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Abstract. This paper introduces a new algorithm of conformational
analysis based on mesh-free methods as described in [18]. The adaptive
decomposition of the conformational space by softly limiting functions
avoids trapping effects and allows adaptive refinement strategies. These
properties of the algorithm makes ZIBgridfree particularly suitable for
the complete exploration of high-dimensional conformational space. The
adaptive control of the algorithm benefits from the tight integration of
molecular simulation and conformational analysis. An emphasized part
of the analysis is the Robust Perron Cluster Analysis (PCCA+) based
on the work of Peter Deuflhard and Marcus Weber. PCCA+ supports
an almost-characteristic cluster definition with an outstanding mapping
of transition states. The outcome is expressed by the metastable sets of
conformations, their thermodynamic weights and flexibility.

1 Introduction

The function of drug-like molecules often depends on their 3D conformation.
Structural analysis is therefore an important task in molecular modelling. Due
to interaction with other molecules or due to a heat bath, a molecule undergoes
conformational changes. A huge number of algorithms have been invented in
order to generate different conformations for a given molecule. Some examples
are: Cerius2 and InsightII by Accelrys Software Inc., Concord and Corina by
Molecular Networks GmbH Computerchemie, FANTOM by the Sealy Center
for Structural Biology of the university of Texas and many others. These algo-
rithms mostly include a local optimization routine for the minimization wrt. the
rough potential energy landscape of the molecule. Different strategies have been
developed in order to assure a complete computation of thermodynamically
relevent local minimizers. However, a thermodynamically correct weighting of
conformations is a severe problem and needs time-consuming samplings of the
conformational space, e.g. [7][1][12][13]. In order to link identification and sam-
pling, Deuflhard, Schütte et al. [2][3][16] described a new, consistent concept
for conformation analysis, which they called conformation dynamics. In confor-
mation dynamics, one is interested in the identification of conformations, their
thermodynamical weights and transition probabilities. ZIBgridfree is based on
this concept and provides an adaptive and complete sampling in conformational



space. In ZIBgridfree, conformations are defined as overlapping densities, i.e. ev-
ery point of the position space is assinged to each conformation with a certain
grade of membership, which additionally allows the direct identification of tran-
sition regions.

2 Conformation Dynamics Approach

2.1 Concept of Molecular Conformations

The aims of conformation dynamics are the identification of “conformations”,
their thermodynamical weights, and their transition behaviour. For an n-atoms
molecule, in literature, conformations are often understood as single points in
the 3n-dimensional space Ω of the position coordinates. In most cases, confor-
mations are defined as local minima of the energy landscape of a molecule. For
the aims of conformation dynamics this definition of conformations is insuffi-
cient, because it is impossible to compute thermodynamic weights, especially
entropical information, out of single points q ∈ Ω. According to the flexibility of
a molecule, we define conformations as overlapping partial densities in position
space, see Fig. 1 and Fig. 3 for a representation of a conformation via volume
rendering in 3D cartesian coordinates, see also [14]. Although the minima of
both conformations in Fig. 1 are nearly at the same level they do not have the
same thermodynamical weight.
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Fig. 1. For the aims of conformation analysis, conformations are not defined as points
at local minima, but as overlapping, partial densities of the spatial Boltzmann distri-
bution. Their thermodynamical weights are given by their fraction of the total density,
see equation (3).

2.2 Mathematical Description of Molecular Conformations

Since conformations are overlapping densities we map them by fuzzy sets, i.e.
conformations are defined via membership functions χ1, . . . , χnC

: Ω → [0, 1],



Fig. 2. Cyclohexane with three dihedral angles defining the conformational space Ω.
All cyclohexane figures created with amira/amiraMol [14].

Fig. 3. Volume rendering in 3D cartesian coordinates for a conformation of cyclohex-
ane.



see Deuflhard and Weber [4]. Each point q ∈ Ω is assigned to each of the confor-
mations i = 1, . . . , nC with a certain degree of membership χi(q). Additionally,
a partition of unity constraint has to be satisfied,

∀q ∈ Ω

nC∑
i=1

χi(q) = 1, (1)

which means that the conformations are a kind of soft partitioning of the whole
conformational space Ω. Via this concept, conformation analysis can be done in
a mathematical rigorous way. For example, if

π(q) =
exp(−β V (q))∫

Ω
exp(−β V (q)) dq

(2)

denotes the spatial Boltzmann distribution with Boltzmann factor β and po-
tential energy V : Ω → IR, the thermodynamical weights w1, . . . , wnC

of the
conformations can be calculated as follows:

wi =
∫

Ω

χi(q) π(q) dq, (3)

where w−1
i χi(q)π(q) is the normalized partial density function corresponding to

conformation i.
Since this is a function based definition of conformations, we need a function

basis φ1, . . . , φs : Ω → [0, 1] for approximation of the conformations. If this
function basis has got the same properties like χ1, . . . , χnC

: Ω → [0, 1], i.e. non-
negativity and partition of unity, then conformations are convex combinations
of the basis functions, see Weber [18].

In the presence of metastable conformations, the overlap integral matrix S ∈
IRs×s

S(i, j) =
∫

Ω

φi(q)φj(q) π(q) dq (4)

of the basis functions is almost block structured, which can be used to identify the
conformations via Robust Perron Cluster Analysis (PCCA+), see Deuflhard and
Weber [4] or Weber and Kube [19]. PCCA+ computes the convex combination
factors cij ∈ [0, 1], i = 1, . . . , nC , j = 1, . . . , s, for χi(q) =

∑s
j=1 cijφj(q), such

that the overlap between different conformations is minimized.
Analogous to w−1

i χi(q)π(q), there is a partial density and a thermodynami-
cal weight v1, . . . , vs connected to each of the basis functions. In order to compute
the transition behaviour of the molecular conformations, we have to determine
the effect of short-time molecular dynamics on these partial densities with respect
to the potential function V . The propagation in time span τ > 0 of densities in
position space under the influence of a heat bath can be represented by a linear
self-adjoint Markov operator P τ , see Schütte [15]. The corresponding stochastic
transition matrix P ∈ IRs×s is used for an exploration of the transition behaviour
in conformation analysis:

P (i, j) =

∫
Ω

φi(q) P τ φj(q) π(q) dq∫
Ω

φi(q) π(q) dq
. (5)



2.3 Sampling Technique for the Function Basis

For a numerical approximation of the desired matrices S and P we have to
compute the partial densities connected to the basis functions. This can simply
be done by an HMC-sampling1 of modified potential energy functions V1, . . . , Vs :
Ω → IR, where

Vi(q) = V (q)− 1
β

ln(φi(q)). (6)

Via this partial density sampling technique, we assure that each part of the
conformational space is sufficiently examined to get a reliable transition matrix
P for the exploration of transition paths. The decomposition of the conforma-
tional space avoids at the same time trapping-effects. In (6), V denotes the
original potential energy function of the molecule and the potential modification
−β−1ln(φi(q)) is a kind of soft restriction in conformational space.

2.4 Meshfree Partitioning of the Conformational Space

Because of the partition of unity constraint, the function basis φ1, . . . , φs de-
composes the whole conformational space. In order to get a good start decom-
position of Ω, we apply Shepard’s partition of unity method [17] to a set of
Gaussian functions. The maxima of the Gaussian functions are called “nodes”.
In ZIBgridfree the nodes of the function basis are located evenly according to a
short presampling at high temperature, for a technical description of ZIBgridfree
see Meyer [10], for a mathematical introduction see Weber [18]. We can assume
that these functions decompose the part of conformational space sufficiently fine
at all locations, where the density of molecular states is relevant above zero
at lower temperature. This is the first step of an adaptive discretization of a
high-dimensional conformational space.

Fig. 4. Density plot of a 1000K presampling of cyclohexane in the 3-dimensional space
spanned by the dihedrals ω1, ω2 and ω3 (projected to 2D). The presampling is used as
basis for the node selection. In green: Selected nodes for the basis functions after the
refinement routine.

1 For HMC sampling theory see Duane et al. [5] and Fischer [6].



Fig. 5. Two different perspectives of a density plot of cyclohexane in its conformational
space spanned by the three dihedrals of the ring for a 300K sampling. Obviously,
there are eight accumulation regions in that plot representing eight conformations of
cyclohexane.

Fig. 6. This figure shows cyclohexane in its conformational space spanned by the three
dihedrals of the ring, and above four corresponding conformations in the 3D cartesian
space. These are some of the conformations identified via ZIBgridfree. They cover a
certain part of the conformational space, which is marked in green.



2.5 Adaptive Refinement of the Partitioning

After generating a start decomposition, we have to adapt the function basis to
the given molecular potential. Recursively, we test if a given node leads to a
converging subsampling according to (6) or has to be replaced with a new set of
nodes. In ZIBgridfree covergence is tested according to an error estimation of the
weight computation. Convergence is reached, if the overlap integral values be-
tween different samplings become stationary, see Weber [18]. Numerical examples
have shown, that this criterion leads to an effective sampling wrt. computational
effort. Via refinement of the function basis, not only the error of weight com-
putation is minimized; it can be shown, that especially this kind of refinement
indicator at the same time leads to good approximation properties according to
the conformations.

3 Numerical Results

As an example for the results of ZIBgridfree [11] we present cyclohexane. Like
in Fig. 2, three dihedral angles can give a sufficient description of its confor-
mational space Ω. A presampling at 1000K leads to a Boltzmann distribution
in this 3-dimensional space shown as projection in Fig. 4. This pre-sampling is
the basis for the node selection algorithm. In Fig. 4, the 75 nodes, which have
been selected after applying the refinement algorithm with the above conver-
gence indicator, are shown in green. After selecting the nodes, ZIBgridfree starts
the 300K HMC-subsamplings for the modified potentials (6) and computes the
corresponding thermodynamical weights v1, . . . , vs. Plotting the partial densi-
ties according to φ1, . . . , φs with regard to their thermodynamical weights ends
up in Fig. 5, which represents the spatial Boltzmann distribution of cyclohex-
ane at 300K in the conformational space Ω. Robust Perron Cluster Analysis
[4] applied to S, see (4), identifies the corresponding eight accumulation regions,
which represent different conformations of cyclohexane, see Fig. 6. The two chair
conformations (see Fig. 6 left and right) of cyclohexane together have a total
thermodynamical weight of about 99.99%. Finally, with the aid of the transition
matrix P , see (5), we examined the transition paths between the two chair con-
formations of cyclohexane. The result was, that once cyclohexane has reached
a non-chair conformation it will leave this conformation in time span τ = 40fs
with a probability of about 30% at 300K room temperature. In contrast to that,
leaving a chair conformation is only done with a probability of about 0.01%.
In other words: Only the chair conformations are metastable, there is a high
fluctuation in the transition region. Figure 5 right provides a good overview of
the two metastable chair conformations and the ellipsoid transition region.

4 Conclusions

Due to a partition of unity method with an adaptively refined function basis,
ZIBgridfree provides a thermodynamically complete and reliable sampling of the



conformational space of a drug-like molecule. Via Robust Perron Cluster Analy-
sis, it identifies conformations as metastable, partial densities of the Boltzmann
distribution in Ω. In contrast to other sampling approaches, the modified po-
tential samplings of ZIBgridfree are additionally focussed into transition regions
of the molecule, such that the rare event information of transition paths and
probabilities is simulated reliably.
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University Berlin, 2005. In German.

11. H. Meyer, M. Weber, and A. Riemer. ZIBgridfree. Software package for HMC-
simulation and conformation analysis based upon C++ classes of amiraMol [14]
using the Merck Molecular Force Field [8][9] implemented by T. Baumeister and
parametrized by F. Cordes. Robust Perron Cluster Analysis [4] implemented by
M. Weber and J. Schmidt-Ehrenberg. VERX (extrapolation method based on Ver-
let) implemented by U. Nowak, Status: January 2005. Software owned by the Zuse
Institute Berlin.

12. A. Mitsutake, Y. Sugita, and Y. Okamoto. Generalized-ensemble algorithms for
molecular simulations of biopolymers. Biopolymers, 60:96–123, 2001.



13. T. A. Knotts N. Rathore and J J. de Pablo. Configurational temperature density
of states simulations of proteins. Biophysical Journal, 85:3963–3968, 2003.

14. J. Schmidt-Ehrenberg, D. Baum, and H. Ch. Hege. Visualizing dynamic molecu-
lar conformations. In IEEE Visualization 2002, pages 235–242. IEEE Computer
Society Press, 2002.
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