
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ARTUR ANDRZEJAK, ULF HERMANN, AKHIL SAHAI 1

FEEDBACK FLOW - An Adaptive Workflow Generator for
System Management

1Hewlett-Packard Laboratories,1501 Page Mill Road, Palo Alto, CA 94034, USA

ZIB-Report 05-12 (Februar 2005)



FEEDBACK FLOW - An Adaptive Workflow Generator for System Management

Artur Andrzejak, Ulf Hermann
Zuse-Institute Berlin (ZIB)
Computer Science Research

Takustr. 7, 14195 Berlin, Germany
{andrzejak,hermann}@zib.de

Akhil Sahai
Hewlett-Packard Laboratories

Internet Systems and Storage Lab
1501 Page Mill Road, Palo Alto, CA 94034, USA

akhil.sahai@hp.com

Abstract

We describe a prototypical framework that further auto-
mates system management by composing complex manage-
ment tasks from elementary actions, and executing compos-
ite tasks with feedback-awareness.FEEDBACKFLOW im-
plements a general closed control loop ofplanning - exe-
cution - result validation - replanning, and generates work-
flows of system management actions in an adaptive man-
ner. System-dependent behaviour of the loop is specified by
declarative description of the domain (essentially descrip-
tions of available actions), and statement of the goal. We
evaluate the design of this framework on examples taken
from resource construction in Utility Computing environ-
ments, and discuss the challenges we have encountered.
Our implementation utilizes external components such as
MBP, a PDDL-conform planner, andTriana, a workflow
specification and execution framework. An alternative ap-
proach involvingBPEL4WSis discussed.

1 Introduction

A large share of system management tasks can be broken
down into small units, which can be described asatomic ac-
tions. Examples of such actions include installation or up-
date of a software package from an image, including a new
directory in the PATH environment variable, adding entries
to the Windows registry, starting a standardized script, or
rebooting a system. Understanding which preconditions are
necessary for such an atomic action to succeed and which
actions have to be taken in which order to achieve a desired
goal (e.g. installation of a multi-tier application) currently
requires human guidance. This analysis process consumes
a significant fraction of the time of a human operator and
is error-prone (more than 50% of system failures are caused
by human operators [6]). Furthermore, when atomic actions
are chained the results of each step must be verified manu-
ally, consuming more time, and a failure frequently requires

the repetition of the analysis.
On the other hand, the pool of atomic actions, if properly

parametrized, is largely similar on the thousands of systems
with standard operating systems and basic software. This
implies that the sequences of steps needed to reach a de-
sired system state configuration are also alike. We believe
that there is significant potential for automatizing system
management tasks by exploiting these similarities. The idea
is to create a pool of atomic and composite action descrip-
tions common to many systems, which would save time of
analysing their dependencies and allow automatic composi-
tion of such building blocks. Our larger goal is to automat-
ically extract specifications of atomic actions from sets of
management logs. The STRIDER system [22], which has
partially inspired our work, shows that it is possible to iden-
tify Windows registry entries responsible for malfunctions
from a large set of registry snapshots.

Assuming a sufficient pool of atomic action specifica-
tions (preconditions and effects) derived either manually or
by means of machine learning, it is possible to automati-
cally map action task graphs using planning algorithms. In
this paper we focus on this approach to automation, and en-
hance it with the feature of automatic graph correction in
response to partial failures.

1.1 Tackling complexity by reductionism

We adopt the view that most management tasks can be
represented as a composition of parametrized atomic ac-
tions. Although this thesis has been not empirically verified,
we believe that it is a reasonable assumption. Our project is
an attempt to demonstrate this premise by simplifying the
complexity of system state description and its changes suf-
ficiently in order to reach an increased level of automatisa-
tion. Naturally, we have to assume certain properties of the
system state (or, equivalently, the system configuration) for
this demonstration. These simplifying assumptions are:

• Containment- system state can be “modularized”,
i.e. we can consider the behavioral characteristics of

1



each aspect or functionality of a system independent
of other aspects. For example, the behaviour of the
MySQL database (treated as a “functionality” of a sys-
tem) does not depend on the behaviour or type of the
file system. This is obviously a simplification, yet it
is necessary to render the behaviour of this database
comparable across many systems. Moreover, with this
assumption the whole system state becomes a “Carte-
sian product” of the states of all modules, reducing its
overall complexity.

• Discretization- the state of each part of the system
can be modeled as a collection of attributes with small
value sets. This is trivial for binary attributes, but nu-
merical attributes like buffer size requires “quantiza-
tion” into few discrete values, e.g. small, medium and
large types. We assume that the specific system part
behaves alike for all values within each range.

• Measurability - the values of such attributes (or the
corresponding discrete values) can be determined from
the system configuration in a standardized way. This
process depends on the operating system or software,
but it is not hard to implement, since the information
is usually saved in clearly defined persistent stores or
accessible via operating system interfaces. Examples
include the Windows registry, environment variables
on UNIX-like systems, settings files of individual ap-
plications (e.g. .emacs), entries of an LDAP-server in
a Grid computing environment.

• Locality- the preconditions for execution of atomic ac-
tions can be tested by examining a small number of
clearly defined parts of the system state (“modules”).
Also the effects of such atomic actions influence a lim-
ited number of specified system state parts. For ex-
ample, an action installing an application server only
needs to test whether a specific Java version and a spe-
cific database is available, but does not need to know
the type of the file system. Also, this installation ac-
tion only influences a few registry entries on Windows
systems or a few directories/environment variables on
UNIX systems.

• Atomicity - a management action can be considered
“atomic”, i.e. it is not necessary to consider interme-
diate state changes in the planning process. This as-
sumption can be enforced through subdivision a (non-
atomic) action. An example is software installation
comprised of installing several packages.

While it is not hard to find counterexamples to these as-
sumptions in current systems, there are several management
areas which allow this kind of simplification. These areas

include Change and Configuration Management and Sup-
port (CCMS), resource construction in Utility Computing
environments, software installation, and workflows in dis-
tributed environments, e.g. Grids.

1.2 Approach and results

Based on the above assumptions, we have built a proto-
typical framework featuring automatic planning of the ac-
tion task graph, and the replanning of this graph in case of
partial failures. FEEDBACKFLOW attempts to relieve the
system operator from the need to analyse which actions are
necessary to achieve a desired state, in which order they
must be taken, and whether the execution of these actions
was successful. Specifically, this is done by using AI plan-
ning techniques to obtain a task graph of necessary actions
derived from a given set of (parametrized) atomic actions
with corresponding preconditions and effects (additional in-
put is the system state and the target statement). Such a task
graph is subsequently represented in as a workflow for rea-
sons of technical convenience such as debugging, visualisa-
tion, and reusability. During the execution of this workflow,
feedback on success or failure of each atomic action is col-
lected in order to update the system state and possibly repeat
the execution with an adapted plan. The implementation
uses the external componentsMBP [13], a PDDL-conform
planner, andTriana [20], a workflow specification and exe-
cution framework. The details are described in Section 3.

A system prototype suffices to demonstrate the feasi-
bility of the automation approach outlined above. It also
provides an experimental framework to identify bottlenecks
and the hard problems in the full realisation of this ap-
proach. The prototype also serves as the basis for an in-
frastructure for verifying whether the atomic action speci-
fications are correctly captured from the examples by ma-
chine learning (a part of our future work mentioned above).
By working with real-life examples we can examine which
of the assumptions from Section 1.1 are tolerable in real
systems, and which must be corrected. Finally, FEEDBACK-
FLOW can serve as a rudimentary testbed for studying the
closed control-loop management approach proclaimed in
the IBM’s Autonomic Computing loop Monitor - Analyse -
Plan - Execute [2].

2 Related Work

The field of automatic workflow generation is most
closely related to our work. Automation solutions have been
proposed in the contexts of Grid computing [7, 8], VLSI de-
sign tools [18], and business processes [4, 23, 17]. In [7]
the automatic mapping of complex tasks to Grid resources
is proposed. The starting point is a declarative description
of available application components. In the first step, an

2



user

actions

specs

system

state

Controller

Planner

plan

specs
plan WF Engine

WF

description
State Mgr Node

Atomic Actions

atomic

actions code

...

Figure 1. Architecture of FEEDBACKFLOW

Abstract Workflow is generated, which captures the work-
flow at a more abstract, functional level. Subsequent steps
refine this result to a Concrete Workflow, which includes
the detailed description of the execution step such as phys-
ical resource names and addresses, data transfers, etc. In
contrast to our approach, [7] does not provide a mechanism
for automatic replanning on execution failure.[8] discusses
the same approach in the contexts of Grid Web Services,
and workflow monitoring and maintenance on the Grid. In
[18] a tool for generating workflows of VLSI design tasks is
discussed. The tasks’ data and functional dependencies are
modeled by a graph. The authors describe a simple graph-
theoretic algorithm used for generation of these specialised
workflows. PLMFlow [23] uses a backward chaining algo-
rithm to calculate a workflow for business process activities,
which are defined by sets of predecessor and successor ac-
tivities. The Oz Collaborative Workflow Environment [4]
supports automation of assembling software products from
components. It uses precondition and effects to model de-
pendencies, and chaining algorithms for workflow genera-
tion. [17] discuss the use of AI planning techniques in the
domain of business processes. Support tools for software
installation might be also considered in this category. For
example, the Gentoo-Linux tool Portage [10] considers de-
pendencies between software packages, and installs the re-
quired packages together with the target software.

Policy-based systems like BMC Patrol [5] employ event-
condition-action rules, but have the disadvantage of high
complexity of the rule specification and debugging. More
elaborate approaches involve case-based reasoning [21],
which however suffers from high computational complex-
ity. Policy languages have also been utilized for automated

construction of virtual server farms [16] in utility environ-
ments. The authors use CIM as the underlying resource
model and a constraint satisfaction problem solver to gen-
erate a description of a composite resource.

Within the field of Autonomic Computing, feedback-
based approaches have been applied to managing QoS and
performance of storage systems. Clockwork [15] is a pro-
totypical self-tuning framework for load balancing in a net-
work attached storage system. It uses feedforward control
in predicting demand by means of an ARIMA model. An-
other category of model-based approaches includes Min-
erva [1], which derive management decisions from detailed
models of the storage systems.

Planning is a field of Artificial Intelligence that evolved
from simple first-order predicate logic problem solvers [19]
to solvers that can manage complex problems involving
temporal logic conditions. Although current planning al-
gorithms are still not efficient enough to handle large in-
stances, essential progress has been made in mapping plan-
ning problems onto satisfiability and model checking prob-
lems. Along with this development, the yearly International
Planning Competitions has established the Planning Do-
main Definition Language (PDDL) as a common specifi-
cation standard [9].

3 Architecture

FEEDBACKFLOW attempts to automate creation and ex-
ecution of workflows for system management in an adap-
tive way. As input it accepts a declarative specification of
a collection of available atomic actions (such as software
installation, transfer of a file or directory, commando ex-

3



ecution), a description of the current system state of the
managed system, and a declarative specification of a target
system state. Based on this input, FEEDBACKFLOW gener-
ates a workflow of the (parametrized) atomic actions, starts
a workflow execution engine (which enforces the execution
of each atomic action), and compiles the execution results
into an updated system state. If the updated system state
indicates that the system has not been able to reach the tar-
get system state, a new execution cycle is initiated, with a
new workflow based on the updated state information. This
control loop (illustrated with filled arrows in Figure 1) is
executed until the target system state is reached.

The architecture of the system consists of the following
active components (Figure 1):

• a customController, which triggers the consecutive
steps in the control loop and translates the input/output
between components

• a PDDL 2.1-conformantplanner(currently MBP)

• aworkflow execution engine(currently Triana)

• for each of the managed hosts, adaemonwhich re-
ceives parametrized descriptions for local atomic ac-
tions and executes them (currently a combination of
ssh and Ant).

The interaction between these components involves a num-
ber of intermediary document types. The most important
of these are the three types which must be provided by the
user:

1. A specification of atomic actions available in the sys-
tem (e.g. execution of a “dumb” Ant script), together
with a statement of a target of the workflow (e.g. in-
stantiation of a multi-tier server farm), both in PDDL
syntax (see Section 3.3 for details).

2. A specification of the system state in PDDL syntax,
which is basically a list of identifiers representing re-
sources together with the assignments of attribute val-
ues.

3. A collection of Java class/Ant script pairs, each im-
plementing a different type of an atomic action (see
Section 3.1).

3.1 Planning and Action Execution

Interaction between the components in FEEDBACK-
FLOW is orchestrated by the Controller as shown in Figure
1. Upon receipt of an actions/target specification, the Con-
troller generates a plan specification, and sends this docu-
ment to an (external) planner. We currently use MBP, as
this planner supports the largest set of features among the

publicly available packages. If the plan cannot be gener-
ated or the planner did not finish before a deadline, an error
is reported and the execution finishes. This scenario usu-
ally results from an inadequate action specification (either
description errors or an intractable complexity level) and re-
quires the user to correct the input.

In the normal case, the generated plan is parsed by the
Controller, which translates it into an XML-description of
a Triana workflow. The generated workflow consist of a
collection of atomic actions and a so-called(System) State
Managerdescribed in Section 3.2. Each atomic action is
implemented by a Java class provided by the user. The Java
class is responsible for communicating with the daemon at
a managed resource in order to trigger the execution of an
Ant script (residing locally on the resource), collect the re-
sults of the execution, and report it to the State Manager. In
addition to this proxy-like role, a Java class can be put into
simulation/debugging mode, so that it does not communi-
cate with a remote demon, but only responds to a trigger
with a randomly generated “success/failure” result.

The resource-local Ant script executes a specific action
such as software installation, file transfer, compilation etc.
according to the parameters received via the daemon call. It
should be clear that each Java class/Ant script pair is quite
generic and parametrized, e.g. we would need only one
Java class/Ant script to handle most file transfer operations,
and the pair can be reused in different application scenarios.
Similarity among Java classes (differences are mostly due to
the number parameters to be passed to the Ant script) also
allow us to use inheritance to a large degree, and in most
cases only a few changes are necessary to create a new Ant
script to accompany the Java class.

3.2 Workflow

The Controller triggers the planner to produce a se-
quence of actions with appropriate parameters. The Con-
troller provides the planner with action specifications (Fig-
ure 3), the system state description, and the target statement
(Figure 4). The output of the planner is transformed by the
Controller into a description of a Triana workflow, as de-
picted in Figure 2. Such a workflow consists of a collection
of units, which can be executed either in parallel or sequen-
tially. Each unit in Triana has zero or more data inputs, zero
or more data outputs, and is fired upon reception of data
on one or all of its inputs [20]. In this case a Java class
corresponding to this unit (and provided by the user) is in-
stantiated and executed.

The workflow generated by FEEDBACKFLOW consists
of a single State Manager unit, a Stop unit and a collection
of units representing the atomic actions. The State Manager
maintains a view of the current system state as it is changed
by the execution of the atomic actions, i.e. it collects feed-

4



Figure 2. An example of an automatically generated workflow

(define (domain installWorld)
(:types int os soft host)
(:predicates

(isAvailable ?s - soft ?o - os)
)
(:functions

(hasOs ?h - host) - os
(hasSoft ?h - host) - soft
(notInstallOS ?h - host ?os - os) - int
(notInstallSoft ?h - host ?s - soft) - int

)
(:action InstallOs

:parameters (?h - host ?o - os)
:precondition (and

(= (hasOs ?h) noOs)
(= (notInstallOS ?h ?o) 0))

:effect (assign (hasOs ?h) ?o)
)
(:action InstallSoft

:parameters (?h - host ?s - soft)
:precondition

(and
(= (notInstallSoft ?h ?s) 0)
(= (hasSoft ?h) noSoft)
(exists (?o - os)

(and
(isAvailable ?s ?o)
(= (hasOs ?h) ?o))))

:effect (assign (hasSoft ?h) ?s)
))

Figure 3. An example PDDL file specifying
software installation actions

(define (problem install)
(:domain installWorld)
(:typedef int - (range 0 3))
(:objects

apache - soft mysql - soft tomcat - soft
noSoft - soft
winxp - os linux - os noOs - os
host1 - host host2 - host host3 - host

)
(:init

(isAvailable apache winxp)
(isAvailable tomcat winxp)
(isAvailable tomcat linux)
(isAvailable mysql linux)
(forall (?h - host)(= (hasOs ?h) noOs))
(forall (?h - host)(= (hasSoft ?h) noSoft))
(forall (?h - host)

(forall (?os - os)
(= (notInstallOS ?h ?os) 0)))

)
;; <begin-feedback-settings>
;; <end-feedback-settings>
(:conformantgoal (and

(= (hasSoft host1) apache)
(= (hasSoft host2) mysql)
(= (hasSoft host3) tomcat))

))

Figure 4. An example system state specifica-
tion in PDDL

5



back from the atomic action nodes concerning the state of
the resource after executing the action (e.g. success or fail-
ure). The Stop unit is executed only if an unrecoverable
error has occurred (such as a failure of action execution in a
linear sequence).

If several actions are to be executed in a sequence, the
corresponding workflow will have a chain of the appropriate
atomic actions. Additionally, each action’s output is wired
to the State Manager. In this way, finishing the execution of
one action will simultaneously cause the firing of the next
one and provide feedback to the State Manager. Upon com-
pletion of all action chains or upon an unrecoverable error
signaled by the Stop unit, the State Manager updates the
system state document, and workflow execution is finished.
From then on the Controller assumes the execution, and ei-
ther restarts the whole cycle or terminates it depending on
the most recent system state.

As an alternative to the current solution, a plan received
from the planner could be executed directly from the Con-
troller or translated into a simple script e.g. an Ant script.
However, having an intermediate Triana workflow offers
some advantages. Those include: lower implementation
complexity by decoupling the Controller from workflow ex-
ecution, the possibility of re-using planned workflows as
“templates” or combining them with manually created ones,
and the features of the Triana workflow IDE for debugging
and visualisation. Moreover, Triana greatly facilitates wrap-
ping individual actions into Web Services. These advan-
tages justify the increased heterogeneity of the whole sys-
tem due to this architectural choice.

3.3 Specifying Actions and the System State in
PDDL 2.1

As a specification language for atomic actions we use
PDDL 2.1, a declarative language developed for interna-
tional planning competitions [9]. The advantage of this
choice is that most planning software can directly process
this input, and PDDL is a de facto standard. A possible al-
ternative would be XPDDL, an XML form of PDDL, which
however has not reached maturity as of the time of writ-
ing [11]. We have also experimented with a proprietary
XML-based specification language which was translated
into PDDL by the Controller, but we negated this option
because it was non-standard.

Figure 3 shows a simplified specification of software in-
stallation actions. The declared abstract typesint, os, soft,
host are used in the subsequent predicate and function de-
finitions. For example, the predicateisAvailable applies
if and only if the software?s is available for the operating
system?o (arguments are prefixed with ? in PDDL). There
are special functionsnotInstallOS andnotInstallSoft
called prohibitors, which are used to prohibit the corre-

sponding action from being executed for a particular argu-
ment value combination.

Two atomic actions are indicated. The first one,
InstallOs can install the operating system?o on the host
?h if this host has no operating system yet (expressed by
the fact that the value of the functionhasOs equals the
constantnoOs) and the prohibitor for these arguments is
disabled (has value0). The effect of the action is the assign-
menthasOs(?h) :=?o. The atomic actionInstallSoft is
only executed if the prohibitor is disabled, the host?h has
no installed software (a simplification to make the example
clearer), and the host has an operating system for which the
software is available. As an effect of this action, the assign-
menthasSoft(?h) :=?s is performed.

Figure 4 shows an initial system state specification and
the target specification (as provided by the user). After
declaring constants (representing resources and attribute
values) in theobjects section, the values of the predi-
cates and functions are set. In the following section (de-
limited by <begin-feedback-settings>and<end-feedback-
settings>) the modifications of the system state resulting
from workflow execution are automatically inserted by the
State Manager (Section 3.1). These modifications are repre-
sented by additional assignments of function and predicate
values (in this example by setting the prohibitors to non-
zero values for certain arguments).

The goal of this plan is specified in the last section of Fig-
ure 4. Here we require that the softwareapache, mysql and
tomcat be installed on the hostshost1, host2, andhost3,
respectively.

3.4 Application to complex resource construction

In order to validate our system we have used examples
from the domain of resource construction in Utility Com-
puting environments. A typical task was to assemble a
multi-tier system, where each tier required several servers
of the same type and running the same application. Differ-
ent applications were available for different operating sys-
tems or sets of them. Further constraints involved a limit on
the total cost of the system (cost was modeled as a function
of resources).

Our approach worked well for small examples, but we
encountered a critical complexity limit, depending on the
number of used “objects” (resources) and the number of
“exists” operators. Beyond this limit, the MBP software
took prohibitively long to compute a plan (we cut off a com-
putation on a 1 GHz Pentium IV machine if it took longer
than 4 hours) and consumed a large amount of memory.
Unfortunately, we could not obtain any further information
about this phenomenon from the authors of MBP. Further
issues arose in modeling more complex conditions, such as
an upper bound on the sum of costs. This required intri-

6



cate expressions in PDDL, which makes this approach too
complex for non-specialists.

Our experience with deploying FEEDBACKFLOW

showed that the most time-intensive aspect of the system
is the specification of the actions, i.e. identifying and
encoding their preconditions and effects. Frequently not all
relevant characteristics can be captured in the first attempt,
which makes debugging necessary. Although our approach
facilitates the specification process by using a declarative
description language, this stage is still a bottleneck in
automatizing tasks. We believe that methods for automatic
deduction of the action specifications (such as Inductive
Logic Programming [14]) from collected real-world
examples could bring some relief to this problem.

4 Design Alternatives

As a precursor to FeedbackFlow we attempted to en-
hance BPEL4WS [3] with declarative target descriptions
and support for automatic (re-)planning. Since BPEL4WS
is a de facto standard for business workflow descrip-
tions, the design of this precursor system was guided by
backward-compatibility to BPEL4WS. By adding dynamic
replanning we could gain the following features:

• the possibility to mix “standard” (i.e. non-adaptive)
BPEL4WS-workflow descriptions with the adaptive
workflows in a single document,

• the ability to dynamic replan (part of) a workflow
triggered and controlled from within a BPEL4WS-
document.

We think that it is instructive to sketch this approach, even
if we have abandoned it for the reasons stated below.

For the BPEL4WS system we extended a standard
BPEL4WS-compliant description by adding sections for
automatic workflow planning. Such a section was encom-
passed by a BPEL4WS activity of typescope with an
additional attributeplannedWorkflow=”true” . In-
side this section there was a set of atomic activities
represented by BPEL4WS activities of arbitrary type.
For each activity the added tags<pre>..</pre> and
<post>..</post> specified pre- and postconditions.
To capture the current system state we used a (complex)
BPEL4WS-compliant variableSysState . The pre- and
postconditions refer to the components of this variable.

Upon entering such a section, the BPEL4WS-engine in-
voked an external Web ServiceWorkflowPlanner act-
ing as a workflow planner. The engine passed the target
system state and the current value ofSysState to the
planner, then looped awaiting messages from the planner.
Such a message could initiate the execution of one of the ac-
tions, or terminate the loop, so that the automatic workflow

BPEL4WS

Document

Workflow

Planner

BPEL4WS

Engine

Auxiliary

Services

Figure 5. Interaction of system components

planning section was left. Notice that all activities were
expressed in a BPEL4WS-compliant language (we use the
extensibility of BPEL4WS by introducing tags from a pro-
prietary namespace) and were executed by a standard en-
gine. The whole additional implementation and algorithms
are hidden in theWorkflowPlanner service.

Figure 5 gives an overview of the system components’
interaction. At the deployment stage, the complete work-
flow description was made available to the engine and the
workflow planner. Once all services were running, and the
engine entered an automatic workflow planning section, it
called the workflow planner, and the interaction described
above took place. Such an iteration could repeat each time
when an automatic workflow planning section was about to
be executed. As in FEEDBACKFLOW, the execution of this
section could be repeated until a desired target system state
is reached.

We abandoned this approach due to problems with
the currently available non-commercial implementation of
BPEL4WS [12] and the limited variable manipulation
power of BPEL4WS 1.1. Regarding the first problem, the
IBM AlphaWorks implementation of BPEL4WS does not
support all of the features of the BPEL4WS standard, and
even the included features do not work reliably. The latter
problem relates to the fact that even simple manipulations of
“arrays” (sequences of simple WSDL types) is impossible
in the current version of BPEL4WS. This makes it neces-
sary to delegate such processing to external web services,
which increases both the system complexity and the cost of
changes.

5 Conclusions

We have described a prototypical system for adaptive
generation and execution of workflows in the domain of
systems management. The kernel of FEEDBACKFLOW is

7



a closed control loop comprised of state-aware workflow
planning, workflow execution, generation of an updated
system state, and re-iteration of this process until the de-
sired system state is reached.

One key feature of our system is the description of avail-
able actions with the standardized, declarative planning lan-
guage PDDL. This declarative specification is a prerequi-
site for flexible and adaptive workflows, in that it avoids the
need to anticipate every possible situation and code a solu-
tion to it. Using a standardized and generic language such as
PDDL allows us to exploit different external planners and to
enhance the expressiveness of the input specification with-
out changing the system. We note that this language is not
constrained to the domain of systems management, so that
by adding appropriate atomic actions our system can be eas-
ily adapted to handle problems from other domains as well.

The utilization of workflows as in intermediate stage in
the execution cycle (as opposed to a direct execution of a
plan) has a number of advantages. In addition to facilitat-
ing debugging and visualisation of the generated action se-
quences, it enables reuse of generated task sequences. Fur-
thermore, the Triana framework is also able to transform
individual actions into instances of Web Services.

Practical evaluation of our approach on examples from
resource construction revealed two bottlenecks: the need
for more efficient planning for larger problem sizes and the
necessity of augmenting the action specification process.
Our further work will address both problems. We intend
to write a specialized planner which can handle a dialect
of PDDL that scales better. The PDDL language will be
modified by introducing special predicates (e.g.contains)
and special classes of functions. Specifications using only
these elements will be handled very efficiently through
backward-chaining techniques, while other specifications
will be recognized and sent to a general-purpose planner.

Simplifying and increasing the efficacy of the action
specification process requires longer-term research and is
inherently intricate, like the problem of specifying software
requirements. Among the possible approaches we want to
focus on automatic or semi-automatic discovery of action
preconditions and effects from large sets of examples (given
e.g. by examining the registry on Windows machines). The
main tools here are existing and possibly adapted methods
from Inductive Logic Programming [14] such as the FOIL
algorithm. The output of these algorithms are rules in first
order logic, which makes them easily convertible into a
declarative language such as PDDL.

Further future work will be targeted toward extraction of
the system state or configuration from persistent stores and
conversion into our system state model.

6 Acknowledgments

We would like to thank Minor Gordon, ZIB Berlin, for
help with editing this manuscript.

References

[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch,
and J. Wilkes. Minerva: An automated resource provision-
ing tool for large-scale storage systems.ACM Transactions
on Computer Systems, 19(4):483–518, 2001.

[2] J. O. K. andDavid M. Chess. The vision of autonomic com-
puting. IEEE Computer, (1):41–50, January 2004.

[3] BEA, IBM, Microsoft, SAP AG and Siebel Systems.Speci-
fication: Business Process Execution Language for Web Ser-
vices Version 1.1, 2003.

[4] I. Ben-Shaul, G. T. Heineman, S. S. Popovich, P. D. Skopp,
A. Z. Tong, and G. Valetto. Integrating groupware and
process technologies in the oz environment. InInternational
Software Process Workshop (ISPW), pages 114–116, 1994.

[5] BMC Software.Patrol for Storage Networking, 2003.
[6] G. Candea, A. B. Brown, A. Fox, and D. Patterson.

Recovery-oriented computing: Building multitier depend-
ability. IEEE Computer, (11):60–67, November 2004.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus: Map-
ping scientific workflows onto the grid. InEuropean Across
Grids Conference, pages 11–20, 2004.

[8] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Ca-
vanaugh, and S. Koranda. Mapping abstract complex work-
flows onto grid environments.Journal of Grid Computing,
1(1):25–39, 2003.

[9] M. Fox and D. Long. PDDL2.1: An extension to PDDL for
expressing temporal planning domains.Journal of Artificial
Intelligence Research, 20:61, 2003.

[10] Gentoo. Portage, Gentoo’s Software Management Tool,
2004.

[11] J. Gough.XPDDL: the eXtensible Planning Domain Defin-
ition Language, V0.1b, 2004.

[12] IBM, AlphaWorks. IBM Business Process Execution Lan-
guage for Web Services JavaTM Run Time (BPWS4J), 2004.

[13] ITC-IRST, Italy. MBP: a Model Based Planner, 2004.
[14] N. Lavrǎc and S. Džeroski.Inductive Logic Programming:

Techniques and Applications. Ellis Horwood, New York,
1994.

[15] L. W. Russell, S. P. Morgan, and E. G. Chron. Clockwork: A
new movement in autonomic systems.IBM Systems Journal,
42(1):77–84, 2003.

[16] A. Sahai, S. Singhal, R. Joshi, and V. Machiraju. Policy
based resource construction in utility computing environ-
ments. InIEEE/IFIP NOMS, 2005.

[17] H. Schuschel and M. Weske. Integrated workflow planning
and coordination. InDatabase and Expert Systems Applica-
tions (DEXA), pages 771–781, 2003.

8



[18] V. Shepelev and S. Director. Automatic workflow gener-
ation. In European Design Automation Conference, Euro-
DAC, 1996.

[19] Stanford University.STRIPS - Stanford Research Institute
Problem Solver, 1972.

[20] I. Taylor, M. Shields, I. Wang, and R. Philp. Grid enabling
applications using triana. InWorkshop on Grid Applications
and Programming Tools, Seattle, 2003.

[21] D. Verma and S. Calo. Goal oriented policy determination.
In Proc. 1st Workshop on Algorithms and Architectures for
Self-Managing Systems, pages 1–6, San Diego, CA, 2003.

[22] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J.
Wang, C. Yuan, and Z. Zhang. Strider: A black-box, state-
based approach to change and configuration management
and support. InUSENIX Large Installation Systems Admin-
istration Conference (LISA), pages 159–172, 2003.

[23] L. Zeng, D. Flaxer, H. Chang, and J.-J. Jeng. Plmflow-
dynamic business process composition and execution by
rule inference. InTechnologies for E-Services (TES), pages
141–150, 2002.

9


