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Rooted Maximum Weight Connected Subgraphs
with Balancing and Capacity Constraints

Ralf Borndörfer Stephan Schwartz William Surau

Zuse Institute Berlin, Takustr. 7, 14195 Berlin

Abstract

Finding connected subgraphs of maximum weight subject to additional constraints on the
subgraphs is a common (sub)problem in many applications. In this paper, we study the Max-
imum Weight Connected Subgraph Problem with a given root node and a lower and upper
capacity constraint on the chosen subgraph. In addition, the nodes of the input graph are col-
ored blue and red, and the chosen subgraph is required to be balanced regarding its cumulated
blue and red weight. This problem arises as an essential subproblem in district planning appli-
cations. We show that the problem is NP-hard and give an integer programming formulation.
By exploiting the capacity and balancing condition, we develop a powerful reduction technique
that is able to significantly shrink the problem size. In addition, we propose a method to
strengthen the LP relaxation of our formulation by identifying conflict pairs, i.e., nodes that
cannot be both part of a chosen subgraph. Our computational study confirms the positive
impact of the new preprocessing technique and of the proposed conflict cuts.

1 Introduction

The Maximum Weight Connected Subgraph Problem (MWCS) is to find a node set of maximum cumulated
weight that induces a connected subgraph in a given node-weighted graph. Popular variants of the MWCS
include a given set of roots that have to be included in the chosen subgraph, and a capacitated (or budgeted)
variant where additional node weights and lower and upper weight bounds for the chosen subgraph are
specified. These variants occur in various applications, and have been the subject of a number of studies,
see e.g. [LD98; DG10; Bac+12; ÁMLM13b].

In this paper, we study a variant of the rooted and capacitated MWCS where additional balancing
constraints are imposed. Emerging from an application in district planning, the nodes are divided into
blue and red nodes, and the chosen subgraph has to be balanced with respect to the color weights. The
problem of balancing blue and red nodes in a connected subgraph has been studied, for instance, in
[Bho+19b; Mar+21]. The combination of balanced, rooted, and capacitated MWCS, however, is new and
interesting in its own right. It turns out that the combination of weight bounds and balancing constraints
imposes a combinatorial structure that can be exploited to shrink the problem substantially and to derive
logical implications on the shape of the subgraph.

The problem studied in this paper occurs as a subproblem when designing control districts for toll
enforcement inspectors on motorways, see [BSS21]. By a transition to the line graph of the motorway
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network, highway sections become nodes, whose lengths then correspond to node weights, and control
districts are designed subject to lower and upper length bounds. In addition, the districts are desired to be
homogeneous with respect to the traffic on its motorways, and homogeneity is measured as the cumulated
difference to the median traffic of the district. Districts are generated dynamically in [BSS21] and when
fixing a root as potential median traffic node, all other nodes can be colored blue or red, representing
motorways with less or, respectively, more traffic than the root node. Enforcing that the root has indeed
the median traffic corresponds to the balancing condition of the BRCMWCS. The node profits stem from
the duals of the restricted master problem, and are the only data that changes in each pricing round.

The contributions and the structure of this paper are as follows. In Section 2 we formalize the problem,
review the literature, and present an IP formulation. In Section 3 we propose preprocessing methods that
can drastically reduce the problem size. Section 4 is concerned with conflict pairs, i.e., pairs of vertices
that cannot be both part of a feasible solution. Adding the resulting inequalities to the IP can considerably
strengthen the LP relaxation. We conclude with a computational study in Section 5 that shows the strong
effect of the preprocessing and the potential of the conflict cuts.

2 The Problem

For the Balanced, Rooted, and Capacitated Maximum Weight Connected Subgraph Problem (BRCMWCS),
we consider a graph G = (V,E) with a bipartition of the nodes V = Vb ∪̇Vr into blue and red nodes,
node weights w ∈ RV≥0 and profits p ∈ RV , as well as numbers 0 ≤ WL ≤ WU , ∆ ≥ 0, and a root node
r ∈ V . The BRCMWCS is to find a tree T = (VT , ET ) of weight w(VT ) ∈ [WL,WU ], such that r ∈ VT and
|w(VT ∩ Vb)− w(VT ∩ Vr)| ≤ ∆, and such that p(VT ) is maximized. Here and in the following, we use the
short notation w(V ′) :=

∑
v∈V ′ wv for a subset V ′ ⊆ V , and, accordingly, for p(V ′).

Figure 1: Exemplary BRCMWCS instance. The root node is depicted as a yellow square, circles represent
nodes in Vb and triangles nodes in Vr, node sizes correspond to weights and colors to node profits.
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Complexity The BRCMWCS is NP-hard and the reduction can come from multiple angles. For instance,
even without the balancing and capacity constraints, a reduction from the rooted MWCS (which is NP-
hard due to [ÁMLM13b]) is possible. On the other hand, since the balanced connected subgraph problem
is NP-hard (see [Bho+19b]), a reduction is also possible without the root or capacity constraints. Finally,
the capacity contraints alone make the problem NP-hard. A reduction from the number partition problem
is possible by considering a star graph where the leaf weights are the numbers of the partition instance
and the center has weight 0. By setting WL = WU to half of the sum of all weights, we see that the
BRCMWCS is NP-hard even without the root or balancing condition.

2.1 Related Work

The MWCS is a classical optimization problem with close relations to the family of Steiner tree problems,
see e.g. [Dit+08; RK19; Lju20] for transformations and context. A number of papers from the last
decade study preprocessing techniques [EKK14; RK19; RKM19], exact approaches [ÁMLM13a; Fis+17;
RFK20], or applications [Bac+12; Car+13; CG12] for the MWCS. The standard preprocessing approaches,
however, do not carry over to the budgeted variant, since the bounds might require the inclusion of nodes
with negative profit or the exclusion of nodes with positive profit in the optimal solution. Our paper
adresses exactly this situation.

The budgeted MWCS with a lower bound has been considered in [HP94; LD96; LD98], but the nodes
bear unit weights and WL = WU = k, i.e., the goal is a maximum weight connected subgraph with
exactly k nodes. While Hochbaum and Pathria [HP94] propose a dynamic program that finds the optimal
solution on trees and a 1

k -approximation on general graphs, the authors of [LD98] reduce the problem to
the single-rooted case which is heuristically solved in [LD96].

The rooted and budgeted MWCS has been studied in [DG10; ÁMLM13b], but only with an upper
weight bound, i.e., WL = 0. Both of these works focus on the comparison of different connectivity
formulations. The results of Dilkina and Gomes [DG10] indicate that a single-commodity flow is best if
the upper weight bound is impractically large, while in the other case, an arc separation routine is preferred.
Álvarez-Miranda, Ljubić, and Mutzel [ÁMLM13b] propose a node separator formulation, and find that
this formulation is favorable for denser graphs, compared to the arc separation. Comparisons of different
connectivity formulations for the pricing problem in [BSS21] strongly suggest that a single-commodity flow
is best suited for the BRCMWCS.

For the Balanced Connected Subgraph Problem (BCS) we are given a graph G = (Vb ∪̇Vr, E) with nodes
colored either blue or red, and seek a maximum-cardinality subgraph that contains an equal number of
blue and red nodes. The problem was introduced in [Bho+19b] and shown to be NP-hard, even on planar,
bipartite, and chordal graph, or when a single root node is specified. When the graph is a tree, however,
Bhore et al. [Bho+19b] give a labelling algorithm to solve the BCS in time O(|V |4). Kobayashi et al.
[Kob+19] improve the runtime to O(|V |2) by running a dynamic program on a transformed rooted binary
tree with possibly additional uncolored nodes. The authors also briefly study a weighted version of BCS
and give complexity results for special graph classes. Further complexity and inapproximability results as
well as polynomial-time algorithms for the BCS on other special graph classes are provided in [Bho+19b;
Bho+19a; Dar+19; Mar+21]. We are not aware of any preprocessing or cutting plane approaches to the
BCS.

2.2 IP Formulation for BRCMWCS

We use a flow formulation to ensure the connectivity of the chosen subgraph T . The idea is to construct
a flow that emerges at the root node. Each node of the chosen subgraph consumes one unit of flow, while
all other nodes satisfy flow conservation. To this end, we consider the bidirected version D = (V,A) of G
and introduce the variables
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• yv ∈ {0, 1} for v ∈ V indicating whether v ∈ T ,

• xa ≥ 0 for a ∈ A specifying the flow on arc a ∈ A.

The IP formulation of the BRCMWCS can then be stated as follows.

max
x, y

∑
v∈V

pv yv (1a)

s.t. WL ≤
∑
v∈V

wv yv ≤ WU (1b)∑
v∈Vr

wv yv −
∑
v∈Vb

wv yv ≤ ∆ (1c)

∑
v∈Vb

wv yv −
∑
v∈Vr

wv yv ≤ ∆ (1d)

yr = 1 (1e)∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = yv ∀v ∈ V \ {r} (1f)

xuv ≤ M yv ∀(u, v) ∈ A (1g)

The objective (1a) is to maximize the profit of the chosen subgraph. The budget constraints are specified
in (1b), and the balancing constraints in (1c) and (1d). The flow conservation is ensured by equalities (1f).
Inequalities (1g) are necessary to activate every node that is used by the flow. The use of a big M parameter
is bad for the LP relaxation, but necessary. It should be chosen as small as possible, and following [VB21],
M = maxV ′⊆V {|V ′| : w(V ′) ≤WU} − 1 is a valid choice that can be computed with a greedy algorithm.

3 Preprocessing

Computational studies show that preprocessing methods for the MWCS generally have a huge impact
on the solution time [EKK14; RK19; RKM19]. While the general methods for the MWCS do not carry
over to the BRCMWCS, we propose an effective approach that significantly reduces the problem size and
computation times for our problem.

The capacity constraints in combination with the balancing condition allow for different reduction tech-
niques for the BRCMWCS. In particular, we can derive the following weight range for the chosen blue
vertices VT ∩ Vb:

WL −∆

2
≤ w(VT ∩ Vb) ≤ min

(
WU + ∆

2
, w(Vr) + ∆

)
. (2)

The weight range for the red color class is defined accordingly, and we denote the respective upper weight
bounds by W b

U and W r
U . A method to discard nodes based on these color weight ranges was proposed in

[BSS21]: For each color, we determine the color radius, i.e., the set of nodes that can be reached from
the root on a path that satisfies the upper weight bound of the according color. The color radius can be
determined with a single shortest path tree computation in the bidirected version of G using arc weights

w̃b(u,v) :=

{
wv , if v ∈ Vb,
0 , else,

and w̃r defined accordingly. Every node that is outside of the color radius cannot be part of any feasible
solution and can be removed.
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Algorithm 1: BicolorRadius

Input: G = (Vb ∪̇Vr, E), w, r, `max

Output: set of nodes within the bicolor radius

1 Consider arc weights ω in the bidirected version of G with ω(u,v) ←
(
w̃b(u,v), w̃

r
(u,v)

)
;

2 `r ←

{
(wv, 0) , if r ∈ Vb,
(0, wv) , else

3 labels[v] ←

{
{`r} , if v = r,

∅ , else
;

4 L← {(r, `r)} ;
5 repeat
6 L′ ← ∅ ;
7 for (u, `u) ∈ L do
8 for each neighbor v of u in G do
9 `′ ← `u + ω(u,v) ;

10 if `′ respects `max and is not dominated by any label at v then
11 Add `′ to labels[v] ;
12 Add (v, `′) to L′ ;
13 Remove dominated labels in labels[v] ;

14 L← L′ ;

15 until L = ∅;
16 return all nodes with at least one label ;

Here, we propose a complementary preprocessing approach to discard even more nodes. The bicolor
radius is the set of nodes that can be reached from the root on a path that satisfies the upper weight
bound of both color classes. Unfortunately, the bicolor radius cannot be computed via a shortest path
tree. In fact, it is essentially a constrained shortest path problem to determine if a specified node is inside
the bicolor radius.

Figure 2: Effect of bicolor radius preprocessing. The root node is depicted as a yellow square, the gray
nodes are outside of the bicolor radius and can be removed.
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We solve the problem with a Bellman-Ford-like labelling algorithm. The approach is detailed in Algo-
rithm 1 and uses two-dimensional arc weights and node labels (for the blue and red cumulated weight,
respectively). The upper weight bounds, given as a pair `max = (W b

U ,W
r
U ), are part of the input. We use

the usual notion of domination, i.e., label `1 dominates label `2 if each weight in `1 is less than or equal
to the corresponding weight in `2 and if at least one of the inequalities is strict. The algorithm is closely
related to constrained shortest path labelling approaches and runs in pseudo-polynomial time.

The effect of the bicolor radius preprocessing can be substantial, and goes far beyond the single color
radii. For the instance depicted in Figure 2, the single color radii cannot exclude a single node. The bicolor
radius, on the other hand, is able to eliminate all gray nodes, essentially eliminating half of the graph.

4 Conflict Pairs

In this section, we propose a method to identify and make use of conflict pairs in the BRCMWCS. A conflict
pair consists of two nodes u, v ∈ V that cannot be both part of a feasible solution, i.e., u ∈ T =⇒ v /∈ T
for any feasible solution T . For any conflict pair (u, v) we can potentially tighten the LP relaxation of (1)
with the inequality yu + yv ≤ 1.

The idea of analyzing conflicting pairs (or even larger sets), and deriving stronger constraints has been
proven to be very useful in different set packing problems, such as knapsack or matching problems. The
proposed idea also translates to the rooted and budgeted MWCS, i.e., without the colors and balancing
condition.

4.1 Finding Conflict Pairs

In order to identify conflict pairs, we can make use of the upper capacity bounds introduced in Section 3
again. If for two nodes u and v and for every tree T = (VT , ET ) containing r, u, and v, we know that
w(VT ) > WU or w(VT ∩ Vb) > W b

U or w(VT ∩ Vr) > W r
U , then (u, v) is a conflict pair. Deciding if there

exists a tree connecting a given set of terminal vertices at some cost, is a Steiner tree problem. Fortunately,
an elegant combinatorial approach is known for the Steiner tree problem with three terminals. It is based
on the insight that any Steiner tree with three terminals is a union of paths from a common center node
(that is possibly a terminal itself) to the terminals.

Building on this, Algorithm 2 describes our procedure to identify conflict pairs. As input, we use the
bidirected version D of G, the root node r, and one of the following three weight combinations:

• w̃ with w̃(u,v) = wv, wmax = WU − wr,

• w̃b, wmax = W b
U − wr · χ(r ∈ Vb),

• w̃r, wmax = W r
U − wr · χ(r ∈ Vr) .

The union of the three respective return values of Algorithm 2 constitutes our set of conflict pairs. The
proposed algorithm runs in time O(|V |3), and for all tested instances, it is able to identify a large number
of conflict pairs. In fact, in most cases there are so many conflict pairs that some strategy is needed
to exploit this information. We will discuss two approaches: Deriving large conflict sets and identifying
essential conflicts.

4.2 The Conflict Graph

The individual conflict pair inequalities yu + yv ≤ 1 can be too weak to effectively strengthen the LP
relaxation. We construct the conflict graph on the vertex set V by introducing an edge for every conflict
pair. Analogously to the set packing problem (see [BW00] for details), we can derive stronger inequalities
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Algorithm 2: SteinerTreeConflictPairs

Input: D = (V,A), r, w̃ ∈ RA≥0, wmax

Output: set C of conflict pairs

1 C ← ∅ ;
2 len← all pairs shortest path lengths in D w.r.t. w̃ ;
3 for all node pairs u, v ∈ V \ {r} do
4 for c ∈ V do
5 weight← len[(r, c)] + len[(c, u)] + len[(c, v)] ;
6 if weight ≤ wmax then
7 // there is a feasible Steiner tree
8 Go to line 3 and check the next node pair ;

9 Add (u, v) to C ;

10 return C ;

from the conflict graph: Given an odd cycle C of length 2k + 1 in the conflict graph, the inequality∑
v∈C yv ≤ k is known to be stronger than the ordinary conflict pair inequalities. These odd-cycle cuts,

however, usually do not help the optimization process. The situation is different when considering a clique
C in the conflict graph. The clique cuts

∑
v∈C yv ≤ 1 are known to be often beneficial for the LP relaxation.

We experimented with including clique cuts to formulation (1). Since the number of cliques is even much
larger than the number of conflict pairs, we determined an edge covering with cliques, and only added
the respective clique cuts. These additional inequalities, however, showed to have a negative effect on the
solution time in our tests. A typical conflict clique together with an optimal solution for the BRCMWCS
instance is depicted in Figure 3. One can see that the conflicting nodes are quite far apart and located
at the boundary of the graph. Depending on the node profits of the instance, such clique cuts are rarely
violated by the optimal LP relaxations. Hence, we shift our focus to identifying more meaningful conflict
pairs.

Figure 3: The nodes of an exemplary conflict clique are colored red, an optimal solution is colored blue.

7



4.3 Essential Conflicts

Our experiments showed that the addition of all conflict cuts results in significantly longer solution times.
The same holds true if only violated cuts are added dynamically to the program. Hence, it is necessary to
identify essential conflicts that actually facilitate the solution process. Such conflicts presumably involve
nodes that are closer to the root node or have a high profit.

In order to specify these nodes, we define a scoring function that assigns a value from the interval [−1, 1]
to every vertex. A positive profit as well as a small ratio between the shortest r-v-path length and WU

increase the score of node v. Essential conflicts are then defined as all conflict pairs between nodes with
a positive score. Figure 4 shows the node scores and all resulting essential conflicts for an exemplary
instance. Observe that the conflict sets are now much more central. Again, we determine an edge clique
cover of the essential conflict graph and only added the respective clique cuts.

Figure 4: Essential conflicts and node scores of an exemplary instance.

5 Computational Results

In our computational study, we evaluate the impact of the bicolor preprocessing and the conflict pair cuts.
We ran the experiments on machines equipped with Intel Xeon E3-1234 CPUs with 3.7GHz and 32GB
RAM. The code is written in Python 3.6 and to solve IPs Gurobi 9.1 is used. The instances stem from a
transit network generator used in [BSS21]. These networks are edge weighted with a length and a traffic
value. We transform the transit networks into node weighted graphs. The weight of a node represents the
length of the corresponding edge. As a root we chose a random node and the color of a node depends on
whether the traffic value is higher or lower then the traffic at the root.

We constructed 5 such network instances where the number of nodes ranges from 563 to 569 and the
number of edges from 845 to 885. For each network, we consider 9 different profits: 3 are actual reduced
costs from the pricing problem from [BSS21], 3 are distributed uniformly at random in the interval [−1, 1],
and 3 are based on the normal distribution to thin out extreme profits. For one instance per profit class,
we also used a random partition into red and blue vertices. Finally, we consider 4 different upper weight
bounds that lie between 40% and 75% of the graph diameter, and are motivated by our application. The
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Table 1: Reduction effect of the preprocessing and numbers of (essential) conflict pairs for different weight
bounds.

group rp cp1 ecp1 cp2 ecp2

W1 227.7 13624.1 110.0 30426.5 146.6
W2 95.2 11132.1 103.0 46410.6 175.9
W3 25.3 4033.5 56.7 38420.7 146.0
W4 3.7 156.1 6.8 18688.0 78.2

Table 2: Comparison of average computation times (in seconds) for different variants and instance groups.

group 00 10 11 12 1*

small 42.3 22.7 23.8 23.9 21.6
medium 255.8 170.3 171.3 176.2 149.8
large 1996.7 1775.9 1527.6 1478.1 1188.0

lower bounds were set to half of the upper bounds but showed no effect in any computation. Altogether
we have 5 · 12 · 4 = 240 test instances.

The base variant of the study is the formulation without preprocessing and conflict cuts, which is denoted
by 00. To assess the impact of the proposed preprocessing, we consider the variant 10. For a broader
perspective, we consider two sets of conflict pairs generated by Algorithm 2: The set cp1 is the union of
the return values for the input w̃b and w̃r. The set cp2, on the other hand, is the combined output of all
three weight combinations. The essential conflict sets ecp1 and ecp2 are formed by the presented scoring
function. To evaluate the impact of the conflict pairs, we consider the variant 11 where, in addition to the
preprocessing, conflict cuts to the set ecp1 are added, and the variant 12 defined accordingly with the set
ecp2.

Table 1 shows the impact of the preprocessing and the number of generated (essential) conflict pairs.
The instances are partitioned into four groups corresponding to the upper weight bounds. We report on
the average numbers of removed nodes by the preprocessing and of (essential) conflict pairs for the two
described variants. Observe that most conflict pairs are found with respect to w̃, and that the reduction
to essential conflict pairs is significant in either case. Finding a decent subset of conflict pairs that support
the solution process is a big challenge. We proposed a scoring function to determine a set of essential
conflicts. While our computational results show that this approach is already beneficial in many instances,
we like to point out that the potential of the conflict cuts is even larger. To this end, we consider another
hypothetical variant, 1*, that assumes for every instance the preferred cuts from ecp1 or ecp2. This variant
essentially simulates a superior way to determine essential conflicts.

In order to compare the variants, we partition the 240 instances into three groups based on the magnitude
of the computation time for the base variant: small (123 instances), medium (91 instances), and large (26
instances). All instances and instance-wise computational results are available in an online supplement1

to this article. Table 2 contains the cumulated results. We report the geometric mean of the runtimes in
seconds for the respective groups and variants. We opt for the geometric instead of the arithmetic mean
to lessen the impact of outliers. In particular, there is one large instance that profits immensely from the
additional cuts (speed-up factor 40).

We can observe that the preprocessing clearly helps to reduce the average computation times. While
there are also instances where the preprocessing has a smaller or even a negative effect, the positive impact

1https://github.com/stephanschwartz/brcmwcs
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of the proposed method prevails in all groups. In terms of the conflict cuts, the impact is not so obvious.
On average, for the small and medium instances, the cuts together with the preprocessing are slightly worse
than the preprocessing alone. For the large instances, most of the positive impact admittedly stems from
the single outlier instance. Nevertheless, a smaller positive effect remains when excluding this instance.

The average values, however, do not paint the whole picture. On many instances, one of the conflict cut
variants is significantly better than variant 10, on many other instances, the reverse is true. Interestingly,
the variants 11 and 12 are often complementary, i.e., one set of essential cuts is much more favorable than
the other. In order to assess the potential of the conflict cuts, variant 1* serves as an oracle that always
chooses the better of the two essential conflict sets. Indeed, we find that on average, this variant performs
best in all groups. Furthermore, the positive impact increases for harder instances.

When considering the different variants over all instance classes, there is no clear indication on which
classes some variant performs better than another. We cannot observe that a certain variant is dominant
on a specific network instance. The same holds true for a specific profit class or weight bound. Even for
the 15 instances that have a sibling only varying in node colors, the performance of the variants is vastly
different for the pairs. Thus, it remains open in which cases the single variants are best. As one can
expect, however, the computation time increases with larger weight bounds.

6 Conclusions

In this paper, we studied a variant of the Maximum Weight Connected Subgraph problem that arises as a
subproblem in a districting application. A distinct feature of the problem is that the chosen subgraph has
to meet a given cumulated weight range and is required to have a similar weight of red and blue nodes.
We use these features to develop a preprocessing method that is able to considerably reduce the average
problem size and computation time.

In addition, we propose a method to identify node pairs that cannot be both part of a feasible solution.
By considering the emerging conflict graph, we can strengthen the packing condition. The main problem,
however, is to identify an appropriate subset of conflict pairs to add. To this end, we introduce a node
scoring function that favors nodes close to the root and nodes with positive profit. Employing this scoring
function, we generate two different sets of essential conflicts that are added to the IP formulation. Our
computational results show that each of the sets individually has a positive impact on a number of instances.
If we artificially choose the better set for each instance, the advantage of the conflict cuts becomes obvious.
This suggests that the conflict cut approach is well suited for this problem, and that future work should
aim to discover which conflict sets are essential for a given instance.
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