the classical shortest path problem is very efficiently solvable, it may still be
computationally challenging due to the large size of the considered instances, or since
frequent recomputations with different parameters are required. One example for the latter
situation occurs in route planning in transportation networks, where arc costs depend on
time [1]. E.g., travel times are affected by congestion in road networks, and aircraft flight
routes depend on weather conditions. In public transportation networks, uncertain travel
times plays a role not only during operations, e.g., in the case of delays, but also in the
planning phase in the context of line planning, which is often performed before a timetable
has been fixed [12].
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7:2 Optimal Forks

In these applications, although the travel times at a given time may be hard to predict,
adequate lower and upper bounds are known. We therefore consider preprocessing of shortest
path instances, where arc costs can be chosen arbitrarily within an interval. This applies not
only to time-dependent shortest path problems, but to any situation where bounds on the
arc costs are available, e.g., robust shortest path problems [8].

Our basic approach is to remove arcs when they can impossibly be on a shortest path.
Ideally, for a given source s and target t, one would like to identify all the arcs that are
not part of a shortest s-t-path. Several pruning heuristics have been developed for this
purpose [9, 13], however, fast exact algorithms seem out of reach, as this problem is NP-
complete [4, 6]. This is why we modify the problem as follows: We want to determine all arcs
that cannot be on a shortest path tree rooted at a given source. A heuristic for detecting
these arcs has been suggested in [2], but the complexity of the problem remained open.

We show that for a given source vertex s in a digraph on n vertices and m arcs, deciding
whether an arc (w, v) can be part of a shortest path tree rooted at s is solvable in polynomial
time, and construct an O(n(m + n log n)) algorithm. This result has been claimed in [7],
but some proofs in this master thesis are incomplete or incorrect, the algorithm is more
complicated than ours, and there are almost no computational results.

This paper is organized as follows: In Section 2, we reduce this single-source arc pruning
problem to what we call the s-v-w-scenario problem, the latter serving as a basis of our
considerations. Two mixed-integer programming formulations are presented in Section 3.
We identify in Section 4 optimal substructures, called forks, which allow us to derive our
combinatorial polynomial-time algorithm. Section 5 tests our single-source method on several
real-world instances, and we compare our results to the one-to-one preprocessing heuristic
developed for the purpose of integrated timetabling and passenger routing in [13]. We
conclude the paper in Section 6.

2 Cost Scenarios and Weak Arcs

Let G = (V, A) be a digraph. Let ℓ, u ∈ RA
≥0 be lower resp. upper bounds for the arc costs,

we assume that ℓa ≤ ua holds for every arc a ∈ A. A cost scenario is a vector c ∈ RA
≥0 that

satisfies ℓ ≤ c ≤ u. For a cost scenario c and vertices s, t ∈ V , we denote by ∆s,t(c) the cost
of a shortest s-t-path in G w.r.t. c. If p is a path in G containing the vertices v and w in this
order, we denote by pv,w the v-w-subpath of p. We introduce at first the notion of weak arcs:

▶ Definition 1 (cf. [6, 14]). Let s, t ∈ V be vertices in G.
1. An arc a ∈ A is s-t-weak if there is a cost scenario c and a shortest s-t-path w.r.t. c

containing a.
2. An arc a ∈ A is s-weak if it is s-t-weak for some t ∈ V .

The set of s-t-weak arcs defines the smallest subgraph of G that still contains all possible
shortest s-t-paths w.r.t. all cost scenarios between ℓ and u. It is therefore desirable to
characterize weak arcs algorithmically. However, there is the following negative result:

▶ Theorem 2 ([3, 4, 6]). Given a digraph G, lower and upper bounds ℓ and u, vertices
s, t ∈ V , and an arc a ∈ A, it is strongly NP-complete to decide whether a is s-t-weak.

In the single-source situation, there is an accessible characterization of weak arcs:

▶ Lemma 3 ([2, Proposition 3]). Let s ∈ V . An arc a = (w, v) ∈ A is s-weak if and only if
w is reachable from s and max{∆s,v(c)−∆s,w(c) | ℓ ≤ c ≤ u} ≥ ℓa.

For fixed s, v, w ∈ V , we will therefore call ∆s,v(c)−∆s,w(c) the value of a cost scenario c.
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▶ Definition 4. Given a digraph G, lower and upper bounds ℓ and u, and vertices s, v, w ∈ V

such that v and w are reachable from s, the s-v-w-scenario problem is to find a cost scenario
c of maximum value.

The question whether an arc (w, v) can be removed from G without affecting shortest paths
w.r.t. a cost scenario between ℓ and u can therefore be reduced to the solving s-v-w-scenario
problem. An example for an optimal cost scenario can be seen in Figure 1.

s

v

w

[1, 10]

[3, 3]

[1
,1]

Figure 1 Digraph with interval data on arcs.
The only optimal cost scenario is given by csv =
10, csw = 3, cvw = 1, the value is 7.
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v

w

[0, 2]
[0, 1]

[0, 1]

Figure 2 The shown s-v-w scenario instance
is used in Example 7. It visualizes the statement
in Lemma 6.

▶ Definition 5. Let q be a path in G. The cost scenario defined by q is given by ca := ℓa if
a ∈ q and ca := ua otherwise.

The following is a basic, but a rather cryptic self-referencing optimality condition. We
refer to Appendix A for the proof.

▶ Lemma 6 (cf. [6, Theorem 2.5]). There is an optimal cost scenario c for the s-v-w-scenario
problem defined by a shortest s-w-path w.r.t. c.

▶ Example 7. Consider the graph in Figure 2. The cost scenario csx = 1, cxv = 1, cxw = 0 is
optimal and has value 1. The shortest s-w-path w.r.t. c is q = (s, x, w) with c(q) = 1. Using
the notation from Lemma 6 and its proof, we can construct the cost scenario c∗ with c∗

sx = 0,
c∗

xv = 1, c∗
xw = 0 by setting the costs of all arcs along the shortest s-w-path q = (s, x, w)

w.r.t. c to their lower bound. Then c∗ is the cost scenario induced by q, q is still a shortest
path w.r.t. c∗, and c∗ is an optimal solution to the s-v-w scenario problem with value 1.

3 Mixed-Integer Programming Formulations

In this section we provide two mixed-integer programs that solve the s-v-w-scenario problem.
Resolving the maximum of a difference of minima and the linearization of shortest path costs
require a few technical steps. The outcome is the program MIPI:

Maximize πv − πs−
∑
a∈A

ya (1a)

s.t. πj − πi ≤ cij (i, j) ∈ A (1b)

∑
a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =


1 i = s

−1 i = w

0 else
i ∈ V (1c)

ua(xa − 1) + ca ≤ ya ≤ uaxa a ∈ A (1d)
0 ≤ ya ≤ ca a ∈ A

ℓa ≤ ca ≤ ua a ∈ A

xa ∈ {0, 1} a ∈ A

πi ∈ R i ∈ V

ATMOS 2021



7:4 Optimal Forks

▶ Lemma 8. MIPI solves the s-v-w-scenario problem.

Proof. See Appendix B. ◀

Lemma 6 allows for a reduced mixed integer program MIPII ([7]):

Maximize πv − πs−
∑
a∈A

ℓaxa (2a)

s.t. πj − πi ≤ uij − (uij − ℓij)xij (i, j) ∈ A (2b)

∑
a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =


1 i = s

−1 i = w

0 else
i ∈ V (2c)

xa ∈ {0, 1} a ∈ A

πi ∈ R i ∈ V

▶ Lemma 9. MIPII solves the s-v-w-scenario problem.

Proof. See Appendix B. ◀

We want to remark that the proof of MIPII in [7, Proposition 2.2] is incorrect: The
author claims that in an optimal solution (π, x), x is always the incidence vector of a shortest
s-w-path w.r.t. ℓ. However, as we will see in Remark 13, this is false.

4 Forks

We introduce forks as optimal combinatorial structures solving the s-v-w-scenario problem
along with some properties in Section 4.1. Our algorithm is presented in Section 4.2.

4.1 The Theory of Forks
▶ Definition 10. A fork at x ∈ V is a pair (p, q) of paths in G such that
1. q is a shortest s-w-path w.r.t. the cost scenario c defined by q,
2. p is a shortest s-v-path w.r.t. the cost scenario c,
3. p and q both contain x,
4. the s-x-subpaths of p and q are identical,
5. the x-v-subpath of p and the x-w-subpath of q are arc-disjoint.

We call c the cost scenario defined by the fork, and we call ∆s,v(c)−∆s,w(c) the value
of the fork.

Figure 3 shows an example of a fork at a vertex x ∈ V of the shown digraph. The
following guarantees the existence of an optimal fork:

▶ Lemma 11. For each shortest s-w-path q w.r.t. the cost scenario c defined by q, there is a
fork (p, q). In particular, there is an optimal solution c∗ to the s-v-w-scenario problem such
that c∗ is defined by a fork.
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Figure 3 A digraph with a highlighted fork (p, q) at x. The dotted lines represent the s-w-path
q. q is also a shortest s-w-path w.r.t. the cost scenario c defined by q. The s-v-path p is represented
by the dashed lines and is minimal w.r.t. c. It shares its first arc (s, x) with q. After x, both paths
diverge towards their target vertices.

Proof. Let q be a shortest s-w-path w.r.t. the cost scenario c defined by q. Let p be a shortest
s-v-path w.r.t. c, and let x be the last common vertex of p and q. As the two s-x-subpaths
of p and q are shortest w.r.t. c by subpath optimality, we can replace the s-x-subpath of p

with the one of q and still guarantee that p is a shortest s-v-path w.r.t. c.
By Lemma 6, there is an optimal solution c defined by a shortest s-w-path q w.r.t. c. ◀

▶ Lemma 12. Consider a fork (p, q) at x. Then px,v is a shortest x-v-path w.r.t. u.

Proof. Let p′ be a shortest x-v-path w.r.t. u and assume that u(p′) < u(px,v). Then

c(p′) ≤ u(p′) < u(px,v) = c(px,v),

as px,v uses only arcs a /∈ q with ca = ua, and this contradicts p containing a shortest
x-v-path w.r.t. c. ◀

▶ Remark 13. It is in general not true that qs,x or qx,w are shortest paths w.r.t. ℓ. For the
s-v-w-scenario instance in Figure 1, the only optimal cost scenario c∗ with c∗

sv = 10, c∗
sw = 3,

and c∗
vw = 1 is induced by a fork at x = s built by the s-v-path p = (s, v) and the s-w-path

q = (s, w). In this fork, the qx,w-subpath is not a shortest x-w-path w.r.t. ℓ.
The value of a fork at x can be computed only by knowing x and qx,w:

▶ Lemma 14. The value of a (p, q) fork at x equals ∆x,v(u)−∆x,w(c) = ∆x,v(u)− ℓ(qx,w).

Proof. Let c be the cost scenario defined by q. Then

∆s,v(c)−∆s,w(c) = c(ps,v)− c(qs,w)
= c(ps,x) + c(px,v)− c(qs,x)− c(qx,w)
= c(px,v)− c(qx,w)
= ∆x,v(c)−∆x,w(c).
= ∆x,v(u)− ℓ(qx,w). ◀

The following definition is essential for our algorithm:

▶ Definition 15. Let x ∈ V . We call an s-w-path q upper-bound-respecting at x if
(P1) q contains x,
(P2) for all vertices j of qs,x holds ℓ(qj,x) ≤ ∆j,v(u)−∆x,v(u),
(P3) for all vertices j of qx,w holds ℓ(qx,j) ≥ ∆x,v(u)−∆j,v(u),
(P4) q is a shortest s-w-path for the cost scenario defined by q.

▶ Lemma 16. Let (p, q) be a fork at x. Then q is upper-bound-respecting.

ATMOS 2021



7:6 Optimal Forks

Proof. Let (p, q) be a fork at x defining the cost scenario c. Properties (P1) and (P4) are
clear. For (P2), suppose that j comes before x on q. Then, as p contains a shortest j-v-path
w.r.t. c via x, and by Lemma 12,

∆j,v(u) ≥ ∆j,v(c) = ∆j,x(c) + ∆x,v(c) = ∆j,x(c) + ∆x,v(u).

As qj,x is a shortest j-x-path w.r.t. c, we have ∆j,x(c) = c(qj,x) = ℓ(qj,x). It remains to show
(P3). Let j be a vertex of q after x. Since p contains a shortest x-v-path and by Lemma 12,

∆x,j(c) + ∆j,v(u) ≥ ∆x,j(c) + ∆j,v(c) ≥ ∆x,v(c) = ∆x,v(u),

and we have ∆x,j(c) = c(qx,j) = ℓ(qx,j). ◀

Recall that by Lemma 11, we know that there is an optimal cost scenario for the s-v-
w-scenario problem that is defined by a fork. Our combinatorial algorithm will search for
upper-bound-respecting paths to solve the s-v-w-scenario problem. The following lemma
states that cost scenarios induced by upper-bound-respecting x-w-paths at x with minimal
x-w-subpaths can only be better in value for the v-w-scenario problem than forks at x.

▶ Lemma 17. Let c be a cost scenario defined by a fork (p, q) at x. Let q′ be an upper-bound-
respecting s-w-path at x with minimum ℓ(q′), defining a cost scenario c′. Then

∆s,v(c′)−∆s,w(c′) ≥ ∆s,v(c)−∆s,w(c).

Proof. First note that

∆s,w(c′) ≤ ℓ(q′) = ℓ(q′
s,x) + ℓ(q′

x,w) ≤ ℓ(q′
s,x) + ℓ(qx,w),

as q is upper-bound-respecting by Lemma 16. Let p′ be a shortest s-v-path w.r.t. c′, let j

denote the last common vertex of p′ and q′.
Case 1: j is on q′

s,x. Then

∆s,v(c′) = c′(q′
s,j) + c′(p′

j,v) = ℓ(q′
s,j) + u(p′

j,v) ≥ ℓ(q′
s,j) + ∆j,v(u).

Using that ℓ(q′
s,x) = ℓ(q′

s,j) + ℓ(q′
j,x), we obtain from the condition (P2)

ℓ(q′
s,j) = ℓ(q′

s,x)− ℓ(q′
j,x) ≥ ℓ(q′

s,x) + ∆x,v(u)−∆j,v(u).

Inserting this,

∆s,v(c′) ≥ ℓ(q′
s,x) + ∆x,v(u),

so that, with the help of Lemma 14,

∆s,v(c′)−∆s,w(c′) ≥ ∆x,v(u)− ℓ(q′
x,w) ≥ ∆x,v(u)− ℓ(qx,w) = ∆s,v(c)−∆s,w(c).

Case 2: j is on q′
x,w. Then

∆s,v(c′) = ∆s,x(c′)+∆x,j(c′)+∆j,v(c′) = ℓ(q′
s,x)+ℓ(q′

x,j)+u(p′
j,v) ≥ ℓ(q′

s,x)+ℓ(q′
x,j)+∆j,v(u).

By property (P3),

ℓ(q′
x,j) ≥ ∆x,v(u)−∆j,v(u),

so that

∆s,v(c′) ≥ ℓ(q′
s,x) + ∆x,v(u),

and we find by Lemma 14

∆s,v(c′)−∆s,w(c′) ≥ ∆x,v(u)− ℓ(qx,w) = ∆s,v(c)−∆s,w(c). ◀
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4.2 Finding Optimal Cost Scenarios
Lemma 17 motivates Algorithm 1: Iterate over all vertices x ∈ V and search for an upper-
bound-respecting s-w-path q through x with minimum cost w.r.t. ℓ. If this cost equals
∆s,w(c) for the cost scenario c defined by q, Lemma 17 ensures that the value of c is at least
the value of any fork at x. Collecting the values of all those cost scenarios c for all x, we
find an upper bound on the value of an optimal fork. But as there is an optimal fork by
Lemma 11, we have solved the s-v-w-scenario problem:

▶ Theorem 18. Algorithm 1 solves the s-v-w-scenario problem.

An optimal fork can in principle be recovered by the procedure indicated in the proof of
Lemma 11.

Algorithm 1 s-v-w-scenario solver.

Input : digraph G = (V, A), arc cost bounds ℓ, u ∈ RA
≥0, vertices s, v, w ∈ V

Output : max{∆s,v(c)−∆s,w(c) | ℓ ≤ c ≤ u} or −∞

1 M ← −∞ /* maximum cost scenario value */
2 if v and w are reachable from s then
3 for x ∈ V do
4 qs,x ← shortest s-x-path w.r.t. ℓ subject to (P2)
5 qx,w ← shortest x-w-path w.r.t. ℓ subject to (P3)
6 if qs,x ̸= NULL and qx,w ̸= NULL then
7 q ← qs,x + qx,w /* concatenation of paths */
8 c← cost scenario defined by q

9 if ∆s,w(c) = ℓ(q) then
10 M ← max{M, ∆s,v(c)−∆s,w(c)}
11 return M

Implementation
Algorithm 1 returns the value M of an optimal cost-scenario for the s-v-w-scenario problem.
M is initialized to −∞ and can be immediately returned in case v or w are not reachable
from s. For any other non-trivial input, an efficient implementation of Algorithm 1 requires
a shortest-distance matrix ∆ w.r.t. the upper bound costs u, to be able to check conditions
(P2) and (P3) fast in the shortest path queries triggered in Lines 4 and 5. These lines are
executed in the main loop of the algorithm for every x ∈ V to find an upper-bound-respecting
s-w-path at x in two stages. In Line 4, an s-x-subpath qs,x with minimum cost w.r.t. ℓ

among the s-x-paths whose vertices fulfill (P2) is computed. Then, in Line 5 an x-w-subpath
qx,w that is again minimal w.r.t. ℓ given that all its vertices fulfill (P3) is computed.

To compute both subpaths, we use a modified version of Dijkstra’s algorithm w.r.t. the
lower bounds ℓ. The query to compute qs,x is run from x to s on the reversed digraph ←−G of
G rather than from s to x. Then, while qs,x is being computed, let qx,i be a path extracted
from the priority queue for some vertex i ∈ V . For any outgoing arc (i, j) ∈ ←−A we build
new x-j-subpaths qx,j but only those fulfilling ℓ(qx,j) ≤ ∆j,v(u)−∆x,v(u), which is exactly
condition (P2), are further considered in the elsewhere unaltered execution of Dijkstra’s
algorithm. This query runs from x to s because the left hand side of (P2) evaluates an
j-x-subpath. If we would run Dijkstra’s algorithm on the original digraph G, we would only

ATMOS 2021



7:8 Optimal Forks

be able to evaluate s-j-subpaths for some j ∈ V . The computation of the qx,w-subpath
works very similarly. It uses the original digraph G and checks condition (P3) for every new
path candidate. Note that if the shortest distance matrix ∆ is known, the additional checks
during the Dijkstra queries can be done in O(1) and thus do not have an impact on the
overall complexity of the algorithm.

In case our modified Dijkstra find paths qs,x and qx,w, their concatenation q := qs,x + qx,w

clearly fulfills conditions (P1)-(P3). If we then build the cost scenario c induced by q (Line
8) and run a one-to-all Dijkstra query w.r.t. c starting at s, we can check whether q also
fulfills (P4) (Line 9). If it does, q is an upper-bound-respecting s-w-path through x. Thus,
it qualifies to possibly update the return value M in case c yields a better value for the
s-v-w-scenario problem than the best value known so far (Line 10).

▶ Theorem 19. Algorithm 1 runs in O(n(n log(n) + m)).

Proof. The computation of the shortest-distance matrix ∆ can be done in O(n(n log(n)+m))
using Johnson’s algorithm [5]. In every iteration of its main loop, the algorithm runs at
most three Dijkstra queries (Line 4, Line 5, and Line 9). The distances ∆s,v(c) (Line 10)
and ∆s,w(c) (Line 9) can be computed in the same Dijkstra query. Since n iterations are
performed in total, this results in a running time of O(n(n log(n) + m)) for the main loop, if
we assume that a Fibonacci heap is used. ◀

5 Computational Results

The aim of this section is twofold. First, in Section 5.2, we compute the sets of weak arcs for
one-to-all shortest path instances with interval data using MIPII and Algorithm 1, and show
that the latter method is much faster. Secondly, in Section 5.3, we compare our method to
an arc-based pruning heuristic introduced in [13] to show that our exact method is more
effective.

The arc-based pruning from [13] works for the one-to-one shortest path problem with
interval data. We assume that every graph has a set VS of origin vertices and a set VT of
target vertices. Then, for s ∈ VS and t ∈ VT , an arc (v, w) ∈ A is guaranteed to not lie on
any shortest s-t-path if

∆s,t(u) < ∆s,v(ℓ) + ℓv,w + ∆w,t(ℓ). (3)

For a proof, see [13, Theorem 4]. Note that this criterion does not imply that an arc that
does not fulfill (3) is s-t-weak. To check (3) algorithmically, two shortest path trees w.r.t.
ℓ have to be computed: one rooted at s and one rooted at t on the reversed digraph of G.
Then, for every vertex v ∈ V , the distances ∆s,v(ℓ) and ∆v,t(ℓ) are known and (3) can be
used to discard irrelevant arcs from G (cf. [13, Algorithm 3]). Since this method discards
irrelevant arcs for a fixed s-t-pair only, the set of remaining arcs is not directly comparable
to the set of s-weak arcs. Therefore, we repeatedly apply the arc-based pruning from a fixed
origin vertex s ∈ VS to all vertices v ∈ V . Then, for any s-v-pair, we get a set As,v of arcs
that do not lie on any shortest s-v-path. Consequently, only the arcs in As :=

⋂
v∈V As,v are

guaranteed to not lie on any shortest path starting at s. The complement of As is a superset
of the set of s-weak arcs. We call the procedure of computing the sets As for all s ∈ VS the
VS-V arc-based pruning.

For realistic routing instances, it is often interesting to focus only on s-t-pairs for vertices
t ∈ VT . In contrast to the finding of s-weak arcs, the VS-V arc-based pruning can easily
be adapted to consider this setting. We get arcs AT

s :=
⋂

t∈V T As,t that are guaranteed to
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not lie on a shortest path from s to any target vertex t ∈ V T . Thus, the complement of AT
s

contains all arcs that can lie on a shortest s-t path with t ∈ VT . We call the computation
of AT

s the VS-VT arc-based pruning. In Section 5.3 we compare the sets of arcs returned by
both arc-based pruning techniques with the sets of s-weak arcs.

5.1 Instance Description and Implementation Details
Table 3 in Appendix C shows an overview of the used instances and their size. The instances
toy, grid, lowersaxony, and athens are taken from the open source software framework
LinTim [11, 10] which contains algorithms and data sets for public transport planning. While
toy and grid are artificial data sets, lowersaxony and athens represent the regional train
system of Lower Saxony and the metro in Athens, respectively. For most instances, lower and
upper bounds on the arcs are distinct, but for instance grid-fix the lower and upper bound
coincide for a substantial amount of the arcs, as the duration of drive and wait activities is
fixed. Instances *-res (stands for restricted) and *-all vary in the set of transfer stations
and thus in the number of arcs. The restriction of transfer stations is done according to [12]
such that for instances with fixed drive and wait activities the optimal travel time is not
impacted.

The instances W1 to W9 model subnetworks of the public transport network of the city of
Wuppertal. As with grid-fix, drive and wait activities are fixed, moreover, the minimum
transfer time is uniform across all stations.

We also consider the airway network above Germany. It is a layered directed graph,
whose layers are connected via climb and descend arcs. A path using arcs in a higher layer
represents a flight cruising at a higher altitude. A single arc has a copy in multiple layers and
different costs in each of them. This discrete set of costs per arc allows us to derive lower and
upper bounds on the arcs’ costs. We then run all algorithms on a projection of the layered
graph in which each arc appears only once, and climbing and descending arcs are ignored.

We use Gurobi 9.1.0 to solve the MIPII models. Algorithm 1 (see supplementary material)
and the arc-based prunings are implemented in C++ and compiled using gcc 7.5.0 and gcc
7.4.0, respectively. Gurobi and Algorithm 1 were run on a computer with an Intel Xeon CPU
E5-2670 v2 @ 2.50GHz processor and 128GB of memory. The arc-based prunings are were
run on a computer with an AMD Ryzen 5 PRO 2500U @ 2.00GHz processor and 16GB of
memory.

5.2 Running Time: MIPII vs. Algorithm 1
In every instance, we iterate over the origin vertices s ∈ VS and solve the resulting s-v-w-
scenario problems for all arcs (w, v) ∈ A using the MIPII model and using Algorithm 1. For
every origin vertex s ∈ VS , we consider the average running time ts needed to solve the
s-v-w-scenario problems. Finally, in Table 1 we report the average of all ts values, s ∈ VS ,
for every considered graph and both solution approaches.

On the W* instances, we observe that the solutions calculated using Algorithm 1 are
obtained orders of magnitude faster than using MIPII models. The W7 instance is the first
for which not all origin vertices can be considered within the time limit of three days. In
contrast, the running time of Algorithm 1 remains low even for the biggest instance W9 since
all s-v-w-scenario instances for a fixed origin vertex s can be solved within 3.2s in average.
On the toy-res and athens-res instances, all MIPs could be solved but Algorithm 1 is
around 4 orders of magnitude faster. On all other instances no optimal solution to the MIPII
models could be found due to memory restrictions or timeouts. The air-germany instance
is the biggest instance and the running times of Algorithm 1 behave accordingly: on average,
solving all s-v-w-scenarios for a fixed origin vertex takes 1551.28s.

ATMOS 2021
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Table 1 Average time in seconds needed to compute the sets of s-weak arcs using Algorithm 1
and the MIPII models. The Solved column reports the percentage of the origin vertices s ∈ VS for
which all s-v-w-scenarios were solved by Gurobi. Algorithm 1 solved all instances. The computations
stopped after 72 hours.

Instance Algorithm 1 MIPII

Graph Name Avg. time Solved [%] Avg. time
toy-all 0.1141 0.0 –
toy-res 0.0446 100.0 307.6409
grid-all 1.4550 0.0 –
grid-res 0.5730 0.0 –
grid-fix-all 1.4119 0.0 –
grid-fix-res 0.5417 0.0 –
W1 0.0019 100.0 4.8697
W2 0.0067 100.0 15.6175
W3 0.0211 100.0 68.7970
W4 0.2150 100.0 620.3328
W5 0.1804 100.0 698.2918
W6 0.6636 100.0 2466.2169
W7 1.1665 46.0 4015.982
W8 1.7622 37.2 4936.5306
W9 3.2349 15.7 9464.8684
lowersaxony-all 0.9811 0.0 –
lowersaxony-res 0.3155 0.0 –
athens-all 3.3776 0.0 –
athens-res 1.1595 100.0 3841.8138
air-germany 1551.2769 0.0 –

5.3 Effectiveness: Arc-based Pruning vs. Weak Arcs Solvers

We now compare the sets of s-weak arcs and the sets of remaining arcs after applying the
VS-V and the VS-VT arc-based pruning. In Table 2, we report the average cardinality of
these sets after computing them for every s ∈ VS and v ∈ VT or v ∈ V depending on the
arc-based pruning variant. Figure 4 visualizes the same data. Recall that lower numbers
are better since they imply that more arcs could be discarded. The remaining arcs after the
VS-V arc-based pruning are always a superset of the s-weak arcs and of the remaining arcs
after the VS-VT arc-based pruning. There is no theoretical implication relating the size of
the latter two sets.

On the W* instances, the difference between the set of s-weak arcs and the remaining arcs
using the VS-V arc-based pruning increases as the instances get bigger. For the W9 instance,
30% of the arcs are s-weak and after the VS-V arc-based pruning 51% are kept. On all W*
instances, the VS-VT arc-based pruning discards the most arcs but without a clear correlation
with the instances’ size: for example, compared to the sets of s-weak arcs, it discards 10%
more arcs for W2 and for W9 the advantage shrinks to only 1%.

On the synthetic and the remaining public transportation instances, we observe interesting
results: There are not many target vertices and still the sets of arcs discarded by the VS-V
and VS-VT arc-based prunings are almost equal. Additionally, the sets of s-weak arcs turn out
to be always smaller. This effect is particularly notable on the grid-all and grid-fix-all
instances, where both arc-based prunings are equally effective and the s-weak arcs are 8% and
10% less, respectively. On the non-synthetic instances lowersaxony-all and athens-all
the arc-based prunings again coincide and the sets of s-weak arcs contain 5% and 3% fewer
arcs. Taking the average over the origin vertices, 80% of arcs are s-weak in lowersaxony-all
and 68% in athens-all. Regarding the air-germany instance the sets of s-weak arcs contain
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Table 2 Average number of remaining arcs for the s-v-w-scenario solver and the arc-based
prunings. The averages are built among the number of weak arcs for every fixed vertex s ∈ VS .

Graph Name avg. weak arcs
s-v-w-solver

avg. remaining arcs
VS-VT -arc-pruning

avg. remaining arcs
VS-V -arc-pruning

tot. rel. tot. rel. tot. rel.
toy-all 681 0.59 768 0.66 768 0.66
toy-res 498 0.48 526 0.50 542 0.52
grid-all 1953 0.75 2148 0.83 2148 0.83
grid-res 1464 0.62 1563 0.66 1572 0.67
grid-fix-all 1817 0.70 2088 0.80 2091 0.80
grid-fix-res 1355 0.58 1453 0.62 1504 0.64
W1 56 0.40 43 0.30 56 0.40
W2 95 0.38 69 0.28 104 0.42
W3 155 0.32 123 0.26 170 0.35
W4 359 0.34 289 0.27 451 0.43
W5 351 0.35 330 0.33 467 0.47
W6 587 0.35 520 0.31 846 0.51
W7 719 0.32 682 0.30 1127 0.50
W8 908 0.31 768 0.26 1350 0.46
W9 1177 0.30 1120 0.29 1984 0.51
lowersaxony-all 1410 0.80 1492 0.85 1492 0.85
lowersaxony-res 964 0.64 1004 0.67 1007 0.67
athens-all 2368 0.68 2482 0.71 2482 0.71
athens-res 1414 0.51 1454 0.52 1455 0.52
air-germany 13610 0.41 16504 0.49 27656 0.83

42% less arcs than the sets of remaining arcs after the VS-V arc-based pruning. The VS-VT

arc-based pruning works better than the latter but on average, the sets of remaining arc
contain 8% more arcs than the sets of s-weak arcs. Figure 5 contains a plot showing the
distribution of the size of the sets of remaining arcs per origin vertex for a representative
instance of each type.

6 Conclusion

Deciding whether an arc is s-weak for some source vertex s can be done efficiently at the same
complexity as a standard all-to-all shortest path query, using a series of minor modifications
of Dijkstra’s algorithm. It is hence no surprise that Algorithm 1 runs much faster than
commercial solvers on the mixed-integer programming formulation MIPII. In quality, our
algorithm performs at least comparable to the arc-based pruning heuristic from [13], for some
instances, it is even superior, although that heuristic has been developed for the one-to-one
shortest path queries. We hence conclude that our s-v-w-scenario algorithm can serve as a
powerful preprocessing tool for shortest path problems in a variety of application contexts.

Beyond testing our method on a larger variety of instances, e.g., road networks, and
combining the algorithm with the VS-VT arc pruning in an iterative process, a natural
question is to tackle the complexity of computing a subgraph of minimum size that contains
at least one shortest path for each cost scenario, rather than containing all shortest paths.
Another related problem is the detection of arcs that are part of a shortest path trees for all
cost scenarios. These are called strong arcs in the robust optimization literature (e.g., [14]),
and following [7], it seems that similar methods are available here.

ATMOS 2021
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Figure 4 Average cardinality (as a percentage of the total number of arcs in each instance) of the
sets of relevant arcs determined using Algorithm 1 and the VS-VT and VS-V arc-based prunings.
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we find ∑
a∈q\q′

c∗
a =

∑
a∈q\q′

ℓa ≤
∑

a∈q\q′

ca ≤
∑

a∈q′\q

ca ≤
∑

a∈q′\q

ua =
∑

a∈q′\q

c∗
a,

and therefore

c∗(q) =
∑

a∈q∩q′

c∗
a +

∑
a∈q\q′

c∗
a ≤

∑
a∈q∩q′

c∗
a +

∑
a∈q′\q

c∗
a = c∗(q′).

In particular, the cost scenario c∗ is defined by the shortest s-w-path q w.r.t c∗.
Now let p be a shortest s-v-path w.r.t. c∗. We then have

∆s,v(c∗)−∆s,w(c∗) = c∗(p)− c∗(q)

=
∑

a∈p\q

c∗
a −

∑
a∈q\p

c∗
a

=
∑

a∈p\q

ua −
∑

a∈q\p

ℓa

≥
∑

a∈p\q

ca −
∑

a∈q\p

ca

= c(p)− c(q) ≥ ∆s,v(c)−∆s,w(c).

But as c was optimal, we must have that c∗ is optimal as well. ◀

B Correctness Proofs for MIPI and MIPII

▶ Lemma 8. MIPI solves the s-v-w-scenario problem.

Proof. Let c∗ be an optimal cost scenario and let q be a shortest s-w-path w.r.t. c∗. Set
x∗

a := 1 for all arcs a ∈ q and x∗
a := 0 otherwise. Then x∗ satisfies the flow constraints (1c).

For all vertices i ∈ V , set π∗
i := ∆s,i(c∗). As ∆s,i(c∗) + c∗

ij ≥ ∆s,j(c∗) for all (i, j) ∈ A, π∗

and c∗ satisfy (1b). The coupling constraints (1d) yield a vector y∗ with the property that
y∗

a = c∗
a for a ∈ q and y∗

a = 0 otherwise, so that∑
a∈A

y∗
a =

∑
a∈A

c∗
ax∗

a = c∗(q) = ∆s,w(c∗).

We conclude that the objective value (1a) of this feasible solution is ∆s,v(c∗)−∆s,w(c∗), i.e.,
the value of c∗.

It remains to show that the optimal objective value of MIPI is at most the value of c∗.
To this end, let (c, π, x, y) be an optimal solution to MIPI. For given x, y, c, this optimal
solution must satisfy πv − πs = ∆s,v(c), as

max{πv − πs | πj − πi ≤ cij for all (i, j) ∈ A, πi ∈ R for all i ∈ V }

is the dual linear programming formulation of the shortest s-v-path problem w.r.t. c. Moreover,
as x indicates some s-w-path by (1c), and analyzing the coupling constraints (1d), we have∑

a∈A ya =
∑

a∈A caxa ≥ ∆s,w(c). We conclude that the optimal value of MIPI is at most
∆s,v(c)−∆s,w(c), and this is in turn at most the value of c∗. ◀

▶ Lemma 9. MIPII solves the s-v-w-scenario problem.
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Proof. Let c∗ be an optimal cost scenario, we can complete c∗ to an optimal solution
(c∗, π∗, x∗, y∗) to MIPI by the proof of Lemma 8. By Lemma 6, we can assume that x∗

corresponds to a shortest s-w-path q w.r.t. c∗, and that c∗ is defined by q. Clearly, x∗

satisfies the flow constraints (2c). Moreover, for arcs (i, j) ∈ A with x∗
ij = 0, we have

π∗
j − π∗

i ≤ c∗
ij ≤ u∗

ij , so that (2b) holds. Otherwise, if x∗
ij = 1, we have that c∗

ij = ℓij , so that
π∗

j − π∗
i ≤ ℓij and hence (2b) are satisfied. In particular, (π∗, x∗) is feasible for MIPII, and

we note that
∑

a∈A ℓax∗
a = c∗(q∗) = ∆s,w(c∗), so that the objective value (2a) of (π∗, x∗)

equals the ∆s,v(c∗)−∆s,w(c∗). This shows that the optimal objective value of MIPII is at
least the value of c∗.

Conversely, let (π, x) be an optimal solution to MIPII. We obtain a feasible solution to
MIPI by defining ca := ua − (ua − ℓa)xa and ya := caxa for all a ∈ A, and the objective
value in MIPI remains the same. Applying Lemma 8, the optimal value of MIPII is at most
the value of the optimal scenario c∗. ◀

C Instance Details

Table 3 Overview of the used instances.

Type Name Vertices Arcs Origins |VS | Targets |VT | ℓa = ua

Synthetic

toy-all 184 1156 8 8 188
toy-res 184 1044 8 8 188
grid-all 442 2598 25 25 392
grid-res 442 2356 25 25 392
grid-fix-all 442 2598 25 25 756
grid-fix-res 442 2356 25 25 756

Public
Transport

W1 56 142 28 28 142
W2 88 248 36 36 236
W3 122 480 52 52 436
W4 254 1052 80 80 912
W5 242 990 84 84 814
W6 365 1663 102 102 1291
W7 434 2249 111 111 1597
W8 516 2957 129 129 2001
W9 631 3889 140 140 2477
lowersaxony-all 480 1756 34 34 412
lowersaxony-res 480 1498 34 34 412
athens-all 1066 3496 51 51 964
athens-res 1066 2794 51 51 964

Air air-germany 13896 26576 154 125 0

ATMOS 2021


	1 Introduction
	2 Cost Scenarios and Weak Arcs
	3 Mixed-Integer Programming Formulations
	4 Forks
	4.1 The Theory of Forks
	4.2 Finding Optimal Cost Scenarios

	5 Computational Results
	5.1 Instance Description and Implementation Details
	5.2 Running Time: MIP_II vs. Algorithm 1
	5.3 Effectiveness: Arc-based Pruning vs. Weak Arcs Solvers

	6 Conclusion
	A Proof of Lemma 6
	B Correctness Proofs for MIP_I and MIP_II
	C Instance Details

