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Abstract

For a real world problem — transporting pallets between warehouses in order to
guarantee sufficient supply for known and additional stochastic demand — we pro-
pose a solution approach via convex relaxation of an integer programming formu-
lation, suitable for online optimization. The essential new element linking routing
and inventory management is a convex piecewise linear cost function that is based
on minimizing the expected number of pallets that still need transportation. For
speed, the convex relaxation is solved approximately by a bundle approach yielding
an online schedule in 5 to 12 minutes for up to 3 warehouses and 40000 articles; in
contrast, computation times of state of the art LP-solvers are prohibitive for online
application. In extensive numerical experiments on a real world data stream, the
approximate solutions exhibit negligible loss in quality; in long term simulations the
proposed method reduces the average number of pallets needing transportation due
to short term demand to less than half the number observed in the data stream.

Keywords: convex relaxation, integer programming, stochastic demand, network
models, large scale problems, bundle method, logistics, vehicle routing

MSC 2000: 90B06; 90C06, 90C90, 90B05

1 Introduction

Consider the following real world problem. Given several warehouses connected by a
shuttle service of several trucks for shipping pallets of stored articles between them; given
also an online stream of orders, that are stochastic in nature and that have to be handled
within short time at specific warehouses. Is it possible to provide, online, a schedule of
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truck routes and truck loads so that all products are available at the right place ahead of
processing time even if the realization of the schedule is subject to further uncertainties?

We suggest a solution approach based on convex relaxation and demonstrate its practi-
cal suitability on real world data of our industrial partner eCom Logistik GmbH & Co. KG.
For up to three warehouses and roughly 40000 articles the method computes a schedule
within five to twelve minutes. In long term simulations it reduces the average number of
pallets that have to be transported on short notice due to demand to less than half the
number of the current semi-automatic approach.

Several issues are of relevance in this problem: an appropriate stochastic optimization
model is required that links the success probability of the inventory of the warehouses
to the truck rides; the model must be solvable within short time in order to be suitable
for online computations; the approach must be sufficiently robust to compensate frequent
external changes in orders and the logistic transportation process.

In our method we follow the classical approach to model large scale transportation or
network design problems as multicommodity flow problems (see e.g. [20, 17, 15]). These
can be decomposed and solved efficiently via Lagrangian relaxation by combining min-cost
flow algorithms (see e.g. [1]) and bundle methods (see e.g. [11, 5]). In particular, we model
the rides of the trucks as well as the flow of pallets between warehouses by time discretized
networks coupled via linear capacity constraints. Our main contribution is probably the
development of a convex piecewise linear cost function, that models the stochastic quality
of the warehouse configurations. Its primary aim is to minimize the expected number of
pallets that have yet to be transported. Due to its favorable structure, even moderately
accurate solutions seem to give rise to reasonable schedules. This allows the use of the
aforementioned fast approximate solvers suitable for online optimization.

In practice, robustness within online environments hinges on reacting flexibly to new
situations rather than sticking to past decisions. Consequently, our method does not keep
any information on previous solutions but operates solely on status messages of the logis-
tic operating system (the message system has been developed jointly with our industrial
partner for this purpose). Therefore, the method is capable of continuing independent on
what part of its proposed solution has been accepted by the human planner. We do not
know how to quantify and measure the importance of this setup mathematically, but this
concept appears to be vital for the success of the approach.

There is a vast literature on inventory management and logistics (see e.g. [8]), yet
we found very few references that deal with both problems at the same time; none of
them, however, treat both problems in sufficient detail for our purposes. In some works
the transportation process is assumed to be instantaneous (see e.g. [13, 14, 6, 3, 22]), in
others the stochastic part is fixed (see e.g. [2, 7]) or considerations are reduced to only
one product [18]. To the best of our knowledge the approach proposed here is the first
that deals jointly with inventory management of multiple products and inter warehouse
logistics involving vehicle routing with transportation times.

The contents is structured as follows. Section 2 gives the necessary background on the
real world problem. Next we present our optimization model in two steps: in Section 3
we formulate the set of feasible solutions by introducing the networks, variables, and con-
straints; Section 4 is devoted to the cost function. Implementational aspects such as the
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generation of distribution data, the approach for solving the relaxation, and the rounding
heuristic are described in Section 5. Extensive computational results on the real world
data stream of our industrial partner are presented in Section 6; these include compar-
ative runs with exact solution methods and a simulation run over 100 days for two and
three warehouses. Finally, we offer some conclusions and outline possible enhancements
in Section 7.

2 Problem Description

Our industrial partner, eCom Logistik GmbH & Co. KG, operates several warehouses in
different locations within the same city and offers logistics services to business customers.
In particular, it stores the products of a business customer and processes orders addressed
to the business customer by picking and packing the ordered items into boxes or on pallets
and passing them on to a shipping agency that takes care of the final delivery to the correct
address. E.g., a startup company selling via the Internet could contract eCom Logistik for
storing and delivering its products.

The business model implies important differences to standard inventory management
problems. First, the task of our partner is to deliver, upon request, the goods stored
but it is not its responsibility that sufficient goods are within its store, so the standard
scenario of “ordering problems” does not apply. Second, there is no information available
about the customers expectations on the development of demand. Therefore stochastic
demand forecasts must be based on past demand for a particular product alone. The
same is true for supply shipments by the customer for replenishing the store. These are
mostly unpredictable in the sense that they are rare singular events of strongly varying
size. Finally, knowledge about the products is restricted to an article identifier number
and – at best – the number of items of this article to be expected on a typical pallet.

Due to the structure of the customers (a major customer is the Herlitz PBS AG, a large
company producing stationery) a typical order is placed by small to medium sized retailers
and consists of a long list of articles, that are quite divers in nature. Such an order must
be picked and delivered to the shipping agency within the next work day, i.e., orders are
accepted till 12 am, delivery of these orders starts at 2 pm and should be finished till 2
pm the next day. When such an order arrives, it is prescheduled to a certain warehouse
and time slot for picking. At this time, all the items on the list have to be available in the
picking lines of the selected warehouse so that the entire order can be shipped in one unit.
The picking lines are replenished automatically or by local personnel by requesting a new
pallet of the respective article from the automatic storage system. Due to size restrictions
of the storage system or due to simultaneous demand at various locations it is not always
possible to hold sufficient supply at all locations, i.e., pallets have to be shipped between
the warehouses on time. For this purpose the company operates a shuttle service of trucks.
The task we address in this paper is to determine a schedule for the trucks and their load
of pallets so that “with high probability” the necessary supply is available in time. The
current solution method used in practice is half automatic. Pallets are automatically put
on a list if the available amount of an article falls short of a given minimum for this article.
The minima are set by some automatic rules and are controlled by a human dispatcher,
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who regularly initiates the transportation of pallets for known short term demand and for
pallets on this list.

The logistic process of transporting the pallets entails further uncertainties which we
currently cannot model to our full satisfaction, yet they have a strong influence on our
approach. We start by describing the path of a pallet from one warehouse to another.
When a specific pallet is to be transported, a retrieval order is added to the request
queue of the automatic stacker crane in the respective aisle of the automatic storage
system. Depending on the number of pending requests, retrieval of the pallet from the
automatic storage system may need between two minutes and half an hour. Then the pallet
is maneuvered by local routing decisions over a conveyer system towards one of several
waiting queues in front of the automatic loading platforms for the trucks. As soon as the
destination of a loading platform is set for the next transport, another algorithm selects
pallets from the beginning of the waiting queues according to some rules depending on the
space requirements of the specific pallets rather than on their due dates. If the platform
is full and a truck has docked, all pallets are loaded automatically in one step; loading is
not time critical. The driving time of the truck, however, depends strongly on whether
streets are congested or not. Finally, after automatic unloading at the destination the
storing time again depends on the position of the pallet within the truck-load and on the
congestion of conveyor system and automatic storage system. In practice, typical travel
times of a pallet vary between 1 to 6 hours plus driving time. By far the majority of these
pallets is initiated by the dispatcher of the trucks. Some pallets, however, may also be
started by other personnel for reasons not visible to the dispatcher; due to such pallets or
due to packing problems it may happen that pallets cannot be loaded on the next truck.
Such pallets may then block some of the waiting queues for quite some time if the next
few transports do not serve the desired direction.

Together with our industrial partner a new data protocol was developed for efficient
online updating of the current ordering and inventory status known to the system software.
The latter need not reflect the true state of the system due to the asynchronous nature of
the underlying logistic system, i.e., certain bookings may arrive significantly later, because
they are entered by humans or because of communication delays between the warehouses.
The messages of the protocol give a complete online account of

• article basics (in particular: the article ID and amount of the article that is on a
typical pallet; it may be zero if the data is not supplied by customer),

• header information for orders (holds the scheduled time slot for picking),

• delivery items per order (article ID and amount to deliver),

• picks (reports that [a part of] the amount of a delivery item has been fulfilled),

• stock movements (between real and/or virtual storage systems),

• reinitializations of stock data,

• scheduled transportations of particular pallets (giving the article ID, planned time
of retrieval from the automatic storage system and the source and destination ware-
houses),
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• pallets currently in transport (those having reached a loading platform),

• available truck capacities (per truck a time period when it is available and the ex-
pected number of pallets it can load),

• and corresponding deletions.

“Current” stock and demand can be updated efficiently with these messages. We also
use this data for generating demand distributions, see §5.1. Note, because of the business
model there is certainly enough stock in the distributed storage system to cover the entire
demand, even if the current figures show negative stock at single warehouses. The latter
may occur due to the asynchronous nature of the logistic message system. Unfortunately,
no information is available on the current position of the trucks or on the direction of their
next ride.

In practice, our solution of the optimization process yields a suggestion for the dis-
patcher of the trucks who will then fix a route and select particular pallets for transporta-
tion. Depending on possible additional oral information not available in the operating
system, the dispatcher may or may not follow the suggestions. The only feedback on these
decisions are new messages on planned transportations of particular pallets.

For acceptance as well as practical reasons there is a rather strict priority order for the
sequence in which pallets should be transported by the trucks.

Priority Level 1: Pallets that have been made known to the system via scheduled trans-
portation messages should be served as quickly as possible. These pallets have been
requested by a user of the logistic system at this time hopefully for a good reason
(e.g. the user could be the dispatcher of the trucks). They will start moving at the
prescheduled time, independent of what is decided elsewhere and if they are not
transported, they will likely block the way of other pallets.

Priority Level 2: Pallets that are needed to cover the known demand of the next six days
should be transported in the sequence of their due dates.

Priority Level 3: If there is still room on the trucks, further pallets may be transported
for supply management based on demand forecasts. Among these the priority order
should reflect the probability that the pallet is needed within the next three days,
say.

No actual costs are known for delays in transportation or for the violation of due dates.
For inventory management purposes stochastic models often assume a certain amount of
available space and ask for the best use of this space in a probabilistic sense. It was the
explicit wish of our industrial partner not to use such a concept, because the amount of
available space is itself a highly uncertain parameter in an asynchronous logistic environ-
ment and depends on several other factors (e.g. depending on the size of a pallet there
may be room in the automatic storage system or not; also, upon need the dispatcher may
open up some intermediate storage facilities). Therefore they saw no possibility to provide
the amount of free storage space automatically. Rather it was agreed that the amount of
pallets transported for stock-keeping purposes should be controlled via an “upper prob-
ability level” π ∈ (0, 1) measuring the probability that available stock of an article at a
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warehouse suffices for a given period of days with respect to an appropriate stochastic
model of demand. If stock exceeds the upper level π, no further pallets should be brought
in for this article. Without information on available storage it is difficult make room by
removing superfluous articles, and indeed our industrial partner did not wish to shift stock
for such purposes without human interaction. We might add that our current approach
could easily be extended to such tasks if appropriate information is provided.

There are a number of additional technical restrictions on feasible truck schedules
(e.g. due to the number of automatic loading platforms and time requirements) as well
as on the assignment of pallets to trucks that we will mention shortly in describing our
optimization model, but a detailed description of these aspects does not seem appropriate.

3 Optimization Model, Part I: The Feasible Set

For modeling the route of trucks and the movement of pallets we use the standard approach
of time discretized network flows coupled by linear constraints.

We assume the time discretization to be given (in minutes) as a finite sequence of
nonnegative integers 0 ≤ t1 < · · · < tnT , nT ∈ N and set T = {ti : 1 ≤ i ≤ nT }. For
rounding up a τ ∈ R with respect to T we define

dτeT =

{
min{t ∈ T : t ≥ τ} if τ ≤ max T
∞ otherwise.

Likewise, rounding down is defined as

bτcT =

{
max{t ∈ T : t ≤ τ} if τ ≥ min T
−∞ otherwise.

We denote the set of warehouses at different locations by W with |W| = nW ∈ N. To
allow for a separate truck depot d /∈ W we set Wd = W∪{d}. Furthermore we denote the
set of different products (articles) by P with |P| = nP . We collect all trucks that have not
to be discerned (e.g. in terms of capacity or compatibility with certain products) in truck
classes and collect all truck classes in a set R with |R| = nR ∈ N and R∩ P = ∅.

Next we specify the network structure via directed multigraphs D = (V ,A) with V the
set of nodes and A the set of arcs consisting of ordered pairs of nodes. The arcs will be
supplemented with a subscript like (v, w)r if we have to discern several arcs running from
a node v to another node w, but we simply write (v, w) if the meaning is clear from the
context. Balances will be specified via a function b : V → Z and lower and upper bounds
by means of functions l : A → Z and u : A → Z ∪ {∞}.

3.1 Truck Graphs

For each class of trucks r ∈ R the basic structure of the graph is the same, up to slight
differences in the arc sets. The latter are due to differences in driving speed and loading
or unloading properties. We consider a fixed r ∈ R in the following. Let two driving time
functions

T r : Wd ×Wd × T → R and T r : W ×W × T → R (1)
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be given that specify the expected driving time of a truck of truck class r from one
warehouse to another one that start at a time step t ∈ T . The function T yields the
driving time for empty transfers while T gives the time if the truck transports pallets
including loading and unloading times; since, in addition, a loaded truck goes slower, the
differences between T r and T r are significant.

The node set Vr of the graph Dr = (Vr,Ar) includes, for each time step t ∈ T and each
warehouse w ∈ W , three node types discerned by the names C (courtyard), L (loading),
and U (unloading) and, for each time step t ∈ T , a depot node type named C, so

Vr = W × {C, L, U} × T ∪ {d} × {C} × T .

For extracting components of v = (w, a, t) ∈ Vr we introduce the short hand notation
vW = w, vN=a, and vT = t. An illustration of the basic graph structure is given in Fig. 1.

c u
ld

Figure 1: Basic structure of a truck graph for three warehouses (not all nodes
and edges are shown). Node c corresponds to the node (w1, C, ti) representing
the courtyard of warehouse w1 at time ti, node l represents the loading node
(w1, L, ti), u the unloading node (w1, U, ti), and d the depot node (d, C, ti).

For future reference we introduce the arc set via several different classes of arcs. First,
we collect all arcs that just lead on to the next time step for the courtyard node and the
depot node,

AB
r = {(u, v) : u, v ∈ Vr, uW = vW , uN = vN = C, vT = duT + 1eT }.

Next, we collect unloading arcs in

AU
r = {(u, v) : u, v ∈ Vr, uW = vW , uN = U, vN = C, vT = uT}.

7



Likewise, the loading arcs are

AL
r = {(u, v) : u, v ∈ Vr, uW = vW , uN = C, vN = L, vT = uT}.

Arcs corresponding to empty transfers go from one courtyard to that of another warehouse,

AE
r = {(u, v) : u, v ∈ Vr, uW 6= vW , uN = vN = C, vT = duT + T r(uW , vW , uT )eT }.

Finally, the arcs corresponding to pallet transports are

AP
r = {(u, v) : u, v ∈ Vr, uW 6= vW , uN = L, vN = U, vT =

⌈
uT + T r(uW , vW , uT )

⌉
T }.

This completes the arc set for truck graph Dr,

Ar = AB
r ∪ AU

r ∪ AL
r ∪ AE

r ∪ AP
r .

Next, we specify lower and upper bounds on the arc values as well as the balances. Coupling
constraints between the graphs will be discussed in §3.4. Lower bounds are uniformly set
to zero,

lr(a) = 0 for all a ∈ Ar.

Upper bounds are set to infinity except for the unloading arcs and the loading arcs. For
the latter two the numbers must correspond to the number of trucks that can be un-
loaded/loaded within the given previous/following time span by the available automatic
loading platforms. For simplicity, we assume that these numbers are independent of the
truck class (which is not necessarily the case in the practical application) and given by
functions depending on the warehouse and the time step,

λU : W × T → N0 and λL : W × T → N0. (2)

With these functions the upper bounds read

ur(a) = ∞ for all a ∈ AB
r ∪ AE

r ∪ AP
r ,

ur((u, v)) = λU(uW , uT ) for all (u, v) ∈ AU
r ,

ur((u, v)) = λL(uW , uT ) for all (u, v) ∈ AL
r .

Balances reflect the availability of trucks and are also given by user data. For completeness,
let the function

nr : Wd × T → Z

specify the number nr(w, t) of trucks of class r that are added/subtracted at location
w ∈ Wd and time t ∈ T , then

br(v) = 0 for all v ∈ Vr with vN 6= C,

br(v) = nr(vW , vT ) for all v ∈ Vr with vN = C.

In practice the exact starting or ending position of the trucks may not be given or may
not be known because the time window for using the truck exceeds the time span of T .
In this case, we let trucks start or end in the depot.
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3.2 Article Graphs

There is no use in modeling every single pallet that is currently stored in the automatic
storage system, because any particular pallet seemingly available at the beginning of the
calculations may no longer be available when the schedule has been computed. Therefore
we only consider, for each article ID, idealized identical pallets that carry the amount
promised by the article basics (and a single pallet carrying the entire stock of one warehouse
if no such data is available)1. So for each article p ∈ P the stock at each warehouse is
discretized to standard pallets and there is one network per article p that models the
movement of these pallets. Let p ∈ P be fixed for the rest of this section.

The node set Vp of the graph Dp = (Vp,Ap) contains, for each time step t ∈ T and
each warehouse w ∈ W , two nodes discerned by the names A (automatic storage system)
and B (transportation buffer), and one artificial node named (d, C, tnT ) (collect),

Vp = W × {A, B} × T ∪ {(d, C, tnT )}.

The reason for introducing a transportation buffer is that our industrial partner wanted to
be able to restrict the total increase of pallets in the automatic storage system suggested
by the automatic planning tool. Like for the truck graphs, we reference the components
of a node v = (w, a, t) ∈ Vp by vW = w, vN = a, and vT = t. An illustration of the basic
graph structure is given in Fig. 2.

We start with the arcs leading from one time step to the next in the automatic storage
system,

AA
p = {(u, v) : u, v ∈ Vp, uW = vW , uN = vN = A, vT = duT + 1eT },

and in the buffer,

AB
p = {(u, v) : u, v ∈ Vp, uW = vW , uN = vN = B, vT = duT + 1eT }.

Next, there are arcs leading from the automatic storage system to the transportation
buffer,

AAB
p = {(u, v) : u, v ∈ Vp, uW = vW , uN = A, vN = B, uT = vT}.

Pallets that moved into the transportation buffer can only be removed from the buffer via
balances reflecting demand or by transportation to the transportation buffer of another
warehouse. Remaining pallets will finally be collected in the node (d, C, tnT ).

Let the time needed to prepare a pallet for loading and to store it after unloading be
specified by the functions

TL : W → R+ and TU : W → R+.

More precisely, TL(w) gives, for warehouse w ∈ W , the time needed to retrieve a pallet
from the automatic storage system and to maneuver it to the automatic loading platform,

1An attractive alternative would be to compute a statistically representative amount from previous
pallet data. Our industrial partner, however, strongly preferred to rely on the given article basics that are
within the responsibility of the customer.
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a
b

c

Figure 2: Basic structure of an article graph for three warehouses (not all nodes
and edges are shown). Node a corresponds to the node (w1, A, t1) representing
the automatic storage system of warehouse w1 at time t1, node a represents the
buffer node (w1, B, t1), and c the collect node (d, C, tnT ).

TU(w) is the time needed to move the pallet from the loading platform to the automatic
storage system and store it there.

Denote by R(p) ⊆ R the truck classes that can be used to transport article p. The
transportation arcs between the buffer nodes are introduced for each arc a ∈ AP

r , r ∈ R(p),
with the property that starting time minus preparation time and ending time plus storing
time fit into the given time steps of T ,

AP
p = {(u, v)r : u, v ∈ Vr, r ∈ R(p), (ur, vr) ∈ AP

r , uW = ur
W , vW = vr

W , uN = vN = B,

uT =
⌊
ur

T − TL(uW )
⌋
T , vT =

⌈
ur

T + T r(uW , vW , ur
T ) + TU(vW )

⌉
T }.

(3)
After the last time step, all remaining pallets are collected in the artificial node (d, C, tnT ),

AC
p = {((w, B, tnT ), (d, C, tnT )) : w ∈ W}.

Quite often it is impossible to find a schedule satisfying the balances given in practice,
because either time limits are simply too tight or the number of available pallets does not
suffice to cover the demand. Therefore a reasonable strategy to cope with infeasibilities is
essential. For the violation of due dates it was agreed that the delay of pallets should be
as small as possible; infeasibilities caused by lack of supply are compensated by artificial
pallets supplied in the artificial node (d, C, tnT ). Both concepts can be incorporated in
the graph by allowing for arcs going backwards in time from (d, C, tnT ) to the last buffer
nodes,

AI
p = {((d, C, tnT ), (w, B, tnT )) : w ∈ W}
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and reverse arcs to AB
p for lateness,

AL
p = {(u, v) : u, v ∈ Vp, uW = vW , uN = vN = B, uT = bvT − 1cT }.

This completes the set of arcs for article graph Dp,

Ap = AA
p ∪ AB

p ∪ AAB
p ∪ AP

p ∪ AC
p ∪ AI

p ∪ AL
p .

Remark 1 The current infeasibility setting entails the danger, that demand that cannot
be satisfied in time in one warehouse is compensated by pallets from a second warehouse,
that has itself insufficient pallets but that can be refilled quicker from a third warehouse.
We do not know how to avoid such behavior without making explicit or implicit use of
bilinear constraints and that type of constraints is computationally too expensive. In our
current practical instances such configurations are impossible because each product is kept
in two warehouses at most. Likewise such configurations cannot appear if for each article
a special supply warehouse is declared, so that supply may only be brought from there. The
latter is a typical constraint in practice. A different approach useful in some applications
is that pallets are not allowed to be late at all. In such a setting, infeasibilities are easily
modeled by adding an artificial initial node that provides sufficient supply over “infeasible”
arcs. The ultimate decision on which setting produces the most realistic solutions must be
found in cooperation with the industrial partner.

The lower and upper bounds on the arc capacities are all set to the usual values,

lp(a) = 0, up(a) = ∞ for all a ∈ Ap.

These values could also be used to install article dependent bounds on the maximum
amount to be stored in each warehouse.

Setting up the balances for these graphs involves rounding the available amounts and
demands to pallets. This requires some care and several decisions that are motivated
heuristically or by practical experience. In order to describe our rounding method we
consider for article p a single warehouse w ∈ W . For this warehouse we form a list
of pairs (αi, τi), i ∈ {1, . . . , k} with k ∈ N, consisting of positive or negative amounts
αi ∈ R and sorted times τi ∈ R+ satisfying min T = τ1 ≤ · · · ≤ τk. By α0 we denote
the amount currently available at warehouse w; note, that α0 may be negative due to
asynchronous reports of the logistic system. The case of α0 < 0 should lead to the
transportation of pallets only in connection with actual demand or at the priority level 3
in connection with stock keeping. Further negative numbers αi < 0 represent demands
scheduled for time τi either due to orders or prescheduled transport pallets (see §3.3) and
positive numbers αi > 0 correspond to expected additions to the store (again caused by
prescheduled transport pallets). In rounding, we need to discern the case where the article
basics to p list the standard amount θp stored on a pallet of p, i.e., θp > 0, and the case
that no such data is known, θp = 0.

If θp > 0 then the conceptual setting is as follows. As long as there is no demand at
w, the complete amount is available for transport. The number of pallets is the round up
of the available amount divided by θp. In general the pallet count includes one pallet that
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only holds a fraction of θp. We call this the fractional pallet and denote the difference of the
sum of the pallets times θp to the true amount by αw

p (since initially we may count too much
or there may be negative stock, this number may be negative). Upon the first occurrence
of demand at warehouse w a pallet is moved from the automatic storage system to the
picking lines, this pallet is then no longer available for transportation. The first pallet
fetched is defined to be the fractional pallet. Further pallets will be retrieved whenever
the fractional amount in the picking lines falls below zero, further pallets will be added
to the automatic storage system whenever the fractional amount exceeds θp. We give the
algorithm in pseudo code, using the convention of the programming language C that +=
means adding the right hand side number to the variable on the left.

Algorithm 2 (computes balances for article p and warehouse w)
Input: θp > 0, initial supply α0 ∈ R, demands/supplies (αi, τi), i ∈ {1, . . . , k}
Output: balances and amount αw

p accounting for the difference in a fractional pallet
1. set bp(v) = 0 ∀v ∈ {v′ ∈ Vp : v′W = w} and i = 1;
2. set d = max{0, dα0/θpe}, ρ = α0 − dθp and bp((w,A, t1)) = d;
3. while (i ≤ k) and (αi >= 0) do

d = max{0, d(ρ + αi)/θpe};
ρ += αi − d · θp;
bp((w, A, bτicT )) += d;
i += 1;

end while
4. while (i ≤ k) do

d = b(ρ + αi)/θpc;
ρ += αi − dθp;
if (d > 0) then bp((w, A, bτicT )) += d;
else bp((w, B, bτicT )) += d;
i += 1;

end while
5. set αw

p = ρ.

Note, that all additions to the warehouse are entered at the nodes A corresponding to the
automatic storage system, while retrievals (negative d) are fetched from the buffer node
B. The purpose is to remove pallets from the transport buffer as soon as a pallet of this
article is requested.

In the case of θp = 0 (i.e., the article basics of the customers do not give any information
on the standard size of a pallet of article p), it was agreed to handle this equivalently to
θp = ∞ meaning there is one pallet carrying the entire amount of the warehouse. This
way at most one pallet is scheduled for transport in every call to the planning routine and
if the pallet delivered does not suffice, the next pallet will be scheduled on the next call.

Algorithm 3 (computes balances for article p and warehouse w in the case θp = 0)
Input: θp = 0, initial supply α0 ∈ R, demands/supplies (αi, τi), i ∈ {1, . . . , k}
Output: balances and the sum of the amounts αw

p

1. set bp(v) = 0 ∀v ∈ {v′ ∈ Vp : v′W = w};
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2. if (α0 > 0) set d = 1 else set d = 0;
3. set ρ = α0 and bp((w, A, t1)) = d;
4. while (i ≤ k) and (αi >= 0) do

if (ρ ≤ 0) and (ρ + αi > 0) set bp((w, A, bτicT )) = 1;
ρ += αi;
i += 1;

end while
5. if (i ≤ k) and (ρ > 0) then bp((w, B, bτicT )) = −1;
6. while (i ≤ k) and (ρ >= 0) do

ρ += αi;
if (ρ < 0) then bp((w,B, bτicT )) += −1;
i += 1;

end while
7. while (i ≤ k) do

ρ += αi;
i += 1;

end while
8. set αw

p = ρ.

This fixes the balances for all nodes except for the artificial node (d, C, tnT ). This balance
is set so that the sum over all balances is zero,

bp((d, C, tnT )) = −
∑

v∈Vp\{(d,C,tnT )}

bp(v).

3.3 Prescheduled Pallets

Here we deal with pallets that have been announced by the logistic system as presched-
uled for transportation at a certain time. For these pallets we have the following data: the
article type p and the amount that is loaded on the pallet, the time of retrieval from the
automatic storage system, the source and the destination warehouses. There is, however,
no information giving the reason for this transport. Therefore, it was agreed to inter-
pret such pallets as realizations of a previously suggested schedule that were considered
sufficiently urgent by the truck dispatcher; this should be correct in most cases. Since
such pallets have higher priority in transportation than all other pallets, they cannot be
included within the anonymous pallet setting of the article graphs of §3.2 directly. So
separate graphs are set up for transporting them. None the less we have to account for the
amount of article p that they transport. For this purpose we add entries (αi, τi) to the lists
of demands/supplies of the source and destination warehouses with αi the amount carried
on the pallet, the starting time as given by the pallet information and the destination
time being the sum of the starting time and a user specified constant for the expected
transportation time. Having done this, prescheduled pallets with the same source and des-
tination and the same sets R(p) of compatible truck classes do not have to be discerned
any longer. To simplify notation we assume R(p) = R for all p ∈ P . For each transport

direction ~w = (w1, w2) ∈ ~W = {(w1, w2) : w1, w2 ∈ W , w1 6= w2} we set up a graph
D~w = (V~w,A~w) as follows.

13



Keeping close to the notation of the article graphs, the set of nodes consists of a buffer
node for each time step and the two warehouses w1 and w2 and one additional artificial
node named (d, C, tnT ),

V~w = {w1, w2} × {B} × T ∪ {(d, C, tnT )}.

In analogy to §3.2 we define the arc sets leading on to next time step, but for later reference
we split them into the source and the destination parts,

AS
~w = {(u, v) : u, v ∈ V~w, uW = vW = w1, uN = vN = B, vT = duT + 1eT },

AD
~w = {(u, v) : u, v ∈ V~w, uW = vW = w2, uN = vN = B, vT = duT + 1eT }.

The arc set for collecting the remaining pallets reads

AC
~w = {((w, B, tnT ), (d, C, tnT )) : w ∈ W}.

The arcs corresponding to transportation arcs of the truck graphs differ slightly, because
after the initial preparation time the pallets are now waiting at the loading platform, ready
for immediate transportation,

AP
~w = {(u, v)r : u, v ∈ Vr, r ∈ R, (ur, vr) ∈ AP

r , uW = ur
W , vW = vr

W , uN = vN = B,
uT = ur

T , vT =
⌈
ur

T + T r(uW , vW , ur
T ) + TU(vW )

⌉
T }.

(4)
The final arc set is

A~w = AS
~w ∪ AD

~w ∪ AC
~w ∪ AP

~w.

Lower and upper bounds are

l~w(a) = 0, u~w(a) = ∞ for all a ∈ A~w.

The balances are zero for the nodes in the destination warehouse w2,

b~w(v) = 0 for all v ∈ {v′ ∈ V~w : vW = w2}.

For a node v = (w1, B, t) with t ∈ T the balance b~w(v) counts the number of prescheduled
pallets in this direction with retrieval time τ such that t =

⌈
τ + TL(w1)

⌉
T ≤ tnT (for the

definition of TL see page 9). Finally, the artificial node ensures, that all balances sum up
to zero,

b~w((d, C, tnT )) = −
∑

v∈V~w\{(d,C,tnT )}

b~w(v).

3.4 Coupling Constraints

Next we define the set of variables — these correspond mainly to the flow along the arcs
of the networks — and the additional coupling constraints. The usual capacity constraints
and flow conservation constraints for the networks will not be listed explicitly, but they
are of course a central ingredient in the model.
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In setting up the cost function, we will need for each article p ∈ P , for each warehouse
w ∈ W , and for a specified subset T̂ ⊂ T of points in time t ∈ T̂ some variables that
measure the number of surplus pallets of article p that are available at w at time t after
subtracting those that are reserved due to future balances. We refer to these variables by
the index set

Af = {(p, w, t) : p ∈ P , w ∈ W , t ∈ T̂ }. (5)

For convenience, all variable indices are collected in a super set

A = Af ∪
⋃

j∈R∪P∪ ~W

Aj.

The vector of primal variables is
x ∈ ZA.

The coupling constraints on top of the capacity and flow constraints fall into four cate-
gories: the constraints on the capacity of the loading and unloading platforms, the con-
straints linking transportation arcs of pallets and trucks, the capacity constraints for the
transportation buffer, and the constraints determining the values of the variables of Af .

The capacity constraints on the loading platforms make use of the functions λU and
λL defined in (2), i.e., for all t ∈ T and for all w ∈ W :∑

a∈{(u,v)∈AU
r :r∈R,uW =w,uT =t}

xa ≤ λU(w, t),

∑
a∈{(u,v)∈AL

r :r∈R,uW =w,uT =t}

xa ≤ λL(w, t).

For brevity, we collect these loading constraints in a matrix AL and a right hand side
vector bL,

ALx ≤ bL. (6)

For a truck class r ∈ R the arc set AP
r contains the arcs corresponding to potential

pallet transports. For each a ∈ AP
r there exists for each article p ∈ P and for each direction

~w ∈ ~W at most one corresponding arc a(p) ∈ AP
p (see (3)) and a(~w) ∈ AP

~w (see (4)). To
simplify notation, let AP (a) denote this set of arcs. With κr ∈ N denoting the number of
pallets that can be loaded on a truck of truck class r in average, the coupling constraints
are

for all r ∈ R, and for all ar ∈ AP
r :

∑
a∈AP (ar)

xa ≤ κrxar .

In words, flow over an arc ar ∈ AP
r opens up capacity on the corresponding arcs a ∈ AP (ar)

in the article and pallet graphs. We collect these constraints in a system with matrix AK

and a right hand side bK ,
AKx ≤ bK . (7)

The constraints for restricting the number of pallets in the transportation buffer of
each warehouse w ∈ W and each period between two consecutive time steps ti, ti+1 ∈ T
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to some given constants nw ∈ N read

for i = 1, . . . , nT − 1 and w ∈ W :
∑

a∈{(u,v)∈AB
j :j∈P∪ ~W,uW =w,uT =t}

xa ≤ nw.

The constraints for the buffer capacity will be represented by a matrix AB and a right
hand side bB,

ABx ≤ bB. (8)

Finally, the last set of constraints computes the (possibly negative) number of pallets
x(p,w,t) of article p ∈ P that would be stored at warehouse w ∈ W at the end of the

planning horizon if transportation is stopped after time step t ∈ T̂ . For this, the sum of
future balances

b(p,w,t) =
∑

v∈{u∈Vp:uW =w,uT >t}

bp(v)

has to be added to the flow of p at w following time step t,

for (p, w, t) ∈ Af , t < tnT :

x(p,w,t) =
∑

a∈{(u,v)∈AA
p ∪AB

p :uW =w,uT =t}

xa −
∑

a∈{(u,v)∈AL
p :vW =w,vT =t}

xa + b(p,w,t),

for (p, w, tnT ) ∈ Af :

x(p,w,tnT ) =
∑

a∈{(u,v)∈AC
p :uW =w,uT =tnT }

xa −
∑

a∈{(u,v)∈AI
p:vW =w,vT =tnT }

xa.

(9)

We represent these constraints for extracting the remaining flow by a matrix AF and a
right hand side bF ,

AF x = bF . (10)

4 Optimization Model, Part II: The Cost Function

Recall, that no actual costs are known that could be assigned to delays in the delivery of
prescheduled pallets or pallets transported to satisfy current demand. So the priority rules
must serve as a guideline for the design of the cost function. There is a large number of
possibilities to do so and the final decision is always a bit arbitrary. Still, we believe that
our approach satisfies a number of reasonable criteria that could be put to such a quality
measure.

4.1 Priority Level 1: Prescheduled Pallets

We first discuss the top priority level, namely the prescheduled pallets. Working on the
assumption, that these pallets are prescheduled according to some concept by the truck
dispatcher (which is not always true), we expect that finding a feasible schedule is not
a major problem. We simply impose a significant linear cost for each time step that the
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prescheduled pallets have to wait at the loading platform of their source warehouse. Indeed,
for our instances from practice this seemed sufficient to produce acceptable solutions. In
particular, we fixed a constant γ ∈ R+ large enough and used, for each direction ~w ∈ ~W
this constant times the waiting time as cost coefficient for the arcs leading on to the next
time step at the source warehouse,

ca =

{
γ · vT−uT

tnT −t1
for all a = (u, v) ∈ AS

~w,

0 for all a ∈ A~w \ AS
~w.

Remark 4 Penalizing the sum of the waiting times entails a certain danger of starvation
for single pallets at remote warehouses without much traffic. If such effects are observed it
might be worth to replace the sum of the waiting times by a penalty function that increases
significantly with waiting time. In fact, for a given flow on a waiting arc a ∈ AS

~w we know
exactly how long each pallet has waited already, therefore one could set up an appropriate
convex piecewise linear cost function. So far this appears not to be necessary.

4.2 Priority Level 2: Pallets Satisfying Demand

On the next priority level — the pallets that have to be transported to satisfy current
demand — the same approach is taken for the arcs AL

p modeling lateness and the arcs AI
p

modeling the failure to deliver a needed pallet of article p within the planning horizon.
The cost should now be balanced with respect to the cost of the first priority level. Having
no reliable measure for the importance of a priority 1 pallet in comparison to violation of
a priority 2 pallet, we set

ca =

{
1
4
γ · vT−uT

tnT −t1
for all a = (u, v) ∈ AL

p ,
1
4
γ for all a ∈ AI

p.

The same remark on the danger of starvation and its prevention applies as for the case of
prescheduled pallets. The buffer and transport arcs are assigned some marginal costs with
the goal to keep pallets from using these arcs without reason. The costs are designed so that
it still should be cheaper to use transportation earlier if needed at all. For concreteness,
let ε > 0 be a small constant compared to γ, then

ca =


ε · 1

2
· vT−uT

tnT −t1
for all a = (u, v) ∈ AB

p ,

ε ·
(
1 + vT−t1

tnT −t1

)
for all a = (u, v) ∈ AP

p ,

0 for all a ∈ Ap \ (AL
p ∪ AI

p ∪ AB
p ∪ AP

p ).

For the two first priority levels there is not too much choice, because all pallets are
needed. In most practical instances, it is not difficult to find a feasible solution transporting
all pallets with little delay. If, however, no such solution can be found, then at least one
delivery will fail and only a human dispatcher could decide which one hurts the least. In
such cases minimizing the number of missing pallets is typically a reasonable criterion for
automatically generated solutions, because it also reduces the number of pallets the human
dispatcher has to care for.
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4.3 Priority Level 3: Transports for Stock-keeping

The situation is distinctly different for the third priority level. There is no immediate
pressure to transport particular pallets and ample room for decisions. Yet, these decisions
will have a strong influence on the difficulty of future instances. Therefore it is in our view
the most demanding task to find a reasonable criterion for this third level. Again it should
form a compromise between transporting those pallets that are needed with the highest
probability and transporting as many pallets as possible to reduce the overall load.

Our general goal is to reduce the expected number of pallets that will need trans-
portation within the next days (in practice we settled for three days), but because a new
schedule is to be determined every two to three hours with new information, we prefer
schedules that transport those pallets early, that have high probability to be needed.

As a probability model we assume that for each article p ∈ P and each warehouse
w ∈ W a probability distribution Fw

p : R → [0, 1] is given that assigns to an arbitrary
amount α of article p the probability that demand will not exceed α for a specified period of
time. Stated differently, α suffices to cover demand with probability Fw

p (α). In particular,
if p is certainly not needed at w, then in our application the distribution function should
satisfy Fw

p (x) = 1 for x ≥ 0 and Fw
p (x) = 0 for x < 0. Thus, contrary to the usual

definition of distribution functions, we will assume here that probability distributions are
continuous from the right. In addition, we require the distributions Fw

p to be zero on
R− \ {0} and that there exists α ∈ R+ with Fw

p (α) = 1. The assumptions are certainly
valid for the distributions we generate; a detailed description of these Fw

p is given in §5.1.

Let us fix an article p ∈ P, a warehouse w ∈ W , and a time step t ∈ T̂ . Then
the number of pallets of p remaining at w at the end of the planning horizon under the
assumption that no further transports take place after t is given by variable x(p,w,t) (see (9)).
Assuming θp > 0 (the case θp = 0 will be treated later) and making use of the fractional
amount αw

p (see Algorithm 2), αw
p + θpx(p,w,t) is a good guess2 on the actual amount of

p that would be available at the end of the planning horizon under these circumstances.
With this, π = Fw

p (αw
p + θpx(p,w,t)) yields the probability, that the pallets transported so

far suffice for the next days. The next pallet is therefore needed with probability 1 − π,
the one after that with probability 1− Fw

p (αw
p + θpx(p,w,t) + θp) and so on. Hence, there is

no difficulty in computing the expected number of pallets of article p needed at warehouse
w when stopping with the current solution after time step t.

Observation 5 Let a probability distribution Fw
p : R → [0, 1] with Fw

p (x) = 0 for x < 0
and Fw

p (ᾱ) = 1 for some ᾱ > 0 specify the additional demand for p at w. Let the fractional
pallet αw

p of Algorithm 2 and x(p,w,t) ∈ Z pallets of size 0 < θp ∈ R be available at w after
time tnT if transports are stopped after t, then

fw
p (x(p,w,t)) =

∑
x(p,w,t)≤i≤b(ᾱ−αw

p )/θpc

[1− Fw
p (αw

p + iθp)]

gives the expected number of pallets of size θp needed at w for sufficient supply. Moreover,

2Recall, that the pallets transported may deviate from θp and that the computation of αw
p involves

further assumptions on the use of fractional pallets.
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the extension fw
p : R → R defined by setting fw

p (x) = fw
p (bxc)+(x−bxc)[fw

p (dxe)−fw
p (bxc)]

for x ∈ R is a piecewise linear convex function with Lipschitz constant 1.

Proof. Let α̂ ∈ R be the available amount and let, for α ∈ R, Xα̂(α) = max{0, d(α −
α̂)/θpe} denote the random variable counting the number of pallets needed to cover the
unknown additional demand. Then the expected value of Xα̂ is

E(Xα̂) =
∞∑
i=1

i[Fw
p (α̂ + iθp)− Fw

p (α̂ + (i− 1)θp)] =
∑

0≤i≤b(ᾱ−α̂)/θpc

[1− Fw
p (α̂ + iθp)]

Set α̂ = αw
p + x(p,w,t)θp to obtain the formula above. Since the differences of consecutive

values are nondecreasing, fw
p (j)−fw

p (j−1) = Fw
p (αw

p +(j−1)θp)−1 ≤ Fw
p (αw

p +jθp)−1 =
fw

p (j + 1)− fw
p (j) for j ∈ Z, the function is convex. The Lipschitz property follows from

|fw
p (j)− fw

p (j − 1)| ≤ 1.

Remark 6 In the sequel we will often make use of the following helpful interpretation of
function fw

p . It may be viewed as assigning a priority value

πw
p (j) = 1− Fw

p (αw
p + jθp) ∈ [0, 1], j ∈ Z (11)

to the j-th pallet of article p remaining at w at the end of the planning horizon (negative
j correspond to removals or missing pallets). As noted above, pallet j is assigned the
probability, that all up to the j-th pallet are needed to cover additional future demand.
Correspondingly, pallets with higher priority value should be transported first. For pallets
that are needed with certainty (according to Fw

p ) the priority will be 1 and using Fw
p alone

we cannot discern their importance. For all other pallets of interest (with πw
p (j) > 0 and

arbitrary p and w) the priority order will be unique with high probability because of differing
distributions and differing fractional supply αw

p .

Setting T̂ = {tnT } in Af of (5) , a possible candidate for a cost function would thus be
the convex and piecewise linear function∑

(p,w,tnT )∈Af

fw
p (x(p,w,tnT )).

Under the assumption that abundant supply is available, it would measure the expected
number of pallets, that still need transportation at the end of the planning horizon. For
this cost function, however, it is not important whether among the selected pallets those
are transported first that are needed with high probability. Furthermore, consider a pallet
that is needed almost surely but entails a poorly filled truck ride. Such a pallet may
be ignored in favor of a truck ride transporting a large number of pallets with small
probabilities. Both of these shortcomings are not acceptable. In practice, it is important
to improve the worst probabilities first, because these typically lead to the most urgent
demand situations, while there is usually more time for the dispatcher to bring in supply
for stock that falls short with low probability (e.g. by chartering an additional truck).
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Furthermore, only the first few rides of the solution will be realized in practice and then a
new solution will be computed, which increases the danger of repeatedly postponing the
transportation of important pallets.

A first step to improve the situation is to apply the cost function not only at the end
but at several points in time by specifying a larger set T̂ ⊂ T . Since choosing T̂ = T
would be computationally too expensive and might also favor greedy solutions too much,
we decided for

T̂ =
{

tb i
3
nT c : i ∈ {1, 2, 3}

}
.

With the definition of Af as in (5) this would lead to the cost function∑
(p,w,t)∈Af

fw
p (x(p,w,t)).

In this setting, solutions are preferred that minimize the expected number of required
pallets already at early stages, at the price that the final constellation at time tnT might
get a bit worse. Unfortunately, this does not yet resolve the problem of ignoring a few
pallets needed almost surely in favor of many pallets needed with rather low probabilities.

To address this issue, observe that the gain of a truck ride may be quantified as the sum
of the priorities of the pallets arriving at the destination warehouse minus the hopefully
small priorities subtracted at the source warehouse. Therefore transportation of pallets
with high probability values can be made more rewarding while keeping the priority order
suggested by the probabilities by applying consistently the same strictly increasing map
to all probabilities.

Observation 7 Let g : [0, 1] → [0, γ̄] with γ̄ > 0 be a fixed non decreasing function. For
p, w, Fw

p , ᾱ as in Observation 5, the function f̃w
p : R → R+ defined by

f̃w
p (x) =

∑
x≤i≤b(ᾱ−αw

p )/θpc

g(1− Fw
p (αw

p + iθp)) for all x ∈ Z

and
f̃w

p (x) = f̃w
p (bxc) + (x− bxc)[f̃w

p (dxe)− f̃w
p (bxc)] for all x ∈ R

is again convex and piecewise linear with Lipschitz constant γ̄.

Proof. Because of the monotonicity of g and 1−Fw
p , the linear pieces satisfy f̃w

p (x)−f̃w
p (x−

1) ≤ f̃w
p (x+1)− f̃w

p (x) for x ∈ Z, thus f̃w
p is convex. Furthermore |f̃w

p (x)− f̃w
p (x−1)| ≤ γ̄

for x ∈ Z, so the Lipschitz constant is γ̄.

By choosing an appropriate g we could, in principle, enforce strict priorities between pallets
on different probability levels. For example, if a truck ride with at least one pallet having
πw

p (j) = 1 should be preferred to truck rides without such pallets, let π̂ = max{πw
p (j) <

1 : p ∈ P , w ∈ W , j ∈ Z} be the highest probability less than 1 assigned to the pallets. By
our assumptions on the distributions Fw

p we have π̂ < 1. Denote by κ the largest capacity
of all trucks. Then the function g : [0, 1] → [0, 1] with g(1) = 1 and g(x) = x/(π̂κ) for
x ∈ [0, 1) would have the desired effect.
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In practice we take a less restrictive approach. In order to motivate our choice we first
introduce a merit function to measure the quality of a feasible constellation. Suppose that
at time t the set S = {(p, w, j) : p ∈ P , s ∈ W , j ∈ Z, πw

p (j) < 1} describes the pallets,
that are not available at the respective warehouses at the end of the planning period if no
further transports occur after t (for the moment we ignore j’s with πw

p (j) = 1). Consider
the function

1−
∏

(p,w,j)∈S

(1− πw
p (j)) = 1−

∏
(p,w,j)∈S

Fw
p (αw

p + jθp).

Its value will be close to 1 if many of the pallets are needed with high priority πw
p (j), and

its value will decrease whenever an element from S is deleted or replaced by an element
having lower priority value. For illustration purposes let us make the absolutely invalid
assumption, that the πw

p (j) specify the probabilities of independent events that pallet
(p, w, j) will be needed at w in the next time period. Then this number would give the
probability that at least one of the pallets not available will have to be transported in
the next period. So we would like to find a constellation that minimizes this number or,
equivalently, maximizes

∏
(p,w,j)∈S Fw

p (αw
p + jθp). Using the logarithm for linearization, a

reasonable objective could read

min
S

−
∑

(p,w,j)∈S

log(Fw
p (αw

p + jθp)).

With respect to Observation 7, this suggests the choice g(·) = min{γ̄,− log(· − 1)} for
some γ̄ > 0; the priority order between the pallets is preserved. Because log(1 + x) ≤ x
for all x ∈ R, we have

− log(Fw
p (αw

p + jθp)) ≥ 1− Fw
p (αw

p + jθp)

and transporting a pallet with high priority level has become more attractive than before.
We continue with a detailed specification on how to construct the cost function from

this and how to deal with the cases πw
p (j) = 0 and θp = 0; the reader not interested in

impelementational details may safely skip this part and continue with the next section.
In order to cope with pallets (p, w, j) having πw

p (j) = 0 or that correspond to negative
amounts αw

p + θpj < 0, we introduce a lower probability level π satisfying 0 < π < π < 1
(for the definition of π see page 5; beyond this level no pallets should be transported).
Define, for a given weight γ̄ > 0, p ∈ P , w ∈ W the constants

for j ∈ Z : gw
p (j) =


2γ̄(− log π) j < 0,
3
2
γ̄(− log π) j ≥ 0 and αw

p + jθp < 0,
γ̄(− log π) 0 ≤ 1− πw

p (j) < π and αw
p + jθp ≥ 0,

γ̄(− log[1− πw
p (j)]) π ≤ 1− πw

p (j) < π,
0 π ≤ 1− πw

p (j).

In practice we set γ̄ = 1
4
γ/(−4|T̂ | log π) and π = 10−2. This choice corresponds to our
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actual implementation up to a minor technical detail3, that we ignore here. Let

̂w
p = max{j ∈ Z : πw

p (j) < 1− π} p ∈ P , w ∈ W ,

p

=
∑

w∈W,t∈T bp((w, B, t)) p ∈ P ,

p =
∑

w∈W,t∈T bp((w, A, t)) p ∈ P

denote the last pallet of article p at warehouse w with gw
p (j) > 0, the sum of all negative

demands, and the sum of all positive supplies of article p, respectively. Then for p with
θp > 0 and w ∈ W we define one component of the cost function by

f̆w
p (x) =


∞ x ∈ (−∞, 

p
) ∪ (p,∞),∑

x≤j≤̂w
p

gw
p (j) x ∈ Z ∩ [

p
, ̂w

p ],

ε[x− (̂w
p + 1)] x ∈ [̂w

p + 1, p],

f̆w
p (bxc) + (x− bxc)[f̆w

p (dxe)− f̆w
p (bxc)] x ∈ [

p
, ̂w

p + 1] \ Z.

So the function is convex with domain [
p
, p], it is nonnegative and piecewise linear on

its domain and zero at ̂w
p + 1. In theory there is no need for restricting the domain nor

for having the cost function slightly increase for x > ̂w
p + 1, but it is advantageous in

connection with solving the Lagrangian relaxation by bundle methods. Note also, that
among the pallets the same priority order is maintained as induced by the probabilities,
but the weighting differs to the effect, that truck loads containing just a few high priority
pallets will now be preferred to truck loads containing many medium priority pallets.

Similar considerations motivate our choice for the cost function for p ∈ P0 = {p ∈
P : θp = 0}. Recall, that for such articles, by convention, any pallet transported carries
an infinite amount and at most one should be brought to any warehouse upon demand.
Likewise each warehouse can supply at most one such pallet for transportation. Thus, for
p ∈ P0, (the sum in the if condition indicates the existence of demand)

πw
p (j) = 1 for 0 > j ∈ Z,

πw
p (0) = 1− Fw

p (αw
p ) if

∑
t∈T bp((w, B, t)) < 0,

πw
p (0) = 1− Fw

p (0) if
∑

t∈T bp((w, B, t)) = 0,
πw

p (1) = 1− Fw
p (αw

p ) if
∑

t∈T bp((w, B, t)) = 0,
πw

p (j) = 0 otherwise.

The constants gw
p (j) and the cost function f̆w

p (·) are now constructed according to the
same rules as above. The complete cost function for priority level 3 reads∑

(p,w,t)∈Af

f̆w
p (x(p,w,t)).

4.4 Costs on the Truck Graphs

The costs defined on the arcs of the truck graphs do not have a major influence in the
current application. We impose some costs on the transport and transfer arcs so that

3If there is no demand for p at w while there is strictly positive supply, then we set gw
p (0) depending

only on π = Fw
p (0) independent of the sign of αw

p in order to not inhibit emptying the warehouse.
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trucks do not ride without need. Because the current application does not require the
minimization of the number of trucks in use, the depot is only useful as artificial starting
and stopping location. Since trucks should not keep waiting at the depot, we set the costs

ca =


1 a ∈ AP

r , r ∈ R,
1
10

a ∈ AE
r , r ∈ R,

10 a = (u, v) ∈ AB
r with uW = d, r ∈ R,

0 otherwise.

5 Implementation

5.1 Generation of the Probability Distributions

We assume, that for most articles there is no reasonable trend of the demand during
the short period of the next n working days for small n ∈ N. In our application this
assumption makes sense due to the typical structure of the life-cycle of the articles. The
life-cycle consists of a starting phase with slowly increasing demand, a running phase with
high sales and a stopping phase with slowly decreasing sales or an abrupt stopping because
it is sold out and a follower article is introduced. This life-cycle normally runs over a year
or longer, but we are interested in the demand a few days ahead. So it doesn’t seem
advantageous to use classical time series methods to forecast the future demand. For the
situation of some strong seasonal articles see below.

Also, for most articles there is a strong volatility of the daily sales, so it might be possi-
ble to misinterpret a random fluctuation as a substantial trend. Because of this volatility it
is very difficult to observe dependencies of the sales of different articles. The experiences of
our industrial partner and our statistical examinations indicate that short term trends and
dependencies between articles are not of major relevance for our optimization problem. So
we assume, that the daily demands of an article for the next n days are independent and
identically distributed and that they are also independent from the demand of all other
articles.

We denote the random demand of article p at warehouse w for one day by Dw
p and its

distribution function by Gw
p . Note that, for reasons explained in §4.3, we do not follow

the usual convention, that distribution functions are continuous from the left, but require
for this particular application that they are continuous from the right. Let Dw,m

p , m ≤ n,
denote the accumulated demand of the following m working days and Gw,m

p its distribution
function.

As pointed out in §4.3, our main interest is in obtaining an estimation for the probability
that a given amount suffices to satisfy demand, so we concentrate on the distribution
function Gw

p . For estimating Gw
p we use the empirical distribution of the daily demand of p

at w for a fixed number T of working days backwards. Let dw
i,p denote the demand for p at

w at the i-th previous working day. Our approach consists of applying decreasing weights
zt, t = 1, . . . , T with

∑T
t=1 zt = 1, to the past daily demands dw

1,p, . . . , d
w
T,p, i.e., we take

Ĝw
p (x) =

T∑
t=1

zt1l{dw
t,p≤x}
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as an estimation for Gw
p (x). Note, that we consider only working days of our industrial

partner. We take T = 25.
The empirical distribution has a lot of favorable properties, especially as an estimator

for distribution functions in the i.i.d. case. For some convergence results see for instance
[19] Chapter 5.1.1. Also, it plays an important role for many statistical methods, among
others for the bootstrap method, see [9]. For applications in finance it is often used as the
best choice, e.g. for calculations of the value at risk, cf. [4].

In particular, empirical distributions are considered a suitable choice for estimations
if distributions exhibit heavy tails or if it is difficult to identify parametric families of
distribution functions in the model. Quite frequently, we could observe heavy tails for the
daily demand at our industrial partner as a consequence of the mixture of the demands of
many small retailers and very few huge demands by big chains of stores (e.g. ALDI, Metro
etc.). Regarding parametric families of distributions, such distributions would have to be
assigned automatically and on short term, since customers change their article identifiers
frequently (often due to minor changes in design) and no information is available on the
nature of the product. We currently see no hope to set up such a system, even though
some clustering analysis of articles that appear repeatedly jointly in several orders might
help in this respect.

A further advantage of the weighted empirical distribution is that the concept is quite
intuitive and allows a lot of flexibility, so that users should be able to adjust the weights
reasonably according to their own preferences.

As an estimation of Gw,n
p for a fixed n ∈ N we use the n-th convolution (Ĝw

p )∗(n), i.e.,
for x ∈ R and n > 1

(Ĝw
p )∗(n)(x) =

∞∫
−∞

(Ĝw
p )∗(n−1)(x− z) dĜw

p (z)

=
l∑

j=1

(Ĝw
p )∗(n−1)(x− yj)

(
Ĝw

p (yj)− Ĝw
p (yj−)

)
=

∑
{(i,j): xi+yj≤x}

(
(Ĝw

p )∗(n−1)(xi)− (Ĝw
p )∗(n−1)(xi−)

)
·
(
Ĝw

p (yj)− Ĝw
p (yj−)

)
,

where xi, i = 1, . . . , k, denote the jump points of (Ĝw
p )∗(n−1) in ascending order, yj, j =

1, . . . , l, the jump points of Ĝw
p , and Ĝw

p (y−) the left hand limit of Ĝw
p (·) at y. We

have chosen n = 3. By assuming that the daily demand of the following working days
is independent, we obtain an estimation of the distribution function of the theoretical
demand of the n following working days.

In principle, this approach is valid only for the case that no information is available on
future demand, but, of course, we know all orders before their picking time. In order to
avoid investigations on conditional distribution functions considering the demand that is
currently known, we think of (Ĝw

p )∗(n) as an estimation of all additional orders that will
appear during the next n working days. Any other approach would require additional
information on the ordering behavior of the customers and on the technical details about
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the passing of the orders from the different customer management systems to the warehouse
management system of our partner.

To obtain a continuous distribution function, we compute a piecewise linearization G̃w,n
p

of (Ĝw
p )∗(n). Let zi, i = 1, . . . ,m, denote the jump points of (Ĝw

p )∗(n) in ascending order.
We define

G̃w,n
p (x) :=


0 for x < z1

(Ĝw
p )∗(n)(zi) + [(Ĝw

p )∗(n)(zi+1)− (Ĝw
p )∗(n)(zi)]

x−zi

zi+1−zi
for zi ≤ x < zi+1

1 for x ≥ zm.

Then G̃w,n
p is a strictly increasing piecewise linear function on [z1, α], where

α = zm = n · max
t=1,...,T

dw
t,p,

and has at most one jump at x = z1. We use it as an estimation of the distribution of the
additional orders of the next n working days at warehouse w.

Remark 8 Note that, in contrast to (Ĝw
p )∗(n), the linearized G̃w,n

p is no longer an unbiased
estimation of the distribution function of Dw,n

p . Although it slightly overestimates it, this
problem doesn’t play an important role because the choice of n is a vague estimation of our
industrial partner. The main advantages of G̃w,n

p are, that it is continuous on (z1,∞) and

that the inverse (G̃w,n
p )−1 exists on (G̃w,n

p (z1+), 1) also in a strong functional sense and is
continuous on this interval.

Remark 9 The use of a smooth kernel Kn is a common alternative to obtain a continuous
distribution function Ḡw,n

p by defining

Ḡw,n
p (x) :=

∞∫
−∞

Kn(x− y) d(Ĝw
p )∗(n)(y).

It can be proven, that unter slight assumptions Ḡw,n
p (x) is an unbiased estimator, see e.g.

[21]. A more difficult problem might be the existence of the inverse (Ḡw,n
p )−1 in the strong

sense for all samples dw
1,p, . . . , d

w
T,p.

There is no explicit seasonal approach in our model but we are able to observe long-
term trends. This is influenced by the choice of the weights zi. We use constant weights
1.25 ·T−1 up to the switching point d0.6 ·T e, and after that point linear decreasing weights,
i.e., we take

zt =
25

8
(T − t + 1)T−2 for d0.6 · T e < t ≤ T.

A better adjustment of the weights might be possible based on a careful evaluation of
the numerical results by our industrial partner. For example, one might think of using
exponentially decreasing weights, which is a popular approach in time series analysis.
Further improvement might be gained by adjusting T on dependence of the article p or
the warehouse w.
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To avoid a misinterpretation of a special situation at our industrial partner, we have
chosen (F̃w

p (x))(n) = 1 for x ≥ 0 if there is only one i ∈ {1, . . . , T} with Dw
i,p > 0 . This

situation occurs if there is a single huge demand of a big chain of stores preparing a special
offer. In most cases it is not useful to provide additional stock of article p at warehouse w
on top of the demand caused by the special offer.

For all articles p and warehouses w we use the distribution function G̃w,3
p for our

numerical experiments and denote it by Fw
p (see also §4.3).

Some articles are tightly linked with a deadline after which they are unlikely to be sold
again, e.g. greeting cards and wrapping paper for Christmas or Easter. For such articles
it would be desirable that the user sets Fw

p (x) = 1 for x ≥ 0 , because we are not able to
recognize this on past demands alone.

5.2 Lagrangian Relaxation and Bundle Method

By Lagrangian relaxation of the coupling constraints of §3.4 the problem decomposes into
|R|+|P|+| ~W| independent min cost flow problems and |Af | minimization problems of one

dimensional convex piecewise linear functions (one function f̆w
p for each (p, w, t) ∈ Af ).

These subproblems can be solved efficiently by specialized methods yielding objective
value and subgradient (or supergradient) for the dual problem of determining optimal
Lagrange multipliers. The latter are computed by a bundle method that also produces
approximations to primal optimal solutions.

For concreteness, let Ai denote the node-arc-incidence matrix of the digraph Di =
(Vi,Ai) and bi ∈ RVi the corresponding balances for i ∈ R ∪ P ∪ ~W , then the complete
problem description reads

min
∑
r∈R

cT
Ar

xAr+
∑
~w∈ ~W

cT
A~w

xA~w
+

∑
p∈P

cT
Ap

xAp+
∑

(p,w,t)∈Af

f̆w
p (x(p,w,t))

s.t. ArxAr = br r ∈ R
A~wxA~w

= b~w ~w ∈ ~W
ApxAp = bp p ∈ P

ALx ≤ bL

AKx ≤ bK

ABx ≤ bB

AF x = bF

lAi
≤ xAi

≤ uAi
i ∈ R ∪ ~W ∪P , x ∈ ZA.

Note, that the loading constraints AL of (6) affect the variables belonging to truck graphs
only, the capacity constraints AK of (7) involve almost all graphs but none of the vari-
ables Af , the buffer constraints AB of (8) deal with arcs of article graphs exclusively, the
constraints AF of (10) for computing the remaining flow involve only variables of article
graphs and the set Af .

In order to describe the relaxation, let mL, mK , mB, mF denote the number of rows
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of the matrices AL, AK , AB, AF , let

m = mL + mK + mB + mF , Ā =


AL

AK

AB

AF

 , and b̄ =


bL

bK

bB

bF

 .

Feasible Lagrange multipliers are y ∈ Y := RmL+mK+mB
− × RmF . For defining the dual

function ϕ(y), set for i ∈ R ∪ ~W ∪P

ϕi(y) = min{(cAi
− [ĀT y]Ai

)T xAi
: AixAi

= bi, lAi
≤ xAi

≤ uAi
, xAi

∈ ZAi},

and for a = (p, w, t) ∈ Af

ϕa(y) = min{f̆w
p (xa)− [ĀT y]axa : xa ∈ R}

then the dual problem reads

max
y∈Y

ϕ(y) = b̄T y +
∑

i∈R∪ ~W∪P∪Af

ϕi(y).

Note, that for given y ∈ Y , i ∈ R ∪ ~W ∪P determining an optimizer for ϕi(y),

xAi
(y) ∈ Argmin{(cAi

− [ĀT y]Ai
)T xAi

: AixAi
= bi, lAi

≤ xAi
≤ uAi

, xAi
∈ ZAi},

amounts to computing an optimal solution to a min-cost flow problem for the graph Di =
(Vi,Ai). For this we employ the code MCF of Andreas Löbel [16], which is a network
simplex code that supports warm starts for changing cost coefficients. For a = (p, w, t) ∈
Af , finding an (integral) optimizer for ϕa(y),

xa(y) ∈ Argmin{f̆w
p (xa)− [ĀT y]axa : xa ∈ R}

is easy, since the function is piecewise linear and convex, so it can be done by binary search
on the (integral) break points. Collecting all primal optimizers in x(y) ∈ ZA, the primal
violation s(y) = b̄− Āx(y) is a subgradient of ϕ(·) in y. Thus, the dual function value and
a subgradient can be computed efficiently. This allows the use of bundle methods, see [11].
We use our own code ConicBundle, which is an outgrowth of [10]. Under mild assumptions,
that are satisfied here, the method generates a sequence yk ∈ Y of dual feasible points
converging to the optimum. At the same time, by taking convex combinations of the
subgradients s(yk), it yields a sequence of aggregate subgradients s̄k that converge to zero.
It can be shown (see e.g. [5, 10]), that by propagating the same aggregation process to the
x(yk) one obtains a sequence x̄k of aggregate primals, whose cluster points lie in the set
of optimal solutions of the primal linear programming relaxation. The code ConicBundle
generates these x̄k. The final x̄k is used in the heuristic for generating primal feasible
solutions.

In principle, the code ConicBundle would allow the use of separate cutting plane models
for each function ϕi, i.e., separate collections of subgradients and function values that
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approximate ϕi from below. In practice, however, this would lead to very large quadratic
subproblems and it turned out to be computationally more efficient to collect the functions
in four groups with a separate cutting plane model for each group. In particular, we have
separate models for the four functions

ϕR(y) =
∑
r∈R

ϕr(y), ϕ ~W(y) =
∑
~w∈ ~W

ϕ~w(y), ϕP(y) =
∑
p∈P

ϕp(y), ϕAf
(y) =

∑
a∈Af

ϕa(y).

Splitting in this way seemed superior to several other choices. Maybe this is due to the
fact, that some constraint classes of the coupling constraints act exactly on one of these
subgroups. For each group we used the minimal bundle size, i.e., one new subgradient and
the old aggregate subgradient.

Remark 10 In order to increase efficiency it might be worth to approximate ϕAf (y) by a
single second order cone constraint. Our first experiments in this direction entailed some
numerical difficulties and we did not pursue this further.

5.3 Rounding Heuristic

For generating feasible solutions we make use of the primal (approximate or exact) frac-
tional solution vector x̄. In practice, x̄ is generated by aggregation in the bundle method.
For comparative numerical experiments we will also use an exact optimal solution produced
by a simplex method. Based on this vector we first fix pallet candidates for transporta-
tion, later we assign these candidates to truck rides. The emphasis of the heuristic is on
transporting for each article the same amounts as the fractional solution along the same
directions. The heuristic works reasonably well (see §6) but it is still somewhat simplistic
and ad hoc, so we refrain from giving a detailed description and outline only its main
steps.

Fixing pallet candidates for transportation is done separately for each article p ∈ P
as follows. The variables xAp represent the flow in the article graph Dp of §3.2. We
decompose the flow along transportation arcs into paths from one warehouse to the next,
these are then aggregated to pallets. For this, the arcs are sorted in non decreasing order
with respect to the time stamp of the tail node. The arcs are summed up in this sequence,
each arc being added to the appropriate sum of the corresponding direction; likewise, at
the warehouses the balances are summed up in the same order. If the sum of a direction
exceeds the lower threshold 0.1 and a positive balance is available at the tail warehouse, a
new pallet is created; at the same time, one unit is subtracted from the direction sum and
one unit is subtracted from the available amount at the tail warehouse. The new pallets
release date is eventually set to the maximum of the arrival times (at the tail warehouse)
of the flow pieces that contribute to it. The pallet contributes one unit of flow to the
head warehouse at the time when the first truck, that serves this direction after the pallets
creation, arrives there. The due dates of the pallet is eventually set to the first event,
that needs part of the pallets flow. Such an event is either a negative balance at the head
warehouse or another pallet starting from the head warehouse.

The generation of pallet candidates for prescheduled pallets of §3.3 follows the same
pattern but is much simpler, we skip it here.
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Once the pallet candidates are fixed and equipped with release and due dates, we
generate the truck rides. For each warehouse w, each direction (w, w̄) ∈ ~W leaving this
warehouse, and each truck class r ∈ R, we consider the first ten possible transport rides of
a truck of type r in this direction. Each ride is filled in a greedy manner by the most im-
portant pallets that are yet to be transported in this direction, the priority being available
prescheduled pallets, then regular pallets ordered by due dates, and among pallets with the
same due date we choose by the improvement in distribution considering both warehouses.
A newly generated ride is compared to the previously selected ride for this truck class and
direction. When a ride of this type has been fixed, the selected ride is compared to the
previously chosen candidate for this direction; the winner of the direction is compared to
the current favorite of the truck rides leaving w; finally, this candidate is compared to the
previously selected ride for the warehouses treated so far. Each comparison considers only
two concrete truck rides with their assigned load and takes into account attributes such as
the yet uncovered amount of flow in the relevant directions summed over all truck classes,
the uncovered amount for the particular truck class, the number of prescheduled pallets
loaded, the number of pallets with tight due date, and the departure and arrival times of
the trucks. The chosen ride is then fixed, all pallets loaded are removed from the lists of
waiting pallets and the process starts anew, till no further truck rides can be generated or
no pallets are waiting for transport.

The heuristic is not very sophisticated and relies on the hope that the amounts and
timing suggested by the primal solution x̄ provide a good guideline for setting up a schedule.
So far we have not implemented any improvement heuristics that enhance this initial
solution via local search methods (this clearly could improve the solution a bit in several
cases). Our current main concern, however, is not a perfect solution for the given problem,
but a reasonably fast method suitable for use in an online environment. In particular, any
sophisticated post optimizations will most likely have no effect in practice, because in
general the realization of the schedule differs considerably from the planned solution.

6 Numerical Experiments

For our experiments we use more than half a year of real data, stemming from the appli-
cation at our industrial partner. The online stream of data described in §2 is available in
full. We generate our instances by running through it and stopping at 6:00, 9:00, 12:00,
and 15:00 every day for recomputing the online schedule (we do not include later data in
this computation). The planning horizon is one day; more precisely, each run includes at
most |T | ≤ 144 time steps of 10 minutes each, depending on the availability of trucks for
transportation. We ignore instances where no truck data is available (in some cases this
data is obviously missing by mistake). After preprocessing, between 500 and 1200 articles
of the 40000 products are in need of transportation.

The company currently operates two warehouses, call them A and B, within a distance
of roughly 40 minutes driving time; including the loading process, the estimate is 50
minutes. Correspondingly, we set T r(A, B, t) = 40 and T r(A, B, t) = 50 in (1) for all truck
classes r ∈ R and time steps t ∈ T in our experiments.

In order to test the algorithm also for its performance on three warehouses, we modify
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the data stream as follows. In addition to the two real warehouses A and B we introduce a
third warehouse C. The data and parameters of the third warehouse correspond to a real
warehouse that the company previously operated along with A and B. The driving distance
is 20 minutes between C and A and 30 minutes between C and B. Including loading time,
transportation time is 30 and 40 minutes, respectively. We set the functions T r and T r

correspondingly. Next, we generate a data stream for the three warehouses out of the real
world data stream by reassigning articles to these warehouses as follows. Upon the first
occurrence of an article identifier for a p ∈ P in the real world data stream, the article
is randomly assigned a map wp : {A, B} → {A, B, C} that maps the original warehouses
A and B to two warehouses wp(A) 6= wp(B) out of A, B, and C. All following messages
of the data stream that relate to this article are then remapped with this same map, so
that e.g. all orders originally referring to this article in warehouse A are now orders for
this article at wp(A), or a transport of a pallet of p from A to B is mapped to a transport
from wp(A) to wp(B).

So we present results for two scenarios: The first operates on a real world data stream
on two warehouses and will be denoted by 2-WH, the second uses a highly realistic data
stream for three warehouses, its name is 3-WH. Each instance consists of roughly 144 time
steps, 4-6 truck graphs, 2 respectively 6 pallet graphs and between 500 and 1200 article
graphs (for an average of 800), the total number of variables ranging between 300000 and
1.4 million. For academic purposes an anonymized version of the split data stream, the
scripts for generating the instances and our compiled code can be downloaded from

http://www.tu-chemnitz.de/mathematik/discrete/projects/warehouse trucks/software/

In our application it is not useful to spend much time on computing an exact optimal
solution, because the data is uncertain and the optimal solution is in danger of being
outdated when it is found. Rather, we want to produce a new solution of reasonable
quality quickly. Therefore our parameter setting in the bundle method forces the code
to take aggressive steps in a wide neighborhood and to stop computation very early. In
particular, we stop if the norm of the aggregate subgradient (which is the norm of the
primal violation of the approximate primal solution) is less than 5 and the relative precision
criterion indicates a relative precision of 5%. On top of this we stop the code after at most
2000 evaluations. In order to study the effect of this crude approximation we compare, in
Table 1 the value of the relaxation to the exact optimum of the relaxation computed by a
simplex code (we use the dual optimizer of ILOG CPLEX 8.1 [12] as it performed better
than primal simplex or barrier on several test instances). Likewise we compare the quality
of the heuristic of §5.3 when applied to approximate solutions generated by the bundle
method and when applied to the exact primal LP solution.

The first two columns of Table 1 give the name of the scenario (2-WH refers to the
scenario with two warehouses, 3-WH to three warehouses) and the number of instances
therein. Each instance corresponds to one planning run with available truck data. In each
following column we list the average and, in parenthesis, the deviation of the respective
values over all instances. Computation times refer to a Linux PC with Pentium 4, 3.2
GHz processor, 1 GByte RAM, and 1 MByte cache. For the LP relaxation computed
by the dual simplex method of [12] we display average and sample standard deviation
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Table 1: Average and deviation of running time and relative precision
LP by simplex bundle

scenario #inst. time(sec) heur-gap(%) time(sec) relax-gap(%) heur-gap(%)
2-WH 942 2688 (1815) 5.32 (5.96) 234 ( 97) 3.37 (3.44) 5.75 (6.13)
3-WH 942 7297 (5993) 19.4 (12.8) 316 (131) 6.45 (4.34) 18.8 (11.7)

of computation time in seconds and the relative precision of the heuristic generated by
rounding the primal solution. For the bundle solution we display time, relative precision
of the relaxation, and the relative precision of the heuristic solution in comparison to the
value exact LP-relaxation,

relax-gap = 100 ·
(

1− bundle-solution

LP-solution

)
, heur-gap = 100 ·

(
1− LP-solution

heuristic-solution

)
.

Observe that for scenario WH-2 the bundle approach needs 4–5 minutes to compute
a solution within 3.5±3.5% of the true value of the relaxation, while it takes the simplex
method roughly 1

2
to 1 hour to determine the exact solution. The poor quality of the

approximate primal solution generated by the bundle method does not lead to significant
deteriorations in quality of the rounded solution, since the gaps of the heuristic solutions
(both measured with respect to the exact LP-solutions) generated from the true primal
optimal solution and the approximation differ by only 0.5%. The results are even more
striking for scenario 3-WH. The bundle approach still requires 4–8 minutes while the
simplex method needs 2–3 hours. Surprisingly, the heuristic solution generated from the
approximate solutions is on average even better than the solution generated from the exact
solution.

Clearly, the simplex approach is far too slow for real world online computations, while
the bundle method is fast enough without significant differences in solution quality for our
current rounding heuristic. The gap between heuristic solution and provable bound is still
considerable. There should be some room for improvement on the side of the heuristic,
but in fact the quality of the lower bound might be the bigger problem. Indeed, since
the cost function is nonlinear and convex, it must be expected that the the solution of
the relaxation is in the relative interior of one of the faces of the feasible polytope. This
holds even if the latter would form the convex hull of all feasible integral points. In other
words, the use of a strict convex combination of feasible truck rides will in general allow
significantly better solutions than pure integral solutions. In order to improve the bound
one would therefore have to generate the convex hull of the epigraph of the cost function
evaluated at feasible points.

The decisive criterion for the success of the method is whether the generated solutions
lead to significant improvements in the availability of products at the warehouses. In
order to study this aspect we present simulation results for a consecutive time span of
100 days (June 1, 2004 to September 15, 2004) in the data stream where the truck data is
available throughout4. We removed all transportation messages and inserted the transports

4The actual starting point of the simulation was set to one week earlier so that the initial crossover
phase does not enter the results.
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suggested by the planning algorithm instead. In particular, for each new schedule all
decisions were accepted that had to be initiated according to this schedule before the start
of the next planning run, independent on whether the realization of these decisions would
extend into the next planning period or not. Trucks were routed consistently over time
(without passing positional information to the data stream, since this is not happening in
practice either) and “surprise pallets” of the original data stream (some pallets are started
by third parties due to production processes rather than external orders) were included in
transportation so that major reassignments of pallets to trucks on a first come first serve
basis were necessary during simulation. Thus, the actual realization of the transports often
differed considerably (and quite realistically) from the intended schedule. The generated
data stream, however, differs only in transportation data from the original one. All orders,
picks, and internal movements/retrievals are preserved. This may cause some additional
negative supplies, but negative supplies occur regularly in practice due to asynchronous
communication or manual booking errors and they can be handled by the approach without
problems.

All simulation runs were computed on a Linux PC with a Pentium 4, 2.8 GHz processor,
512 KB cache and 1 GByte of RAM. On this machine reading the current configuration
and processing the next part of the data stream for generating the input took about one
and a half minute. Computation time statistics for solving the relaxation by the bundle
method and running the heuristic for the simulation on two warehouses (2-WH-sim) give
an average of 329 CPU-seconds with a deviation of 89 seconds and a maximum of 487
seconds, for three warehouses (3-WH-sim) the average was 416 CPU-seconds, deviation
101, and maximum 599 seconds. Thus computation time is always below 10 minutes for
each run of 2-WH-sim and below 12 minutes for 3-WH-sim.

It is difficult to give good criteria for comparing original to simulated warehouse con-
figurations on basis of online data, since the original data stream was definitely influenced
by the availability of certain products at the warehouses. We decided to compare, for
various supply levels, the number of pallets that would need transportation to achieve the
respective supply level at all warehouses (“missing” pallets at one warehouse are counted
if they are available in excess of the desired level in at least one of the other warehouses).
This number can only be computed for articles p whose pallet size θp > 0 is given in the
article basics. Fortunately, they account for 75% of all articles and form the main bulk of
pallets transported, so the measure should be quite reliable. Table 2 lists for each scenario
the average and deviation values over all instances of the number of pallets needed accord-
ing to the following levels (each level includes the count of the previous levels). Column
negative counts the pallets needed to get all supplies non-negative. Column demand are
the pallets required to cover negative supply and known demand of the next six days. In
column Fw

p ≥ 0.3 we list the pallets needed so that for all articles p and warehouses w
we have Fw

p (αw
p ) ≥ 0.3 where αw

p denotes the amount of p at w available on top of the
known 6-days-demand. In words, for each article and warehouse, supply should suffice for
an additional stochastic demand of three more days with a probability of 30% . Column
Fw

p ≥ 0.9 is defined correspondingly for the supply level of 90%. The last column #trans
displays the number of all pallets actually transported by the trucks during the entire
period.
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In order to present a clear picture of the development over time, we also include plots of
the actual numbers of pallets needed in figures 3 and 4. The number of pallets transported
up to day i ∈ {1, . . . , 100} by the various scenarios is displayed in Figure 5.

Table 2: Average and deviation of the number of pallets needed
scenario #inst. negative demand Fw

p ≥ .3 Fw
p ≥ .9 #trans

2-WH-orig 400 157.4(16.8) 296.8(133.8) 671.7(268.5) 2284.5(565.1) 63433
2-WH-sim 400 2.5(4.2) 49.8(65.4) 80.3(86.7) 865.3(568.2) 61364
3-WH-sim 400 2.1(3.4) 37.2(61.9) 45.2(64.1) 201.4(115.1) 62345

The results of Table 2 show a clear superiority of the automatic planning tool (2-WH-
sim and 3-WH-sim) versus the human planner (2-WH-orig). One should, however, be
careful in interpreting these numbers. We first comment on the 2-WH-sim scenario and
discuss the 3-WH-sim scenario afterwards.

In 2-WH-sim it is reassuring that the number of pallets to compensate negative supply
is almost zero, so the correct supply is made available by the automatic planning tool with-
out any interaction with the actual retrieval process (remember that retrieving non existent
pallets is allowed and simply generates negative amounts!). In contrast, the number of
pallets needed to compensate the negative amounts in 2-WH-orig is constantly quite high.
This may be due to some human insight, that for a significant number of these articles
negative amounts do not require action. Constant offsets have no influence on the devia-
tion, and the data of Figure 3 indicates that at most two thirds of the “negative” pallets
(100 pallets say) belong to this class of neglectable negatives. Even after subtracting this
number from all averages in the first row, the simulation results are considerably better
both in average and deviation while our solution needs fewer transports in total. The most
relevant and reliable data is probably column demand after subtracting column negative,
since these pallets need immediate transportation to satisfy known demand. Here, the
real world solution shows a need of 139±117 pallets while our computed solution reduces
this to 37±62 pallets. Thus this number is more more than halfed. Notice also, that
in the plots of Figure 3 the height of the the peeks diminishes for Fw

p ≥ 0.9 over time
for the simulation run, which is not the case for the original data stream. This indicates
that the generated distribution functions do their job reasonably well and on long term
the warehouses supply structure should get even more favorable. The main advantage of
the automatic planning tool over manual planning might rely on the fact, that human
planners tend to order large amounts of a few articles that currently need transportation
rather than ordering appropriate amounts for all orders that are close to being low on
supply.

Note, that for the scenario 3-WH-sim we do not have an authentic real world trans-
portation schedule to compare to. As a remedy we remap the original transports for two
warehouses in the same way that the articles are reassigned to the three warehouses. Con-
ceptually this corresponds to splitting a single original truck ride into up to 6 virtual truck
rides, each taking care of the transports going into the newly assigned directions. Obviously
this does not yield a feasible truck schedule, but it certainly gives rise to feasible and real-
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negative demand

Fw
p ≥ 0.3 Fw

p ≥ 0.9

Figure 3: Comparing 2-WH-orig to 2-WH-sim with respect to
pallets needed per run for each supply level. Data of 2-WH-orig
is shown as “◦”, data of 2-WH-sim as “·”.
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negative demand

Fw
p ≥ 0.3 Fw

p ≥ 0.9

Figure 4: Comparing 2-WH-orig to 3-WH-SIM with respect to
pallets needed per run for each supply level. Data of 2-WH-orig
is shown as “◦”, data of 3-WH-SIM as “·”.
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2-WH-orig(◦) vs. 2-WH-sim(·) 2-WH-orig(◦) vs. 3-WH-sim(·)

Figure 5: Comparing 2-WH-orig and simulations with respect
to the number of pallets transported. The data displayed is the
sum of pallets transported up to day i = 1, . . . , 100.

istic warehouse-configurations at the three warehouses. Indeed, per article and remapped
warehouse we obtain exactly the same demand and supply values as in the original 2-WH-
scenario. Therefore the sum of the needed pallets over all articles and warehouses is the
same for 2-WH-orig and the 3-WH-scenario with remapped original transports. In this
light it is reasonable to compare the 3-WH-sim scenario to the 2-WH-orig scenario as it is
done in the plots of figures 4 and 5.

The approach seems to work even better for 3-WH-sim than for 2-WH-sim, but this
might be mostly due to the random (but fixed) reassignment of the original two locations
of each article to two new locations. This way demand is randomly (and thus more evenly)
distributed over all three locations. In consequence the need for truck rides between the
warehouses is also more evenly spread and this makes it easier to satisfy demand on time.
Even though the comparison to the remapped original solution does not allow to draw any
conclusion on the advantage of automatic versus human solution, the results show that the
proposed approach also works very well in a realistic online scenario for three warehouses.

7 Conclusions

The presented approach for joint online truck scheduling and inventory management is
fully suitable for online use in practice and significantly outperforms the manual half
automatic planning approach of our industrial partner. We see our main contribution in
the development of a suitable convex and piecewise linear cost function, that renders the
corresponding LP-formulation sufficiently robust so that even rough approximations to the
primal optimal solution give excellent results in actual online runs. The suitability for fast
approximate solvers such as the bundle method is vital since exact LP-solvers turn out to
be far too slow for online applications of this size.
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Still, much remains to be done: further improvements in quality could be expected from
including in the model uncertainties in driving time, loading capacity, and positioning of
the trucks; it might also help to analyze the observed quantities stored on pallets or the
actual transportation time of the pallets; in generating the distributions, enhancements
are conceivable via better use of statistical data, e.g. by exploiting knowledge on joint
appearance of articles in orders, etc.
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