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A Hierarchical Geodesic Model for
Longitudinal Analysis on Manifolds

Esfandiar Nava-Yazdani, Hans-Christian Hege, Christoph von Tycowicz

Visual and Data-centric Computing, Zuse Institute Berlin, Germany
{navayazdani, hege, vontycowicz}@zib.de

Abstract
In many applications, geodesic hierarchical models are adequate for the study of temporal

observations. We employ such a model derived for manifold-valued data to Kendall’s shape
space. In particular, instead of the Sasaki metric, we adapt a functional-based metric,
which increases the computational efficiency and does not require the implementation of the
curvature tensor. We propose the corresponding variational time discretization of geodesics
and employ the approach for longitudinal analysis of 2D rat skulls shapes as well as 3D shapes
derived from an imaging study on osteoarthritis. Particularly, we perform hypothesis test
and estimate the mean trends.
Keywords: Longitudinal modeling, Shape trajectory, Riemannian metric, Geodesic regression,
Osteoarthritis, Kendall’s shape space

1 Introduction
Analysis of time-dependent data has become increasingly important for a wide range of applications
such as understanding the onset and progression of diseases, physical performance assessment
from biomechanical gait data, or facial expression analysis in video sequences. All these examples
can be understood as longitudinal data, where individual instances of a common underlying
process are observed at multiple time points. While common statistical tools like mean-variance
analysis and regression allow to study phenomena across individuals or within a single one,
longitudinal data exhibits correlations due to repeated measurements that violate the independence
assumptions of such cross-sectional methods. Another issue that warrants attention is missing
data that arise, e.g. due to acquisition errors or when subjects drop out of a clinical study.
Proper statistical inference for longitudinal data must therefore account for the within-individual
correlation of observations as well as for the sparse and non-uniform sampling.

In this light, hierarchical models and in particular mixed-effects models pose an adequate and
very flexible framework for longitudinal data analysis [1, 2]. Such approaches deal with the mass
of the inherent interrelations by specifying a model in which each subject is assumed to have
an own unique functional relation between the dependent variable and time-related predictor(s).
Thus, a parametric spatio-temporal model that optimally fits the data for each given individual
is estimated. Due to random error variation in the dependent variable at each time point for
each individual, the fit is generally not perfect. The coefficients describing these subject-specific
models (e.g. intercept and slope in the case of straight lines) are in turn assumed to vary randomly
in the population. Corresponding to these random effects, there is a ‘fixed’ effect that is often of
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1 INTRODUCTION

primary interest, i.e. a single group ‘fixed’ coefficient that indexes the average spatio-temporal
model for the entire group.

While there is abundant literature on the mixed-effects framework for scalar and vector-
valued measurements, generalizations to other types of data where the domains are structured
(such as shapes or graphs) are still at an early stage of research. However, there is a substantial
body of work that demonstrates the advantages of leveraging the structure (or geometry) of
the data such as improving the assessment of subject-specific clinical outcomes [3], computer-
aided diagnosis [4, 5, 6], or comparing populations [7, 8, 9] to name but a few instances. This
provides a strong impetus for the development of generalized hierarchical models that benefit
from a compact encoding of constraints and exhibit a superior consistency as compared to their
Euclidean counterparts.

A common workaround when facing manifold-valued data is to resort to linear statistical tools
by employing a vector space representation—either given explicitly by the discrete representation
or derived via a dedicated operation. For example, in the field of medical image analysis linear
mixed-effects models have been applied to vertex coordinates of meshes in order to study shape
data [10, 11]. In general, however, the quality of the obtained model depends on the validity of
the linearity assumption, which is a poor choice for data with a large spread or within regions of
high curvature in shape space and, thus, is considered a limiting factor for the ability to represent
natural biological variability in populations (see e.g. [12] and the references therein).

To derive coordinate-free, manifold-based formulations Riemannian geometry provides a
suitable generalization of straight lines called geodesics that serve as a building block for inference
models. This approach has been explored in multiple works [7, 13, 8, 14] leading to geodesic
hierarchical models that encode both subject-specific as well as group trends in terms of geodesics.
There are further extensions that employ a multi-geodesic approach to model developments as
function of multiple, possibly categorical covariates [15], as well as nonparametric formulations [16]
describing group average trends via weighted Fréchet means. In lieu of intrinsic noise distributions
that feature tractable computation of the likelihood, model estimation in these approaches is
formulated in terms of least-squares criteria instead of maximum likelihood or empirical Bayes
estimates. Nonetheless, under certain conditions the least-squares solutions can be shown to
agree with maximum likelihood estimates [14].

More recently, probabilistic formulations of Riemannian mixed-effects models [17, 18, 19, 20,
21] have been proposed. These approaches are based on a notion of parallelity that constraints the
‘slopes’ to be fixed for the entire population, whereas subjects in the study may follow different
patterns of disease progression. This assumption can, hence, be a limiting factor diminishing the
flexibility and fidelity of these approaches.

In order to gauge differences in geodesic trends many approaches employ a product metric
that measures the distance between privileged points on the trajectories as well as the directional
deviation (change in ‘slope’). The latter relies on a notion of transport between tangent spaces
to spatially align trajectories, e.g. parallel transport [22, 17, 15] in Riemannian manifolds or
co-adjoint transport [23, 13] in the group of diffeomorphisms. However, the choice of transport
can have a significant impact on the analysis: While the parallel transport depends on the
path of transport (an effect called holonomy), the co-adjoint transport is not compliant with
the metric. From a geometrical point of view, more appropriate distances can be derived by
considering the space of trajectories itself as a differentiable manifold and equipping it with a
Riemannian metric that is in turn consistent with the metric of the data manifold. State-of-
the-art approaches, therefore, identify geodesics with points in the tangent bundle of the data
manifold [7]. While the Sasaki metric is a natural metric on the tangent bundle, its geodesic
computations require time-discrete approximation schemes involving the Riemannian curvature
tensor. This not only incurs high computational costs, but also has a negative effect on numerical
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2 HIERARCHICAL GEODESIC MODEL

stability.
We consider a novel approach that overcomes these shortcomings. To this end, we identify

elements of the tangent bundle with vector fields along the geodesic trend. This provides a notion
of a canonical metric that is motivated from a functional view of parameterized curves in the
shape space [24]. Considering the space of the geodesics as a submanifold in the space of shape
trajectories, this allows in particular the use of a naturally induced distance. The corresponding
shortest path, log map and average geodesic, can be computed by variational time-discretization.
Remarkably, the underlying energy function allows for fast and simple evaluation increasing
computational efficiency. In particular, the computation of the distance requires neither the
computation of the curvature nor the decomposition into horizontal and vertical components.

In this work, we employ the derived metric within the generative hierarchical approach
introduced in [7] that is based on a least-squares theoretic formulation. In the first stage of
this hierarchical model, inner-individual changes are modeled as geodesic trends, which in the
second level are considered as disturbances of a population-averaged geodesic trend. For the
first stage, estimates at the individual level amounts to solving geodesic regression problems [25]
for each individual. These problems can be solved efficiently in terms of first-order Riemannian
optimization schemes [26]. The involved geodesic computations require geometric quantities
such as adjoint Jacobi fields and parallel transport. These important geometric quantities are
in general not given as closed form expressions. Efficient approximation schemes have been
presented in [27, 28, 26].

Using the derived metric for geodesic trends, we obtain a notion of mean, covariance, and
Mahalanobis distance. This allows us to develop a statistical hypothesis test for comparing the
group-wise mean trends. Non-parametric permutation tests are applied to test the significance
of the estimated differences in group trends. We perform this using a manifold-valued Hotelling
T 2 statistic analogously to [7] by applying it to the tangent bundle. As example application
we demonstrate the methodology on rat skulls growth and the long term study of incident knee
osteoarthritis (OA).

This paper is organized as follows. In the next section, we describe the geodesic mixed effects
model and present an alternate approach for the computation of mean trends as well as the
corresponding algorithmic realization. Section 3 provides an overview of Kendall’s shape space.
Section 4 presents the application of our approach to synthetic spherical data for simulation
studies, followed by rat calivaria and femur data from an epidemiological longitudinal study
dealing on osteoarthritis in Kendall’ shape space and a discussion of the numerical results.

2 Hierarchical Geodesic Model
In this section, we describe the geodesic hierarchical model following least-squares theoretic
derivation introduced in [7]. In particular, we derive a novel, functional-based Riemannian
metric on the space of geodesics, thereby inducing notions of mean geodesics, co-variances in
populations of geodesics, and least-squares estimates.

Let (M, g) be a smooth complete Riemannian manifold with distance function d, exponential
map exp, its local inverse log and injectivity radius rinj . Then, the response Yi of the i-th
individual is modelled by

Yi = expγi(Ti)(εi),

where γi denotes the geodesic parameterized with respect to the independent variable Ti. The
random variation of observations from the geodesic γi is modelled by the exponential map and
the random variable εi that takes values on the tangent space at corresponding points on γi. The
group-level trend is then determined as the mean γ̄ geodesic modelled by the exponential map
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2.1 Geodesic Regression 2 HIERARCHICAL GEODESIC MODEL

Figure 1: Schematic view of the geodesic mixed effects model: Subject-wise trends represented
as best-fitting geodesics and subsequent population-average trend as mean of these geodesics in
the shape space.

expTM of the tangent bundle TM
γi = expTMγ̄ (νi),

where νi ∈ Tγ̄TM represents the residual geodesic encoding the difference to the group-level
geodesic.

To estimate the parameter of the described longitudinal model, we employ a two-step least-
squares procedure requiring an appropriate notion of distance in the space of geodesics.

2.1 Geodesic Regression
The first stage of the employed model poses an instance of geodesic regression, which we
summarize below. As such inconsistencies, e.g. due to acquisition noise and reconstruction errors,
in the individual’s observations are minimized. For an overview and applications we refer to [26],
[25] and [29].

Consider scalars t1 < t2 < · · · < tN and distinct points q1, · · · , qN ∈M . Geodesic regression
aims at finding a geodesic curve that best fits the data qi at ti in the least-squares sense, i.e.,
minimizing

N∑
i=1

d2(qi, γ(ti))

over γ in the space of geodesics. The minimizer is called best-fitting geodesic for data (ti, qi)i=1,··· ,N .
Applying a linear bijection, we may assume that 0 = t1 < t2 < · · · < tN = 1.

For a geodesic γ from x to y, Φ denotes the parametrization of γ as a path over the unit
interval, viz.

Φ(x, y, t) := expx(t logx y), t ∈ I, (1)

where I := [0, 1].
Computationally, we employ the above parametrization to determine the corresponding Φ(x∗, y∗, .),

where (x∗, y∗) := arg minF and

F (x, y) :=
N∑
i=1

d2(qi,Φ(x, y, ti))

over M ×M . The choice (q1, qN ), serves as a natural initial guess.
We remark, that one could identify geodesics with their initial points and velocities instead

of using endpoints. We employ the latter, since geodesic computations in terms of the function Φ
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defined in equation (1), the so-called slerp (spherical linear interpolation), are more efficient. The
predictive power of the regression model can be measured by the coefficient of determination,
denoted R2. To compute it, let Fmin := F (x∗, y∗) and denote the minimum of

G(x) :=
N∑
i=1

d2(qi, x))

by Gmin. Then
R2 = 1− Fmin

Gmin
.

We recall that 1
N Fmin and 1

NGmin are the unexplained and total variance, respectively. Moreover,
R2 ∈ [0, 1] and a large value indicates better regression performance (goodness of fit).

Generally, due to absence of an explicit analytic solution, the regression task has to be solved
numerically. To this end, we employ a Riemannian trust-regions solver [30] with a Hessian
approximation based on finite differences. The main challenge in this regard, is the computation
of the gradient of F , ∇F . Due to the fact that

∇ρy(x) = −2 logx y,

where ρy(x) := d2(x, y), ∇F is given by the adjoint of the sum of certain Jacobi fields. For
details and application to Kendall’s shape space, we refer to [26].

2.2 Tangent bundle and Mean Geodesic
Geodesic mixed effects models and particularly mean geodesic (group trend) require a notion of
distance for the tangent bundle consistent with the Riemannian metric of the shape space. In
the following, we present a brief introduction to a natural choice for such a distance provided
by the Sasaki metric employed in [7]. Then, we propose an alternative L2-type approach and
induced variational time-discrete geodesics.

Let τ denote the canonical projection of the tangent bundle TM . Suppose that TM is
endowed with a Riemannian metric g̃. Identifying a geodesic with its endpoints, the mean
of geodesics is determined by g̃. A prominent natural choice for g̃ is the the Sasaki metric.
It is uniquely determined by the following properties (cf. [31]): a) τ becomes a Riemannian
submersion (τ has maximal rank and dτ preserves lengths of horizontal vectors). b) The
restriction of g̃ to any tangent space coincides with the Euclidean metric induced by g. c)
Parallel vector fields along arbitrary curves in M are orthogonal to their fibers, i.e., for any
curve γ and parallel vector field v along it, v̇ ⊥ TγM .

Let η := (p, u) : I → TM be a smooth curve. τ being a Riemannian submersion, TηTM
enjoys an orthogonal decomposition in vertical (viz. kernel of dητ) and horizontal subspaces, each
of dimension dim(M). Identifying each of them with TpM , the Sasaki metric at η is induced by
the quadratic form ‖v‖2 + ‖w‖2, where v = p′ and w = u′ and prime denotes the derivative with
respect to the curve parameter s. Denoting the covariant derivative and curvature tensor of g
by ∇ and R, Sasaki geodesics are characterized by

∇vv = −R(u,w, v),
∇vw = 0.

Algorithms for the computation of the exponential and log map as well as mean geodesic
with respect to Sasaki metric, and also an application to corpus callosum longitudinal data
as trajectories in Kendall’s shape space are given in [7]. In the case m = 2 (planar shapes), the
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2.2 Tangent bundle and Mean Geodesic 2 HIERARCHICAL GEODESIC MODEL

shape space can be identified with the complex projective space and the Riemannian curvature
tensor is explicitly given in terms of the canonical complex structure and the curvature tensor
of the pre-shape space. For m ≥ 3, computation of R is more delicate.

We recall that the decomposition of the double tangent bundle into horizontal and vertical
subspaces can be expressed in terms of Jacobi fields as follows (cf. [32]). The map H(s, t) :=
expp(s)(tu(s)) is a family of geodesics. Therefore, Js(t) := H ′(s, t) is a family of Jacobi fields.
The horizontal and vertical components of η′ read v = J(0) and w = J̇(0).

Next, we propose an alternative approach to employ a metric on the tangent bundle. Fix
s ∈ I and let γs : I → M be the geodesic emerging from p(s) with initial velocity u(s) = γ̇s(0).
Let ξs be a vector field along γs. Then by ‖ξs‖2L2 =

∫
I
g(ξs(t), ξs(t)) dt a quadratic form at

(p(s), u(s)) is given, which defines a distance, denoted by δ for the space of geodesics and in
turn, on the tangent bundle TM . Hence, from an extrinsic point of view, δ is induced by the
standard metric of the Hilbert manifold L2(I,M).

Now, let H = H(s, t) be a family of paths I → M (H(s, ·) not necessarily geodesics) with
α := H(0, ·) and β := H(1, ·) geodesics. The energy of H induced by the above quadratic form
reads

E(H) =
∫ 1

0

∫ 1

0
g(H ′(s, t), H ′(s, t)) dt ds

(ξs = H ′(s, .)). Let H∗ denote the minimizer of E restricted to paths through geodesics, i.e.
H(s, .) geodesic for all s ∈ I. Fix n ∈ N. Next, we construct time-discrete paths (H∗i )i=0,··· ,n
(sequence of geodesics) to approximateH∗, which in turn, identifying each geodesic with its initial
point and velocity, provides a discrete path in the tangent bundle approximating (H∗(0), Ḣ∗(0)).
We remark that the energy functional E achieves its minimum in L2(I,M), i.e. over all paths
connecting α to β, if H(., t) is a geodesic for all t. It follows from a slight modification of [24,
Theorem 3.2], which we present in section 6.1 for the reader’s convenience. Now, let si := i

n .
We may write

E(H) =
n−1∑
i=0

∫ si+1

si

‖H ′(s, .)‖2L2 ds

and discretizing E intrinsically, i.e. replacing H ′(s, .) by the finite difference n logHi
Hi+1 with

Hi(.) := H(si, .), we arrive at

En(H) = n

n−1∑
i=0

δ2(Hi, Hi+1).

Identifying each geodesic Hi with its endpoints xi = Hi(0) and yi = Hi(1), we have to minimize
the explicit expression

En((xi, yi)i=0,··· ,n) = n

n−1∑
i=0

∫ 1

0
d2(Φ(xi, yi, t),Φ(xi+1, yi+1, t)) dt.

Now, to ensure that any two points determine a unique geodesic, we suppose that α and β are
close enough in the sense that their images lie in a convex normal neighbourhood (for instance a
geodesic ball with radius rinj

2 ) and let (x∗, y∗) be the minimizer of En over (xi, yi)i ∈Mn ×Mn

with fixed endpoints x0 = α(0), y0 = α(1), xn = β(0), yn = β(1). A natural choice for the initial
values x0 and y0 is given by the equidistant partition x0

i = Φ(x0, xn, si), y0
i = Φ(y0, yn, si). Then,

the desired discrete shortest path reads

H∗ = (Φ(x∗0, y∗0 , .), · · · ,Φ(x∗n, y∗n, .)) . (2)
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2.3 Algorithmic Realization 2 HIERARCHICAL GEODESIC MODEL

We remark that the discrete path length is given by

Ln((xi, yi)i) =
n−1∑
i=0

δ(Hi, Hi+1) =
n−1∑
i=0

√∫ 1

0
d2(Φ(xi, yi, t),Φ(xi+1, yi+1, t)) dt.

Furthermore, for any discrete path H one has the apriori estimation

δ2(H0, Hn) ≤ n
n−1∑
i=0

δ2(Hi, Hi+1),

with equality if and only if all Hi equidistantly lie along a smooth shortest path from H0 to Hn.
Note that H0 = α, Hn = β and the right hand side of the above inequality is the discrete

energy En(H), explicitly given by (2). Indeed, one verifies that, if M is the Euclidean space,
then the minimizer coincides with the initial value and in the above estimation equality holds.
Moreover, it coincides with the discrete Sasaki geodesic and converges to the Sasaki geodesic
given by

p(s) = (1− s)α(0) + sβ(0),
u(s) = sα̇(0) + (1− s)β̇(0).

Next, we aim at constructing the mean of N geodesics γj : I →M . To ensure well-defindeness
of the approach, we suppose that they are close enough, in the sense that their images lie in a
neighbourhood U within 1

2min{rinj ,
π√
∆
}, where ∆ denotes an upper bound for the sectional

curvature in U and π√
∆

is interpreted as +∞ if ∆ ≤ 0 (e.g. for Hadamard manifolds). Now, the
induced mean of γ1, · · · , γN is the geodesic γ with initial- and endpoints x and y, minimizing
over M2

Gn(x, y) =
N∑
j=1

min
xj

i
,yj

i
∈M

En((xji , y
j
i )i=0,··· ,n)

s.t.xj0 = x, yj0 = y, xjn = γj(0), yjn = γj(1).

(3)

A natural choice for the initial value is given by the point-wise mean of (γj(0), γj(1)), j =
1, · · · , N . In the sequel, we call δ the functional-based L2-metric.

Note that computations of the log map and mean with respect to δ neither involve the
curvature tensor nor decomposition in horizontal and vertical components.

2.3 Algorithmic Realization
In this section, we describe the algorithmic realization of the computation of the variational time-
discrete shortest path and the mean geodesic with respect to the proposed L2-metric, denoted
by δ.

Discrete shortest paths are determined as minimizers of the discrete path energy En given
in (2). Before we turn to the general case, let us first consider solutions of E2, i.e. discrete
2-geodesics in TM . Assuming endpoints to be fixed, i.e. seeking solutions of the boundary value
problem, the search space for solutions of E2 reduces to a single M -geodesic. Indeed, given
a quadrature rule for t-discretization, the estimation of 2-geodesics numerically coincides with
(weighted) geodesic regression. Explicitly, we minimize over x, y ∈M

E2((x−, y−), (x, y), (x+, y+)) =
k∑
i=0

ωid
2(Φ(x, y, ti),Φ(x−, y−, ti))

+ d2(Φ(x, y, ti),Φ(x+, y+, ti)))),
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where discrete values ti and weights ωi are determined by the chosen quadrature rule. This
analogue allows us to reuse algorithms and implementations for geodesic regression that are
already required during the first stage of our hierarchical model. Moreover, as the solutions
to E2 are also midpoints of the corresponding 2-geodesic, we can interpret them as discrete
averages. This allows to derive an optimization procedure for general En by adopting a discrete
path shortening flow from the realm of polygonal path processing. In particular, we employ
an iterative averaging approach detailed in Algorithm 1 that consecutively updates each of the
inner nodes by replacing it with the average of its neighbours as determined by regression, i.e.
estimation of a 2-geodesic (n = 2). One verifies that this algorithms converges, as each averaging
step weakly decreases the discrete path energy En.

Algorithm 1 Discrete Shortest Path
Input: Initial and final geodesics α and β
Output: Shortest path (xi, yi)i ∈Mn ×Mn from α to β

(xi, yi)i ← (Φ(α(0), β(0), i/n),Φ(α(1), β(1), i/n))i=0,...,n
repeat

for i = 1, · · · , n− 1 do
(xi, yi)← regression((xi−1, yi−1), (xi+1, yi+1))

end for
until convergence

Computation of the discrete mean geodesic γ̄ requires minimization of Eq. (3) yielding a
simultaneous optimization over N discrete paths (xji , y

j
i )i=0,...,n connecting the input geodesics

γj and γ̄. While interior nodes of each path have to form 2-geodesics with their neighbours,
the coupling at the center is described as minimizer of G1, where input geodesics are the first
interior nodes (xj1, y

j
1) along the discrete paths. Again, the optimization of G1 w.r.t. the center

γ̄ can be considered as an instance of geodesic regression following a similar argument as for
E2. This motivates an alternating optimization procedure that—in every iteration—first relaxes
the estimate for γ̄ and subsequently updates the interior nodes of the paths each time solving
a geodesic regression problem. To improve efficiency, we further employ a cascadic approach in
time by solving the sequence of related problems (minγ Gk)k=1,...,n using the k-th solution to
initialize the subsequent problem.

3 Kendall’s Shape Space
In the following we present a brief overview of Kendall’s shape space and its tangent bundle as
well as main quantities which will be employed for geodesic analysis and statistics. Note that our
approach is not limited to the Kendall’s shape space and can be employed to any Riemannian
manifold.

For a comprehensive introduction to Kendall’s shape space and details on the subjects of this
section, we refer to [33] and [26]. For the relevant tools from Riemannian geometry, we refer to
[34] and [35].

LetM(m, k) denote the space of realm×k matrices endowed with its canonical scalar product
given by 〈x, y〉 = trace(xyt), and ‖ · ‖ the induced Frobenius norm. We call the set of k-ad of
landmarks in Rm after removing translations and scaling the pre-shape space and identify it with

Skm := {x ∈M(m, k) :
k∑
i=1

xi = 0, ‖x‖ = 1}

8



3 KENDALL’S SHAPE SPACE

endowed with the standard spherical distance given by d(x, y) = arccos(〈x, y〉).
A shape is a pre-shape with rotations removed. More precisely, the left action of SOm on Skm

given by (R, x) 7→ Rx defines an equivalence relation given by x ∼ y if and only if y = Rx for
some R ∈ SOm. Kendall’s shape space is defined as Σ = Skm/∼. Now, denoting the canonical
projection of∼ by π, the induced distance between any two shapes π(x) and π(y) is the Procrustes
distance given by

d(x, y) = min
R∈SOm

d(x,Ry) = arccos
m∑
i=1

λi,

where λ1 ≥ · · · ≥ λm−1 ≥ |λm| denote the pseudo-singular values of yxt. Note that for simplicity
of notation, we have identified shapes and their representing pre-shapes in the definition of
dΣ. We call x, y ∈ Skm well positioned and write x ω∼ y if and only if yxt is symmetric and
d(x, y) = d(x, y). For each x, y ∈ Skm, there exists an optimal rotation R ∈ SOm such that
x
ω∼ Ry. The diameter of σ is π/2.
Furthermore, the horizontal and vertical spaces at x ∈ Skm read

Horx = {u ∈M(m, k − 1) : uxt = xut and 〈x, u〉 = 0},
Verx = {Ax : A+At = 0}.

A smooth curve is called horizontal if and only if its tangent field is horizontal. Geodesics in the
shape space are equivalence classes of horizontal geodesics. For x ω∼ y the geodesic from x to y
given by

Φ(x, y, t) = sin((1− t)ϕ)
sinϕ x+ sin(tϕ)

sinϕ y

with ϕ = arccos(〈x, y〉), 0 ≤ t ≤ 1, is horizontal. Hence Φ realizes the shortest path from π(x)
to π(y). Now, let Log and Exp denote the log and exponential map of the pre-shape sphere, i.e.,

Logxy = ϕ
y − 〈x, y〉x
‖y − 〈x, y〉x‖

,

and
Expxv = cos(ϕ) · x+ sin(ϕ)

ϕ
· v,

with ‖v‖ = ϕ, 〈x, v〉 = 0. Then the Riemannian exponential map of the shape space, denoted by
ẽxp, satisfies

π(Expxu) = ẽxpπ(x)(dxπ(u)) = ẽxpπ(x)(dxπ(uh)),

where uh stands for the horizontal component of u ∈ TxSkm. Furthermore, the log map of the
shape space is represented at x by (Logx)h.

We recall, that pre-shapes with rank ≥ m − 1, denoted by S, constitute an open and dense
subset of Skm and the restriction of the quotient map π to S is a Riemannian submersion with
respect to the metric induced by the ambient Euclidean space. Moreover, for pre-shapes in S,
the optimal rotation is unique if and only if λm−1 + λm 6= 0. Denoting the covariant derivatives
in the pre-shape and shape space by ∇ respectively ∇̃, for horizontal vector fields X and Y , we
have

∇XY = (∇XY )h + 1
2[X,Y ]v.

Here the superscript v denotes the vertical component and [., .] the Lie bracket. Moreover,
(∇XY )h equals the horizontal lift of ∇̃dπXdπY . In particular,

dπ(∇XY ) = (∇̃dπXdπY ) ◦ π.
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We recall that denoting the Euclidean derivative of a vector field W along a path γ in the
pre-shape sphere (i.e. ‖γ‖ = 1) by Ẇ , we have

∇γ̇W = Ẇ − 〈Ẇ , γ〉γ.

Key quantities of the shape space geometry such as parallel transport, Jacobi fields and
Fréchet mean can be computed by horizontal lifting to S (and extension to Skm). We refer the
reader to [26] for corresponding results.

4 Experiments
In this section, we provide experimental evaluations based on the proposed geodesic hierarchical
model for synthetic as well as publicly available, longitudinal data. First, we perform a simulation
study investigating the efficacy of the proposed method. Second, we provide a comparison of
mean trends w.r.t. the Sasaki and our proposed metric, apply the approaches to planar shapes
describing rat skulls and compare the results. Subsequently, we apply the derived scheme to
the analysis of group differences in longitudinal femur shapes of subjects with incident and
developing osteoarthritis (OA) versus normal controls. In particular, we estimate group-wise
trends and perform a Hotelling T 2 test to identify significant group differences. For two-
dimensional visualization, we apply tangent PCA at the Fréchet mean of shapes representing
the observed data. Time discrete computations are performed based on 2-geodesics—employing
finer discretizations have been found to provide no further improvements for the datasets under
study.

4.1 Synthetic Spherical Data
We performed simulation studies with responses on the 2-dimensional unit sphere S2. The
objective of these studies is to illustrate the application of the proposed approach and to verify
its efficacy. To this end, we fixed a geodesic µ with initial- and endpoints µ0 and µ1, and employed
two distributions of spherical geodesics with mean µ, to generate random geodesics. We call the
distributions M2 and Sasaki. Let σ = π

12 . The M2 distribution uses the parametrization of
geodesics over S2×S2. Therein a sample geodesic γ is given by initial- and endpoints γ0 and γ1
drawn from a normal distribution with standard deviation σ centered at µ0 and µ1, respectively.
For the Sasaki distribution, we randomly generate vectors v and w in Tµ0S

2 from a normal
distribution with standard deviation σ and mean zero. We gain γ0 and γ̇(0) by applying the
Sasaki exponential map at (µ0, u) to (v, w), where u = µ̇(0).

We used 1
π max(d(µ0, γ0), d(µ1, γ1)) with

d(x, y) = arccos(〈x, y〉), to measure the distance between µ and γ and thus, quantify the accuracy
of our estimations. The scaling factor 1

π reflects the fact that the error is bounded above by π,
the diameter of the sphere.

In the first study, we repeatedly (100 times) estimated mean geodesics from 25 randomly
generated geodesics. The resulting bias (average error) and median (95% confidence intervals)
from the M2 distribution amount to 0.0269 and 0.0259 (0.0250–0.0288), and 0.0323 and 0.0304
(0.0297–0.0348) for the proposed and Sasaki metric, respectively. For both metrics, the Sasaki
distribution yields almost identical values, viz. 0.0253 and 0.0234, with slightly different confidence
intervals (0.0231–0.0275) and 0.0234 (0.0230–0.0277). Fig. 2 shows the frequency distribution for
this study with a fitted density function from a beta distribution. This choice of density function
is motivated by the boundedness of the error function and the opening that its probability is
unknown.

10



4.1 Synthetic Spherical Data 4 EXPERIMENTS

Figure 2: Frequency distribution of error for estimated means of 25 random geodesics for 100
draws from the M2 (top) and Sasaki distribution (bottom) for Sasaki (left) and proposed metric
(right).

In the second study, in each experiment, we computed the error of the estimated mean
w.r.t. both approaches, and increased the number of geodesics. We repeated the experiment
10 times and observed that for both approaches the error clearly exhibits an overall decreasing
trend (as expected). For both distributions the deviation between the proposed approach and
the Sasaki one is reasonable. Fig. 3 shows a plot of the average errors ± standard deviations
against the number of geodesics. However, the overall trend for the Sasaki metric has slightly
more fluctuations, while the error for proposed metric exhibits a relatively more uniform trend.
The former approach uses numerical second order covariant derivatives and spherical parallel
transport causing more computational sensibility, while the latter one is based on quadrature.
This seems to be a reasonable explanation for the mentioned difference. Regarding computation
time, there was no significant difference between the approaches.

We remark that one could use another distance function instead of the one induced by the
canonical metric on S2×S2. However, we observed that the other natural choices, Sasaki distance
or maximum of d(µ(t), γ(t)) over t ∈ I, only slightly change the error values, but qualitatively
have no remarkable effect on the considered essential statistical characteristics, i.e., frequency
distribution or average trends.

A qualitative comparison between the shortest path and mean induced by the Sasaki and the
proposed metric is shown in Fig. 4 and 5, respectively. For none of the shortest paths footpoint
curves constitute geodesics. However, the functional-based one is closer to the more intuitive
shortest path given by the simple point-wise construction H(s, t) = Φ(α(t), β(t), s).

11



4.2 Mean Trend for Rats Calvaria Data 4 EXPERIMENTS

Figure 3: Average error of mean estimates versus increasing number of geodesics for 10 draws
from M2 (left) and Sasaki distribution (right). Shaded regions indicate standard deviations.

Figure 4: Minimal geodesic in the tangent bundle identified as shortest path connecting two
geodesics (red) with respect to Sasaki (left) and functional-based L2-metric (right).

4.2 Mean Trend for Rats Calvaria Data
As the first, open-access1 dataset we use Vilmann’s rat calvaria (skulls excluding the lower jaw)
that have been obtained from X-ray images and were also studied in [36, pp. 408-414]. It consists
of 8 landmarks in 2 dimensions for 18 individuals observed at ages of 7, 14, 21, 30, 40, 60, 90,
150 days. Our computations for this data yield a coefficient of determination of R2 = 0.794, in
accordance with [37]. The 2D Kendall’s shape space is isometric to the complex projective space
with its standard (Fubini-Study) metric, hence a symmetric space. Therefore, decomposition in
vertical and horizontal parts, parallel transport and the curvature tensor can be represented by
closed form expressions (cf. section 6.2). Hence, application of our approach to the rat skulls
dataset, provides a suitable opportunity for the comparison of the Sasaki and the proposed mean
geodesic.

Fig. 7 visualizes landmark-wise, shape representations of the input and output corresponding
to the first stage (top) and second stage (bottom) of the geodesic mixed-effects model applied to
rats calvaria data. Fig. 8 shows the result of tangent PCA to the fitted geodesics and their mean
providing the average overall trend. The deviation between the two mean geodesics induced by

1https://life.bio.sunysb.edu/morph/data/datasets
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4.3 Group-wise Trends for Femoral Data and Hypothesis Tests 4 EXPERIMENTS

Figure 5: Red geodesics are generated by randomly perturbing the endpoints of the black one.
Their mean geodesic with respect to Sasaki (left) and functional-based L2-metric (right) are blue.
Both approaches provide an adequate approximation of the true mean.

Figure 6: Landmark configuration of rat braincase (laterally viewed and the skull is facing right)
with bottom of the figure corresponding to the basicranium (source: [36]).

the Sasaki and our proposed metric just amounts to 10−4. Therefore they are not distinguishable
n the plots.

4.3 Group-wise Trends for Femoral Data and Hypothesis Tests
Our second dataset is derived from the Osteoarthritis Initiative (OAI), which is a longitudinal
study of knee osteoarthritis comprising (among others) clinical evaluation data and radiological
images from 4,796 men and women of age 45-79. The data are available for public access at
http://www.oai.ucsf.edu/.

From the OAI database, we determined three groups of shapes trajectories: HH (healthy, i.e.
no OA), HD (healthy to diseased, i.e. onset and progression to severe OA), and DD (diseased, i.e.
OA at baseline) according to the Kellgren–Lawrence score [38] of grade 0 for all visits, an increase
of at least 3 grades over the course of the study, and grade 3 or 4 for all visits, respectively. We
extracted surfaces of the distal femora from the respective 3D weDESS MR images (0.37×0.37
mm matrix, 0.7 mm slice thickness) using a state-of-the-art automatic segmentation approach
[39]. For each group, we collected 22 trajectories (all available data for group DD minus a
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Figure 7: Top:Input shapes (blue) and endpoints of fitted geodesics (red) with zoomed view of
input shape trajectories and fitted geodesics for landmark 1. Bottom: Fitted geodesics, Sasaki
(black) and proposed (green) mean trend with zoomed view for landmark 1.

record that exhibited inconsistencies, and the same number for groups HD and HH, randomly
selected), each of which comprises shapes of all acquired MR images, i.e. at baseline, the 1-, 2-,
3-, 4- and 6-year visits. In a supervised post-process, the quality of segmentations as well as the
correspondence of the resulting meshes (8,988 vertices) were ensured.

Main goals in this application are the following. First, to understand how anatomical
structures in the femur change over time, during aging and growth processes, and more critically
during disease progression. Second, to compare and test how temporal changes in the anatomy
of different groups significantly differ. We represented the data in Kendall’s shape space and
applied the geodesic regression approach described above to the femoral trajectories.

We computed theR2-values amounting to medians (95 confidence intervals) of 0.40 (0.33–0.46),
0.55 (0.48–0.63), and 0.51 (0.40–0.72) for group HH, DD, and HD, respectively. For details
and computational aspects, we refer to [26]. Note that geodesic representation provides a less
cluttered visualization of the trajectory population making it easier to identify trends within as
well as across groups.

For the statistical testing of group differences, we employ the manifold-valued Hotelling T 2

test described in [7]. For the convenience of the reader, the formulae used therein are presented
below. Let x = {x1, · · · , xn1} and y = {y1, · · · , yn2} two samples with corresponding Fréchet
means x̄ and ȳ, vx = logx̄ ȳ, vy = logȳ x̄. Then the individual group covariances are given by

Wx = 1
n1

n1∑
i=1

(logx̄ xi)(logx̄ xi)t

Wy = 1
n2

n2∑
i=1

(logȳ yi)(logȳ yi)t

and the sample T 2 statistic reads

t2 = 1
2(vtxW−1

x vx + vtyW
−1
y vy).

For the estimations of the log map and mean, we employed equations (2) and (3). We found
t2-values 0.0012, 0.000703 and 0.000591 for HH vs. DD, DD vs. HD and HH vs. HD with
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5 CONCLUSION

Figure 8: Two-dimensional visualization of fitted geodesics (red) with their Sasaki (black) and
proposed (green) mean trend (visually indistinguishable).

Figure 9: Two-dimensional visualization for group-wise trends estimated as averages of fitted
geodesics.

corresponding p-values 0, 0.011 and 0.033. For the computation of the statistical significance,
i.e. p-values, we randomly permuted group memberships of the subject-specific geodesic trends
1, 000 times. The results reveal clear differences between the group-wise average geodesics
demonstrating the descriptiveness of the proposed approach. In particular, the results confirm
the qualitative differences in group-average trends depicted in the low-dimensional visualization
in Fig. 9.

5 Conclusion
We presented a modification of the geodesic hierarchical model introduced in [7] by employing
a discrete geodesic for the tangent bundle of the shape space instead of Sasaki geodesics. Our
approach does not involve the Riemannian curvature tensor and allows for simple and efficient
approximation. Furthermore, we presented numerical examples, using synthetic random spherical
data as well as 2D shapes representing longitudinal data for rat skulls, demonstrating the
accuracy of our approach.
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6 APPENDIX

Moreover, we estimated average geodesics and group trends for the example application
of femoral longitudinal 3D data using Kendall’s shape space, and employed a manifold-valued
Hotelling T 2 test, which confirmed that the model well distinguishes the groups.

There are several potential directions for future work. First, it would be interesting to derive
efficient expressions for the estimation of Sasaki geodesics for 3D shape trends and to compare
the result with our approach. Furthermore, we would like to extend our model to account for
errors-in-covariates, as well as higher-dimensional parameters, which would allow to take further
effects into account providing more insight on more complex phenomena. In the end, further
investigation and understanding of distributions on manifolds is needed to obtain probabilistic,
yet computationally tractable generalizations of mixed-effects models.
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6 Appendix
6.1 Geodesics in the Space of Curves
M := L2(I,M) is a manifold and its tangent space at γ ∈M is given by

TγM = {ξ : I → TM | ξ(t) ∈ Tγ(t)M for all t ∈ I and
∫
I

gγ(t)(ξ(t), ξ(t)) dt <∞}.

Moreover,M endowed with the inner product

ξ1, ξ2 ∈ TγM 7→
∫
I

gγ(t)(ξ1(t), ξ2(t)) dt

is a Riemannian Hilbert manifold (cf. [41]). The following result is borrowed form [24], to which
we refer for details and example applications.

Proposition. Let I 3 s 7→ H(s, t) with t ∈ I, be a path in M and Ht(s) := H(s, t). Suppose
that for all t ∈ I, Ht is a geodesic in M . Then H is a geodesic inM.

Proof. We recall that a path on a Riemannian manifold is a geodesic if and only if the gradient
of the energy E with respect to the path is zero. Thus, it suffices to show that the path H is
a critical point of the energy E. Now, let C : I2×] − ε, ε[ be an arbitrary variation of H inM.
Thus, C(s, t, 0) = Ht(s), C(0, t, ν) = Ht(0) and C(1, t, ν) = Ht(1) for all ν ∈]− ε, ε[ and s, t ∈ I.
Now, fix ν ∈]− ε, ε[. Denoting

f(s, t, ν) = gC(s,t,ν)(Ċ(s, t, ν), Ċ(s, t, ν)),
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6.2 Geometry of Planar Shapes 6 APPENDIX

we have

E(C) =
∫ 1

0

∫ 1

0
f(s, t, ν) dt ds

=
∫ 1

0

∫ 1

0
f(s, t, ν) ds dt,

where dot stands for differentiation with respect to t. Differentiating with repect to ν at ν = 0,
we conlude

d

dν
|ν=0E(C(., ., ν)) =

∫ 1

0

d

dν
|ν=0

(∫ 1

0
f(s, t, ν) ds

)
dt

=
∫ 1

0

(∫ 1

0

d

dν
|ν=0f(s, t, ν) ds

)
dt.

The above expression is zero, since s 7→ C(s, t, 0) = Ht(s) is a geodesic for every t, thus
d
dν |ν=0f(s, t, ν) vanishes identically.

6.2 Geometry of Planar Shapes
For the convenient of reader, we summarize the main mathematical results for planar shapes
(m = 2), which (identifying the shape space with the complex projective space) are well known.
They also follow immediately from corresponding results presented in [26].

We denote C =
(

0 −1
1 0

)
and remark that C is the involution, defining the almost complex

structure and the symmetry of the shape space corresponding to multiplication with the imaginary
unit in the representation as complex projective space. In particular, V erx = R C.

Now, let x ∈ S and w ∈ TxS. Then the vertical component of w reads Ax, where

A = wxt − xwt = |w| sin(α) C

and α denotes the angle between w and its horizontal component w −Ax.
Let γ : [0, τ ] → S be a smooth horizontal path with initial velocity v, u a horizontal vector

at x := γ(0) and W a vector field along γ with W (0) = u. Let

C = uvt − vut,

and denote the unit matrix of size m by Id. If γ is a unit-speed geodesic, then the parallel
transport of u is given by

W = U + (〈u, v〉Id+ C)(γ̇ − v),
where U denotes the Euclidean parallel extension of u along γ, i.e., U(t) = u f.a. t. If y = γ(ϕ)
with ϕ = d(x, y), then the parallel transport Wy of u along γ to y reads

Wy = U − 2 〈u, y〉Id+ C sin(ϕ)
‖x+ y‖2

(x+ y).

We recall that W is a representative of the parallel extension in the shape space (by horizontal
lifting) and not simply the horizontal component of the spherical parallel extension.

For horizontal vector fields X,Y and Z, the Riemannian curvature tensor of the shape space
is given by

R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y + 〈CY,Z〉CX
− 〈CX,Z〉CY − 2〈CX,Y 〉CZ.
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In particular, the sectional curvature at a plane spanned by X and Y reads

1 + 3〈X, CY 〉2

‖X‖2‖Y ‖2 − 〈X,Y 〉2
.
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