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Abstract

We present a novel and computationally efficient method for the detection of meniscal
tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional
Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects
the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal
body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM)
individually. For optimal performance of our method, we investigate how to preprocess the
MRI data or how to train the CNN such that only relevant information within a Region
of Interest (Rol) of the data volume is taken into account for meniscal tear detection. We
propose meniscal tear detection combined with a bounding box regressor in a multi-task
deep learning framework to let the CNN implicitly consider the corresponding Rols of the
menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach
on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative
database. In addition, to show that our method is capable of generalizing to other MRI
sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE)
MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC)
curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For
the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93
(anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection
of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM
and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for
detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method

can be easily trained and applied to other MRI sequences.
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1 Introduction

Menisci are hydrated fibrocartilaginous soft tissues within the knee joint that absorb shocks,
provide lubrication, and allow for joint stability during movement [I]. In patients with symptomatic
osteoarthritis, meniscal damage is also found very frequently with a prevalence of up to 91%
[2]. Meniscal tears are usually caused by trauma and degeneration [3] and might lead to a loss
of function, early osteoarthritis, tibiofemoral osteophytes, and cartilage loss [4, [B]. Magnetic
Resonance Imaging (MRI) is commonly used for the noninvasive assessment of meniscal morphology
since MRI provides a three-dimensional view of the knee joint with high contrast between soft
tissues. Hence, MRI is the recognized screening tool for diagnostic assessment before performing
therapeutic arthroscopy or any other treatment [6]. Among other factors, a proper treatment
concept of meniscal damage depends highly on the type of tear and its location [3, [7]. An
appropriate medical intervention can delay further development of arthritic changes, improve

quality of life, and reduce healthcare expenditures. However, in practice, it is not always clear



what the optimal treatment actually is [8, 9], while an improper procedure might even lead to an
acceleration of osteoarthritis progression [I0]. For this reason, an accurate and reliable diagnosis
of meniscal tears in view of their location, type, and orientation is important.

The diagnosis of meniscal tears in MRI is a time consuming and tedious procedure. These
defects are often difficult to detect due to their small sizes and arbitrary orientations. It is
frequently necessary to go back and forth in the MRI slices and to switch view directions for
a thorough assessment of occurrences and spatial extents of pathological changes. In addition,
the meniscal representation in the image data depends on the chosen MRI sequence. What
appears clearly visible in one sequence may be barely noticeable in another due to insufficient
contrast. Computer-Aided Diagnosis (CAD) attempts to overcome some of these limitations.
CAD tools can be employed to increase the sensitivity and specificity of physicians in detecting
and classifying meniscal tears [IT], 12} [I3]. Moreover, CAD could speed up the diagnosis, reduce
the number of unintentionally missed defects, avoid unnecessary interventions (e.g. arthroscopic
interventions), and lead to fewer treatment delays. Several CAD approaches for an automated
detection of meniscal tears in MRI data have been proposed in recent years. A distinction can
be made between methods that evaluate the 2D contents of cross-sectional images often coming
from a set of curated slices (2D approaches) and those that evaluate 3D image information in the
MRI data volume (3D approaches). In the context of image analysis by means of Convolutional
Neural Networks (CNNs), we distinguish between 2D CNNs and 3D CNNs. In the case of the
2D approaches, there exists a pseudo-3D variant in which sets of (neighboring) sectional images
are included in the evaluation. In these pseudo-3D variants, 2D CNNs are employed to encode
2D slices of a 3D MRI dataset. Afterwards, the respective 2D encodings are condensed (e.g. by
global max- or average-pooling), concatenated, and passed to a classifier.

[14] proposed a method to detect meniscal tears from a curated set of sagittal 2D MRI slices.
Their approach is based on the 2D "faster R-CNN" [I5] and comprises three steps: Firstly, the
positions of both meniscal horns are detected; secondly, the presence of a tear is classified; and
thirdly, the respective tear orientation is determined. The method yields an Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC) of 0.92 for the detection of the
meniscal horns’ positions, an AUC of 0.94 for detecting the presence of meniscal tears, and an
AUC of 0.83 for the determination of the tear orientations. [I6] presented a similar method, also
detecting meniscal tears from a curated set of sagittal 2D MRI slices. They employed a masked
region-based 2D CNN [I7] to locate the anterior and the posterior horns of the Medial Meniscus
(MM) as well as the Lateral Meniscus (LM). Their method yields on average an AUC of 0.906 for
all three tasks, i.e. the location of the respective region, the detection of meniscal tears, and the
classification of the tear orientation.

Processing of all MRI slices instead of individually selected ones was performed by [12] who
proposed a 2D CNN for the detection of meniscal tears. Their method achieves an AUC of 0.847.
[11] adopted a method that combined a 2D CNN for meniscus segmentation with a 3D CNN for

detection and severity staging of meniscal tears. This approach was able to differentiate between



tears and no tears with an AUC of 0.89. [I8] proposed a so-called "Efficiently-Layered Network"
for detection of meniscal tears, reaching an AUC of 0.904 and 0.913 for two different datasets.
[19] demonstrated the use of a 2D CNN as a pseudo-3D variant for detection of torn menisci.
Their method relies on transfer learning while using data augmentation and reaches an AUC of
0.934. [20] presented a deep 3D CNN to detect tears in MRI data for MM and LM, respectively.
Their method reaches AUC values of 0.882, 0.781, and 0.961 for the detection of medial, lateral,
and overall meniscal tears. [2I] also proposed a 3D CNN for meniscal tear detection in MRI data
for MM and LM individually. Their approach yields an AUC of 0.93 for MM and 0.84 for LM.

A common limitation among many of the methods listed above is their strong reliance on
segmentations of the menisci (or at least of bounding boxes), which can be challenging to obtain
due to the inhomogeneous appearance of pathological menisci in MRI data as well as an insufficient
contrast to adjacent tissues [22]. Furthermore, some approaches merely operate on 2D slices. A
major limitation of such methods is that the trained 2D CNNs cannot take whole MRI volumes
into account, thus possibly missing important feature correlations in 3D space. Besides, the
selection of curated slices requires expert knowledge. Therefore, the applicability of these methods
to 3D volumes is unclear since they were not trained on 3D data. Finally, none of the presented
methods is able to detect meniscal tears for all anatomical sub-regions of the menisci individually,
i.e., the anterior horn, the meniscal body, and the posterior horn.

Our motivation is to detect meniscal tears in MRI data more accurately than previous methods
in terms of correctness and localization. For this purpose, we present a method that detects
tears in anatomical sub-regions of both the MM and the LM. We design our study in a manner
that allows for a comparison of different possible approaches. Moreover, the study shows our
progression in addressing the task of meniscal tear detection in 3D MR images. We investigate
how to handle best the input data such that the least pre-processing is required for inference and
the best accuracy is achieved. Furthermore, we show that our proposed method generalizes well
to different MRI sequences. We employ two ResNet architectures [23] 24] to classify meniscal
tears in each sub-region of the MM and the LM, respectively, utilizing three different approaches.
In a first approach (i), we train a 3D CNN on the complete 3D MRI dataset as input. We call it
Full-scale approach within the remainder of this article.

Since large input data requires a lot of GPU memory, longer time for training and inference, and
contains image information not necessarily needed for an assessment of meniscal tears, we decided
to crop the data to the Regions of Interest (Rol) of both menisci in an automated pre-processing
step that requires segmentations of sufficient quality for training and testing [25]. Hence, in a
second approach (ii), a 3D CNN is trained on these cropped MRIs detecting meniscal tears more
accurately than in our first approach. We refer to the second approach as BB-crop approach.
We enhanced the performance of our first approach by adding a bounding box regression task.
Thus, our final approach (iii) trains a CNN to detect meniscal tears in complete 3D MRI,
combined with an additional bounding box regression task leading to an auxiliary loss (the

BB-loss approach). Framing the problem of meniscal tear detection in this multi-task learning



setting - simultaneously solving meniscal tear detection and meniscal bounding box regression -
allows our model to implicitly learn to focus on the meniscal regions. Furthermore, segmentation
masks are only required during training. Hence, our final approach requires the least data
pre-processing at inference time and achieves the best results.

This study presents a method that detects meniscal tears in 3D MRI data on a sub-region
level, i.e., the anterior horn, the meniscal body, and the posterior horn for both MM and LM.
Formulating the problem in a multi-task learning setting, by adding the information of the
location of the menisci as an auxiliary loss to our 3D CNN, state-of-the-art results are achieved.
In order to provide an explanation to our CNN’s decision, SmoothGrad saliency maps [26] are
computed and visualized. That way a visual guidance can be given to the clinical domain experts

for confirming the results of our approach.

2 Materials and Methods

In section of this chapter, the data to our method is presented. Thereafter, we introduce
our data pre-processing and bounding box generation in[2.2] Section [2.3]is a description of the
model architectures utilized in our approach and of their respective components. The particular
configuration of our three approaches is illustrated in detail in sections and followed
by an explanation of our experimental set-up and training in Finally, the statistical evaluation

is summarized in 2.8 and a method for saliency maps is proposed in 2.9

2.1 Data from the OAI database

The publicly available database of the Osteoarthritis Initiative (OAI)E| was established to provide
researchers with resources to promote the prevention and treatment of knee osteoarthritis. We use
2,399 sagittal Double Echo Steady-State (DESS) 3D MRI scans from the OAI database acquired
using Siemens Trio 3.0 Tesla scanners [27]. Additionally, 2,396 sagittal Intermediate-Weighted
Turbo Spin-Echo (IW TSE) MRI scans are investigated for the same patients. The demographics
of our study are shown in Table The OAI database includes multiple reading studies of
respective osteoarthritis characteristics, which can be assessed in medical image data. As a gold
standard, we utilize labels from MOAKS [28] image reading studies performed by clinical experts.
In the MOAKS scoring system, the menisci are divided into three anatomical sub-regions: anterior
horn, body, posterior horn. We consider regions as not containing a tear if the MOAKS score
was "normal" or if the sub-region contains a signal abnormality (which is not extending through
the meniscal surface and, hence, is no tear). We considered any other type of abnormality (radial,
horizontal, vertical, etc.) as a meniscal tear (c.f. Table . Examples of the MRI sequences,

signal abnormalities, and meniscal tears are shown in Fig.
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https://nda.nih.gov/oai/

DESS MRI DATA

Signal Abnormality Meniscal Tear

)

IW TSE MRI DATA

Signal Abnormality Meniscal Tear

Figure 1: Examples of normal menisci, signal abnormalities, and subjects with meniscal tears
shown for DESS as well as IW TSE MRI data. For a summary of different types of meniscal tears
per sub-region the reader is referred to Supplementary Table E



DESS IW TSE
Number of MR images 2,399 2,396
In-plane resolution 0.36 mm x 0.36 mm 0.36 mm x 0.36 mm
Usual slice dimension 384 x 384 442 x 448
Slice thickness 0.7 mm 3 mm
Number of slices 160 35 to 43
Side (left; right) 1104; 1295 1104; 1292
Sex (female; male) 1489; 910 1487; 909
Age [years] 61.88 £ 8.87 61.89 + 8.86
BMI [kg/m?] 29.01 + 4.79 29.08 + 4.79
MM (% normal) 60.0% 59.9%
LM (% normal) 80.0% 79.9%

Table 1: Demographics: In this study, 2,399 DESS and 2,396 IW TSE MRI scans from the OAI
database are analyzed. In these data, slightly more normal than diseased medial menisci (MM)
and lateral menisci (LM) are contained. Here, normal is defined as no conspicuous features with
respect to the MOAKS scoring system in any sub-region.

2.2 Data pre-processing and localization of menisci

In a first step of our pre-processing, the intensities of all MR images are scaled to a range of [0, 1]
using min-max normalization. Following that, a standardization is applied to each MR image Z;

according to the equation below:

I, = ; (1)

where p is the mean intensity and o is the standard deviation of the training population of
normalized scans. Leveraging meniscal segmentations generated by the method of [25] Rols
spanning the MM and LM are created for DESS MRI data (see Fig. . Rols are computed by
querying the minimum and maximum position of the menisci along each dimension of the binary
segmentation masks: Tymin, Tmazs Ymins Ymaz, Zmins Zmaz- Lhe bounding boxes are uniquely

defined as the 3D center coordinate

(zmaf - Imin)/2 + Tmin
BB enter = (ymax - ymzn)/z + Ymin | (2)

(zmaw - Zmzn)/2 + Zmin

and with the respective height (Zmaz — Tmin), Width (Ymaz — Ymin), and depth (Zmaz — Zmin)-
These values are represented as relative image coordinates. Hence, a bounding box is defined by
6 floating values: [BBZ,,,..., BB ,icr» BBZopters height, width, depth).
For the IW TSE data 600 segmentations are generated in a semi-automated fashion using Amira

71B Editimﬂ [29]. These masks are defined as voxel-wise annotations of the tissue belonging to

the respective meniscus. The method of [25] was originally developed and evaluated on DESS
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MRI data. Since the DESS and IW TSE MRI sequences differ significantly in the image resolution
(number of slices), that could pose an issue, we have decided to train the self-adapting nnU-net
framework [30] on these 600 training datasets. The nnU-net offers 2D and 3D architectures
and 3D architectures usually yields better results [30]. For this reason, we have used a 3D
variant of the nnU-net that employs 3D convolutions in an encoder-decoder framework with
skip-connections. For the IW TSE data, the nnU-net has been automatically configured to have
an input size of 24 x 256 x 256 pixels and seven layers of 3D convolutions [30]. We train the
nnU-net with data augmentation such as random rotations and random cropping using a dice
similarity coefficient loss [30] until convergence is reached. Hereby, the dice similarity coefficient is
computed between the output of the nnU-net and the respective hand-labelled target segmentation
masks. Afterwards, the nnU-net is employed to segment all 2,396 IW TSE MRI scans to yield
the respective meniscal Rols. In order to achieve this, multiple patches of the MRI with a size of
24 x 256 x 256 pixels are being processed by the nnU-net. These patches overlap by half of the
patch size in each dimension. Afterwards, the nnU-net framework merges all patches to a final

3D segmentation mask employing a majority voting for every pixel.

2.3 Model architecture

Two distinct models, which are based on 3D counterparts of ResNet architectures [23] [24] are
introduced. ResNets have been widely applied to the medical domain and provide good properties
due to the employed skip connections. In theory, the residual connections allow the design of
very deep ResNets without exhibiting problems of vanishing gradients [31]. We have chosen 3D
counterparts of 2D ResNets since 3D convolutions are able to comprehend three-dimensional
context inherently. It has previously been shown in the context of musculoskeletal MRI analysis
that 3D convolutions are more powerful than concatenation of 2D slices as well as a provision
of multiple 2D slices as input to a CNN that employs 2D convolutions [32, 33]. We adapt these
3D ResNet architectures to the three different approaches and their associated input volume
sizes. Each model consists of a ResNet encoder followed by one or two Multi-Layer Perceptron
(MLP) heads. The BB-crop approach has a dilation ResNet-C-26 architecture with an MLP
head for the multi-label classification. The Full-scale approach has a ResNet50 encoder with a
classifier MLP head, and the BB-loss approach consists of a ResNet50 encoder with two MLP
heads. The performance of the classification task is improved in the BB-loss approach by solving
additionally a second task, which is to learn a bounding box regression simultaneously. Again, the
first MLP head is employed for multi-label classification. The second MLP head is responsible for
the bounding box regression task. All ResNets comprise of a series of convolutional layers, each
followed by batch normalization [34] and a Rectified Linear Unit (ReLU) activation function [35].
Our approaches that will be presented in the following sections are designed based on (a selection
of) encoders and MLP heads:
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Figure 2: CNN pipeline for detection of meniscal tears in six sub-regions. Approach Full-scale
uses a ResNet50 encoder followed by a classifier head with Lpcg for classification of meniscal
tears in 3D MRI data (A). Approach BB-crop reduces the 3D MRI input to the meniscal Rol and
uses a DRN-C-26 encoder followed by a classifier head with Lpc g to detect meniscal tears (B).
Approach BB-loss uses a ResNet50 encoder followed by a classifier head with Lpcop as well as
another bounding box regression head with £5; and Lg .y in order to predict bounding boxes
of the menisci in the 3D MRI data (C). The ResNet50 is made up of an initial convolutional
layer followed by max-pooling before 16 ResNet bottleneck blocks with residual connections are
stacked. The DRN-C-26 starts with the same convolutional layer but is immediately followed by
ten residual building blocks and, lastly, two building blocks without a residual connection. After
average pooling, the encoders generate 2048 and 512 features, respectively. Finally, SmoothGrad
saliency maps are presented as overlaid heatmaps on top of the respective MR image to highlight
these regions that mostly influenced the detection of tears (button right corner).



ResNet50 encoder

[23] proposed a residual layer connection as a way to train deep neural networks without suffering
from vanishing gradients. One of their proposed architectures is the ResNet50, with a total of
50 convolutional layers (see Fig. . The network comprises an initial convolutional layer with
kernel size 7 x 7 x 7 followed by a max-pooling layer with kernel size 3 x 3 x 3 and stride 2.
The following residual layers are grouped in so-called "bottleneck blocks" (see Fig. , which are
constructed of three convolutional layers. The first and the last are convolutional layers, with
kernel size 1 x 1 x 1, where the first one downsamples the number of volume features, and the last
one applies feature upsampling. Between these layers, there is a convolutional layer with kernel
size 3 x 3 x 3. The bottleneck blocks are arranged in four groups of sizes 3, 4, 6 and 3, where
each group starts with a stride of 2 in the first convolutional layer to downsample the feature
volumes’ spatial dimensions. Finally, the residual blocks are terminated with a global average
pooling [36] over the 2048 individual 3D feature volumes coming from the last layer of the ResNet
encoder. Computing the average value of each feature map via global average pooling results in a
1D tensor with 2048 features.

Dilation ResNet-C-26 (DRN-C-26) encoder

The DRN-C-26 is a dilated residual CNN architecture with 26 layers introduced by [24]. The
original ResNet downsamples the input images by a factor of 32. Downsampling our cropped
and uneven sized image volumes by such an amount would result in a loss of information about
small and salient parts caused by less expressive feature maps. However, simply reducing the
convolutional stride restricts the receptive field of subsequent layers. For this reason, [24] presented
an approach with which downsampling could be reduced while sustaining a sufficiently large
receptive field and improving classification results. To construct the DRN-C-26 [24] applied the
following changes to the ResNet18 [23] made of so-called ResNet "building blocks" with two
convolutional layers with kernel size 3 x 3 x 3 (see Figure . First, the convolutional stride in
the last two groups is replaced by dilation. Second, the initial max-pooling layer is replaced by
two residual building blocks. Lastly, to reduce aliasing artefacts, a decrease in dilation is added
with two final building blocks without residual connections. Again, the residual blocks of the
DRN-C-26 are followed by a global average pooling over the 512 feature maps of the last ResNet

layer, resulting in a 1D tensor with 512 features.

MLP heads

The features obtained by the respective ResNet encoders are passed through a simple three-layered
feed-forward network, also known as MLP, to achieve the respective classifications and regressions.
As shown in Fig. [2] the MLP input dimension matches the feature dimensions of the CNN (i.e.,
2048 neurons in case of ResNet50 and 512 neurons for a DRN-C-26). The hidden layers of all
MLP’s consist of 2048 neurons. The classifier head has six output nodes. In the BB-loss setting,

an additional three-layered MLP with twelve output nodes was added to perform a bounding box



regression.

2.4 Full-scale approach: Detection of meniscal tears in complete MRI

scans

In our first and most straightforward approach, the complete 3D MRI is provided as input to the
CNN. The CNN consists of a ResNet50 encoder followed by an MLP head. The outputs of the
MLP after a sigmoid activation represent probabilities for the six meniscal sub-regions to contain
a tear or not.

The CNN is trained by minimizing the binary cross-entropy loss Lpcg for a given batch of N

NxC
Z2

samples. With a target matrix Y € and an output matrix Y € RN*C for all C' meniscal

sub-region labels the definition of Lo is:

C N
Loor = 3 3 Y welyicdog(o(die)) + (1 = yilog(1 — (3. ) )

where w, is an inverse weighting of label frequencies and o(-) is a sigmoid activation function.

The Full-scale approach is visualized under A) in Fig.

2.5 BB-crop approach: Detection of meniscal tears in cropped MRI

datasets

Cropping 3D MRI data to the meniscal Rol is expected to provide two desirable properties. First,
it provides smaller volumes reducing the required GPU memory as well as the run time. Second,
the full-scale 3D MR images can be considered noisy as they provide additional and unnecessary
information about surrounding anatomical structures. By cropping the data to the Rol of the
menisci, this unnecessary information is suppressed. Leveraging the Rol generated as described
in the 3D MR images are cropped with a 5% margin around the menisci. Each cropped
image is then resampled with trilinear interpolation to the closest multiples of 16, given the
biggest bounding box in the training set. Figure [2] visualizes the cropping and resampling process.
Consequently, the cropped and resampled images have a size of (64,64, 176) for the DESS data
and (16, 64, 176) for the IW TSE data. BB-crop utilizes a Dilation Resnet-C-26 encoder followed
by an MLP classifier head. The CNN is trained by minimizing the Lpcg as given in . The

framework is visualized under B) in Figure
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2.6 BB-loss approach: Detection of meniscal tears in complete MRI

scans enhanced by regression of meniscal bounding boxes

The BB-crop approach requires segmentation of both menisci (or at least the determination of a
meniscal region) in training and testing. Since generating segmentations is time-consuming (the
method of [25] requires approximately 5 minutes of run time), it is beneficial to avoid this step.
Moreover, this approach heavily relies on high-quality bounding boxes in training and inference,
which are difficult to obtain and strongly influence the performance quality. Thus, the motivation
for our final BB-loss approach is to detect meniscal tears in 3D MRI data without extensive
pre-processing requirements such as segmenting the menisci or computing bounding boxes for
meniscal regions. Instead, the location of the menisci is added as an additional loss term for the
training. The encoder is kept identical to the Full-scale approach, namely a ResNet-50 encoder.
Furthermore, an identical MLP head is utilized for the meniscal tear detection. Additionally,
we show that the meniscal position information helps the CNN to focus on these regions in the
image yielding better results. A second MLP head is employed in the BB-loss approach to regress
the coordinates of the meniscal Rol. By incorporating this knowledge as a loss in the training
process, the locations of the menisci must not be explicitly provided at test time. The total loss
in the BB-loss setting is computed considering the multi-label classification and the bounding
box regression task. For detection of meniscal tears Lpcop is employed . In the bounding box
regression the outputs of the MLP head are 6 coordinates d for the MM and LM, respectively.
Utilizing a sigmoid activation function, these values are given as relative positions within the
image in a range of [0, 1] of the respective dimension. For a detailed description of the bounding
box generation procedure, we refer the reader to Section 2.2. The first component of the bounding

box loss is an L1-term L defined as
Lpi=|B- B, (4)

with a predicted bounding box Banda target bounding box B that is derived from the automated
segmentation masks. These N x 2d matrices contain N rows with medial and lateral bounding
box values. Where b,, ; and 67” describe the nth element of the batch and the 7th value of the

concatenated bounding boxes. With this formulation the loss is given as

1 N 2d R
Lrr= DD lbai = buil. (5)
n=1i=1

The second component of the bounding box loss is a modified Intersection over Union (IoU)
term, more specifically the Generalized-IoU (GIoU) Lgrou [37] defined as:

,CGIOU=1—IOU+|C\(|B;,|UB)|, (6)

11



where C is a convex hull enclosing the predicted and the target box. The operator | - | computes
the box volume. The convex hull is the smallest possible region that encloses both the output
and the target bounding boxes. It can be defined as a bounding box, fully characterised by the 6
coordinates elaborated above. It is computed by taking the minimum and maximum extent of
both the target bounding box and the predicted bounding box coordinates along the x-, y- and
z-axis. The numerator of the third term of the Lg,u is the convex hull volume subtracted by
the volume of B and B, and the denominator is the volume of the convex hull. Hence, the third
term of the Lgr,uy can be considered as the relative volume of the convex hull not covered by the
}gﬂg:, that is, the ratio of
the intersecting voxels of B and B to their union. The Lg,p is computed for each meniscal Rol

union of predicted and target bounding box. The IoU is defined as

and averaged for the given batch.The overall loss £ for the BB-loss approach is given as
L=CLpce+ L1+ Lcrou - (7)

The BB-loss approach is visualized under C) in Fig.

2.7 Experimental setup and training of CNNs

The given MRI data of the OAI are randomly split into 50% training data, 15% validation
data and 35% testing data. Hence, our two experiments have 1200/359/840 and 1197/359/840
training/validation/testing scans for the DESS data and the IW TSE data, respectively. We
implemented the CNNs of all approaches in PyTorch 1.9. Convolutional weights are initialized
using a normal distribution as in [38] tailored towards our deep neural networks with asymmetric
ReLU activation functions. While, batch normalization weights and biases are initialized constant
with 1 and 0. We train our CNNs on an Nvidia A100 GPU with 40 GB memory. Training our
three ResNets, separate learning rates and dropout probabilities for the ResNet-encoders and the
MLP-heads are introduced. Suitable learning rate, dropout and batch size hyper-parameters are
found using the validation data of the DESS scans. The learning rate values for all parts (ResNet
encoder, classifier head and bounding box head) are evaluated in an interval of [le—5,0.01].
Dropout percentages are varied in an interval of [0.1,0.9]. Further, the training batch size limited
by the input size is varied from 2 to 64 for the BB-crop approach. Due to a larger input volume
in approach Full-scale and BB-loss batch size was kept constant at a value of 4. For a complete
summary of our hyper-parameter values, please refer to Supplementary Table [S2] Training is
performed using the ADAM optimizer [39] with 81 = 0.9, 82 = 0.999 and ¢ = le — 08 with a
learning rate decay of 0.5 every 50 epochs. Training on the IW TSE sequence is not performed
from scratch, instead, both ResNet encoder and MLP weights are fine-tuned. In both DRN-C-26
and ResNet50 cases, we use the CNNs that achieve the lowest validation loss on the DESS
sequence.

On-the-fly data augmentation is performed during training. Specifically, this means, random
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cropping around the Rol, horizontal flips, rotations, Gaussian noise, and intensity scaling are
applied with 50% probability. For the Full-scale approach, we perform random cropping of up to
10% along coronal, 20% sagittal and 20% axial direction. In the BB-crop approach, random crops
are performed by uniformly cropping within a 20% margin around the menisci. The BB-loss
approach uniformly samples possible crops around the menisci. All cropped images are resampled
with trilinear interpolation to attain consistent sizes per approach and dataset. Input images for
the Full-scale and BB-loss approach are sampled for the DESS sequence data to (160, 384, 384)
and for IW TSE images to (44, 448,448). The BB-crop approach resamples to (64,64, 176) and
(16,64,176), respectively. The added Gaussian noise is pixel-wise sampled as ¢ € A(0.1,0.5).
The random rotation is uniformly sampled from U (—5°, +5°) and image intensity is scaled by a

uniformly sampled multiplication factor b € ¢4(0.9, 1.1).
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2.8 Statistical assessment of detection quality

For all experiments, we plot the true positive rate (TPR = sensitivity) against the false positive
rate (FPR = 1 - specificity) at various decision thresholds to create ROC curves [40]. Additionally,
we compute the ROC AUC to assess the quality of our classifiers. The quality of our predicted
bounding boxes is assessed by computing the IoU with the target bounding boxes. We consider
ToU values over 0.5 as successful localization of the menisci since this is a common value in object
detection tasks [41].

2.9 SmoothGrad saliency map visualizations for areas addressed by
the CNN

Gradient saliency maps [42] (otherwise called pixel attribution maps or sensitivity maps) highlight
pixel regions in the input image that mostly influenced a neural network’s decision. To attain
such pixel attributions, one computes the derivative of the final linear layer in a neural network
with respect to the input via back-propagation. More formally, a gradient saliency map S, for a
sub-region ¢ for which our neural network f yields a detection of meniscal tears is calculated as:
Su(Z) = L), ®)
0Z;
For our two most promising approaches BB-crop and BB-loss, these maps are computed by
applying a slight enhancement to the original mechanism - the SmoothGrad method [26]. Similar
to the SmoothGrad approach of [26] we augmented the input image slightly, introducing noise,
such that through averaging, the saliency maps of different noise levels are smoothed out. We
apply Gaussian distributed noise € € N'(0.1,0.5), random horizontal flips, uniformly sampled
rotations r € U(—5°, +5°) and uniformly sampled pixel intensity shift with a multiplication factor
b€ U(0.9,1.1). Each image is augmented 20 times with a probability of 50% per augmentation,

and the resulting maps are averaged.

3 Results

We applied all approaches to DESS as well as IW TSE data from the OAI database. Each of our
approaches detects meniscal tears for the MM and the LM. In particular, tears are detected in
the three anatomical sub-regions anterior horn, meniscal body, and posterior horn. All results are

presented in this section.
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Figure 3: ROC curves for detection of meniscal tears in DESS MRI data.

3.1 Detection of meniscal tears in DESS MRI data

Employing the Full-scale approach, the AUC values are 0.74, 0.84, 0.85 for the anterior horn,
body, and posterior horn of the MM. For the LM, the AUC values are 0.94, 0.92, 0.91. The
BB-crop approach usually yields higher AUC values, being 0.87, 0.89, 0.89 and 0.95, 0.93, 0.91.
The BB-loss gives the highest AUC values, being 0.94, 0.93, 0.93 and 0.96, 0.94, 0.91. The ROC
curves employing all three approaches are shown in Fig. 3] In addition, all ROC AUC results are

summarized in Table 2

MM LM
Method Anterior Body Posterior | Anterior Body Posterior
Full-scale | 0.74 0.84 0.85 0.94 092 0.91
BB-crop | 0.87 0.89  0.89 0.95 0.93 091
BB-loss 0.94 0.93 0.93 0.96 0.94 0.91

Table 2: ROC AUC results for medial menisci (MM) and lateral menisci (LM) in DESS MRI
data. The best results for each anatomical sub-region are highlighted.

3.2 Detection of meniscal tears in IW TSE MRI data

Employing the Full-scale approach, the AUC values are 0.82, 0.87, 0.82 for the anterior horn,
body, and posterior horn of the MM. For the LM, the AUC values are 0.88, 0.85, 0.85. The
BB-crop approach usually yields higher AUC values, being 0.84, 0.89, 0.86 and 0.92, 0.90, 0.90.
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Figure 4: ROC curves for detection of meniscal tears in IW TSE MRI data.

The BB-loss gives similar AUC values, being 0.84, 0.88, 0.86 and 0.95, 0.91, 0.90. The ROC
curves of all approaches are shown in Fig. [l Further, all AUC values are summarized in Table [3]

MM LM
Method Anterior Body Posterior | Anterior Body Posterior
Full-scale | 0.82 0.87  0.82 0.88 0.85 0.85
BB-crop | 0.84 0.89 0.86 0.92 0.90 0.90
BB-loss 0.84 0.88 0.86 0.95 0.91 0.90

Table 3: ROC AUC results for medial menisci (MM) and lateral menisci (LM) in IW TSE data.
The best results for each anatomical sub-region are highlighted.

3.3 Localization of menisci via the BB-loss approach

To investigate the bounding box regression quality of the proposed method we evaluate the
distribution of the IoU values for the predicted bounding boxes (Fig. [5]). For the DESS dataset
(our primary benchmark), we observed a very high quality of MM and LM bounding box
predictions. With the values being close to normally distributed around a mean value of 0.71 (95%
confidence interval (CI): 0.71 - 0.72) and standard deviation of 0.13. With the IoU threshold of
0.5, we conclude that 95% of the resulted bounding boxes are identified correctly. Unfortunately,
we observed a clear decrease in the object detection performance in the IW TSE dataset. With a
mean value of 0.58 (95% CI: 0.57 - 0.59) and a standard deviation of 0.14. Applying the same

detection threshold as above we testify, that only around 76% of menisci were detected correctly,
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Figure 5: The distribution of the IoU values for the bounding boxes of MM and LM in DESS and
IW TSE MRI data.

with the overall quality of the bounding boxes being more widely spread.

3.4 Visualization of areas addressed by the CNN

Figure [6] shows SmoothGrad saliency maps for the BB-crop and BB-loss approach overlaid to
MR images. Examples are shown for randomly selected test cases, displaying different kinds of
meniscal tears for DESS and IW TSE data. The Rols for the BB-loss approach were extracted
using predicted bounding boxes and the respective close-ups are shown. Red arrows point at
the location of meniscal defects. Most saliency maps obtained this way display a plausible
localization of the meniscal tears. The plausibility of these maps was qualitatively evaluated by
their correspondence to the target labels of the regions in which the tears could also be confirmed
with the help of visual inspection of the image data. SmoothGrad saliency maps are capable of
highlighting more than just one affected sub-region, i.e. in the presence of defects in multiple
sub-regions of one meniscus, one similarly observes these being correctly highlighted. With the
Dilation ResNet-C-26 employed in the BB-crop approach, we observed that this CNN yields
smoother and less noisy SmoothGrad saliency maps. However, in many cases, ResNet-50 saliency
maps targeted the affected region better, but did not outline this region sharply.
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Anywhere | 0.94 0.906 0.847 0.89 0.904 and 0.913 0.934 0.961 — 0.81 0.89 094
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LM-B — — — — — — — — 0.86 0.92 0.94
LM-PH v v — — — — — — 0.88 0.91 0.91

*[14] and [16] detected meniscal tears in 2D slices for AH and PH, but reported overall results only.

Table 4: Comparison of our results on DESS MRI data to the related work. The "3D data'
column indicates whether the method is trained on and applied to complete 3D MR images. The
explainable AI "XAI" column indicates if concepts of saliency maps are employed in order to
highlight the areas responsible for the CNNs’ decisions.

3.5 Detection performance — different sub-regions and defect types

Even though the occurrence of defects varies between meniscal sub-regions (see Supplemen-
tary Figure |S2)), we observe only minimal differences between AUC values of sub-regions in DESS
MRI data (c.f. Table . However, we analyzed the false positive classifications and found that
for all sub-regions, signal abnormalities were more often misclassified than normal menisci were
(see Supplementary Figure . The misclassification rate of signal abnormalities is highest for
the posterior horn of the lateral meniscus, the region with the least AUC for the DESS data.
Conversely, the lowest signal abnormality misclassification rate is prevalent in the posterior
horn of the medial meniscus, the sub-region with the highest number of signal abnormalities
(supplementary Table [ST)).

The least common types of tears occurring in the data are radial and vertical tears, amounting to
72 and 69, respectively. Vertical tears were most challenging for our method to detect in DESS
data and led to the most false negative results (see Supplementary Figure . Radial meniscal
tears were the ones yielding the second highest rate of misclassifications.

4 Discussion

The primary goal of our work was to develop a method that provides an efficient, robust and
automated way to detect and better locate meniscal tears in MRI data, that is, the detection
of tears with respect to the anatomical regions in which they occur. We devised a procedure
that utilizes a 3D CNN to process arbitrary 3D MRI data without the need for any extensive

pre-processing.
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Many previously proposed methods already yield a high accuracy in the detection of meniscal
tears. To compare our results to the related work, we focus our assessment on the results of our
BB-loss approach on the DESS MRI data. Our method detects meniscal tears in anatomical
sub-regions of MM and LM. However, it has not been explicitly trained for menisci tear detection
in the entire knee as well as the two menisci. Therefore, to obtain the respected values, we
performed max operations on our CNNs’ outputs. A comparison of the different approaches
with their respective detection AUC is summarized in Table[d] Our BB-loss approach achieved
state-of-the-art results in detecting meniscal tears in the medial and lateral meniscus with an
AUC of 0.94 and 0.93. For the task of meniscal tear detection in the entire knee BB-loss approach
had an AUC of 0.94 is second to the approach of [20]. However, the proposed methods from
the related work still leave a desire for a more precise spatial assignment of the findings. For
instance, localizing tears per meniscus or in anatomical sub-regions thereof. For tear detection
per meniscus, our method performs better than related work [20, 21]. However, the novelty of
our method is the detection of tears for each anatomical sub-region of the menisci in 3D MRI
data, providing an anatomically more detailed localization.

With AUC values being consistently higher than 0.90 for DESS MRI data, our approach
achieves excellent detection quality for all meniscal sub-regions using uncropped 3D MRI volumes.
We also show that our method generalizes well to other MRI sequences, that is, from DESS to
IW TSE data. IW TSE data provides a more challenging setting with a higher slice thickness
in the mediolateral direction. Moreover, for certain meniscal defects, such as horizontal tears in
the meniscal body, a lower resolution in the acquired MR image direction significantly reduces
the visibility of the features required for an accurate classification. The result could be improved
by using an input image with an isotropic resolution. Such an image can be obtained by either
upsampling an existing image or, even better — acquiring a new image, at a higher resolution.

Signal abnormalities are still a challenge. In cases where menisci with tears are to be
distinguished from menisci without tears, signal abnormalities are currently regarded as the latter.
A fine-grained differentiation between tears and signal abnormalities is likewise a challenge to our
method, primarily through the ambiguous image appearance. Potentially, more training data, as
present for the region with the most signal abnormalities — the MM posterior horn, would allow
our CNN to better learn to distinguish signal abnormalities from tears.

We expected our model to generalize to all meniscal pathologies but observed problems
detecting vertical and radial tears. However, these tears were less common in the available
training data, and we believe that more data on such cases would enable our method to detect
vertical and radial tears with higher accuracy. Furthermore, coronal and axial imaging sequence
orientation could provide additional insights [12], possibly improving the detection of otherwise
barely visible tears.

One major limitation that we see is that our method still requires a localization of the menisci
in training. However, other segmentation approaches or (non-automatic) approaches could be

applied to attain bounding boxes, possibly improving results by providing more accurate bounding
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boxes for training.

5 Conclusions and future work

We present a method in an efficient and fully automated multi-task learning setting that accurately
detects meniscal tears on a sub-region level in MM and LM. Our method yields the best results
on sagittal DESS MRI data and generalizes well to sagittal IW TSE data. Further, visual support
for clinical detection of meniscal tears is provided by SmoothGrad saliency maps highlighting
regions that mainly contributed to the decision.

Future work could comprise an analysis of anomaly detection (normal vs. signal abnormality
vs. torn menisci) or a classification of different types of tears (horizontal, radial, complex, etc.).
Since some of these types occur only rarely for specific sub-regions, deep learning-based methods
probably require a lot more image data or data generated with generative models. Also, new
issues of class imbalances will arise for the classification of tear types.

From the method perspective, the choice of an encoder provides opportunities for improvement.
For instance, recent self-attention mechanisms, so-called "transformer" architectures [43, [44] are
worth an investigation. Since transformers typically require a vast amount of training data, they
might not necessarily lead to better accuracy, but the self-attention maps [45] may result in a
more meaningful explanatory power than classical methods of saliency mapping. Also, generative
adversarial networks have been recently employed for explaining the decision of CNN’s [46] [47].
As deep learning methods become more precise in localizing meniscal tears coupled with further
sophisticated concepts on explainability, CAD tools will become practical for clinical decision
support. In future work, we plan to investigate whether our method better assists physicians in

their diagnostic tasks.
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