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A Column-Generation Approach to Line Planning
in Public Transport®

Ralf Borndorfer Martin Grotschel Marc E. Pfetsch

Abstract

The line-planning problem is one of the fundamental problems in strate-
gic planning of public and rail transport. It involves finding lines and
corresponding frequencies in a transport network such that a given
travel demand can be satisfied. There are (at least) two objectives:
the transport company wishes to minimize operating costs and the
passengers want to minimize traveling times. We propose a new mul-
ticommodity flow model for line planning. Its main features, in com-
parison to existing models, are that the passenger paths can be freely
routed and lines are generated dynamically. We discuss properties of
this model, investigate its complexity, and present a column-generation
algorithm for its solution. Computational results with data for the city
of Potsdam, Germany, are reported.

1 Introduction

The strategic planning process in public and rail transport is usually divided
into consecutive steps of network design, line planning, and timetabling.
Each step can be supported by operations research methods, see for instance
the survey articles of Odoni, Rousseau, and Wilson [20] and of Bussieck,
Winter, and Zimmermann [7].

This article is about the line-planning problem (LPP) in public trans-
port. The problem is to design line routes and their frequencies in a street
or track network such that a transportation volume, given by a so-called
origin-destination matriz (OD-matrix), can be routed. The frequency of a
line is supposed to indicate a basic timetable period and controls the lines’
transportation capacity. There are two competing objectives: on the one
hand to minimize the operating costs of lines, and on the other hand to
minimize user discomfort. User discomfort is usually measured by the total
passenger traveling time or the number of transfers during the ride, or both.
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The recent literature on the LPP mainly deals with railway networks.
One common assumption is the so-called system split, which fixes the travel-
ing paths of the passengers before the lines are known. A second common
assumption is that an optimal line plan can be chosen from a (small) pre-
computed set of lines. Third, maximization of direct travelers (that travel
without transfers) is often considered as the objective. In such an approach,
transfer waiting times do not play a role.

This article proposes a new, extended multicommodity flow model for
the LPP. The model minimizes a combination of total passenger traveling
time and operating costs. It generates line routes dynamically, handles fre-
quencies by means of continuous frequency variables, and allows passengers
to change their routes according to the computed line system; in particular,
we do not assume a system split. These properties aim at line-planning sce-
narios in public transport, in which we see less justification for a system split
and fewer restrictions in line design than one seems to have in railway line
planning. The goal of this article is to show that such a model is tractable
and can be used to optimize the line plan of a medium-sized town.

The paper is organized as follows. Section 2 surveys the literature on
the LPP. Section 3 introduces and discusses our model. Section 4 presents
a column-generation solution approach. We show that the pricing problem
for the passenger variables is a shortest path problem, while the pricing
problem for the lines turns out to be an NP-hard longest path problem.
However, if only lines of logarithmic length with respect to the number of
nodes are considered, the pricing problem can be solved in polynomial time.
In Section 5, computational results on a practical problem for the city of
Potsdam, Germany, are reported. We end with conclusions in Section 6.

2 Related Work

This section provides a short overview of the literature for the line-planning
problem. Additional information can be found in the article of Ceder and
Israeli [8], which covers the literature up to the beginning of the 1990s; see
also Odoni, Rousseau, and Wilson [20] and Bussieck, Winter, and Zimmer-
mann [7].

The first approaches to the line-planning problem had the idea to assem-
ble lines from short pieces in an iterative (and often interactive) process. An
early example is the so-called skeleton method described by Silman, Barzily,
and Passy [25], that chooses the endpoints of a route and several intermedi-
ate nodes which are then joined by shortest paths with respect to length or
traveling time; for a variation see Dubois, Bel, and Llibre [13]. In a similar
way, Sonntag [26] and Pape, Reinecke, and Reinecke [21] constructed lines
by adjoining small pieces of streets/tracks to maximize the number of direct
travelers.



Successive approaches precompute some set of lines in a first phase and
choose a line plan from this set in a second phase; all articles discussed in the
remainder of this section use this idea. For example, Ceder and Wilson [9]
described an enumeration method to generate lines whose length is within a
certain factor from the length of the shortest path, while Mandl [19] proposed
a local search strategy to optimize over such a set. Ceder and Israeli [8, 18]
introduced a quadratic set covering approach.

An important line of developments is based on the concept of the so-
called system split. Its starting point is a classification of the links of a
transportation system into levels of different speed, as is common in railway
systems. Assuming that travelers are likely to change to fast levels as early
and leave them as late as possible, the passengers are distributed onto several
paths in the system—using Kirchhoff-like rules at the transit points—before
any lines are known. This fixes the passenger flow on each individual link
in the network. The system split was promoted by Bouma and Oltrogge [3],
who used it to develop a branch-and-bound-based software system for the
planning and analysis of the line system of the Dutch railway network.

Recently, advanced integer programming techniques have been applied
to the line-planning problem. Bussieck, Kreuzer, and Zimmermann [5] (see
also Bussieck [4]) and Claessens, van Dijk, and Zwaneveld [10] both propose
cut-and-branch approaches to select lines from a previously generated set of
potential lines and report computations on real-world railway data. Both
articles deal with homogeneous transport systems, which can be assumed
after a system-split is performed as a preprocessing step. Bussieck, Lindner,
and Liibbecke [6] extend this work by incorporating nonlinear components
into the model. Goossens, van Hoesel, and Kroon [16, 17] show that prac-
tical railway problems can be solved within reasonable time and quality
by a branch-and-cut approach, even for the simultaneous optimization of
several transportation systems. Schébel and Scholl [23, 24] study a Dantzig-
Wolfe decomposition approach to route passengers through an expanded
line-network to minimize the number of transfers or the transfer time.

3 Line-Planning Model

We typeset vectors in bold face, scalars in normal face. If v € R’ is a
real valued vector and I a subset of J, we denote by v(I) the sum over all
components of v indexed by I, i.e., v(I) := >, vi.

For the line-planning problem (LPP), we are given a number M of
transportation modes (bus, tram, subway, etc.), an undirected multigraph
G = (V,E) = (V,E1U...UE)) representing a multimodal transportation
network, terminal sets T1,..., Ty C V of nodes for each mode where lines
can start and end, line operating costs c' € Qfl,...,cM € QEM on the
edges, fized costs C1,...,Cy € Q4 for the set-up of a line for each mode, ve-



Figure 1: Multimodal transportation network in Potsdam. Black: tram, light gray: bus,
dark gray: ferry, large nodes: terminals, small nodes: stations, grey: rivers and lakes.

hicle capacities k1, . .., ky € Q4 for each mode, and edge capacities A € Qf.
Denote by G; = (V, E;) the subgraph of G corresponding to mode i. See
Figure 1 for an example network and Table 1 for a list of notation that we
use throughout the paper.

A line of mode i is a path in G; connecting two (different) terminals of T;.
Note that paths are always simple, i.e., the repetition of nodes is not allowed;
it is possible to consider additional constraints on the formation of lines such
as a maximum length, etc. Let ¢, := ) _, ¢! be the operating cost of line ¢
of mode i, Cy := C; be its fixed cost, and ky := k; be its vehicle capacity.
Let £ be the set of all feasible lines. Furthermore, L. :=|J{{ € L : e € {}
is the set of lines that use edge e € E.

The problem formulation further involves a (not necessarily symmetric)
origin-destination matriz (OD-matrix) (ds) € QKXV of travel demands, i.e.,
dg is the number of passengers who want to travel from node s to node t.
Let D :={(s,t) € V x V : dg > 0} be the set of all OD-pairs.

Finally, we derive a directed passenger route graph (V,A) from G =
(V, E) by replacing each edge e € F with two antiparallel arcs a(e) and a(e);
conversely, let e(a) € E be the undirected edge corresponding to a € A. For
simplicity of notation, we denote this digraph also by G = (V, A). We are
given traveling times 7, € Q4 for every arc a € A. For an OD-pair (s,t) € D,
an (s,t)-passenger path is a directed path in (V, A) from s to t. Let Py be
the set of all (s,t)-passenger paths, P := |J{p € Ps : (s,t) € D} the set of



Table 1: Notation and terminology.

G multimodal transport network G; subnetwork for mode i

T; terminals for mode % ¢’ line operating costs for mode %
¢y operating costs for line £ C; line fixed costs for mode i

k; vehicle capacity for mode ¢ k¢ vehicle capacity for line /¢

L set of all lines L lines using edge e

D set of OD-pairs ds travel demand between s and ¢t
T, traveling time on arc a Tp traveling time on path p

P set of all passenger paths Pst paths between s and ¢

yp passenger flow on path p xp whether line £ is used

fe frequency of line /¢ A. frequency bounds for edge e

all passenger paths, and P, := |J{p € P : a € p} the set of all passenger
paths that use arc a. The traveling time of a passenger path p is defined as
Tp = D acp Ta-

With this notation, the LPP can be modeled using three kinds of vari-
ables:

Yp € Ry the flow of passengers traveling from s to ¢ on path p € Py,
fee R4 the frequency of line £ € L,
xg € {0,1} a decision variable for using line ¢ € L.
(LPP) min 7Ty + CTz + cTf
y(ipst) = dgt v (S,t) eD (1)
y(Py) — Z kefe <0 Vae A (ii)
Le(a)el
f(Le) < Ae Veec E (iii)
f<Fx (iv)
xp€{0,1} VIeL (v)
fe>0 Vie Ll (vi)
yp >0 VpeD. (vii)

The passenger flow constraints (i) and the nonnegativity constraints (vii)
model a multicommodity flow problem for the passenger flow, where the
commodities correspond to the OD-pairs (s,t) € D. This part guarantees
that the demand is routed. The capacity constraints (ii) link the passenger
paths with the line paths to ensure sufficient transportation capacity on each
arc. The frequency constraints (iii) bound the total frequency of lines using
an edge. Inequalities (iv) link the frequencies with the decision variables for
the use of lines; they guarantee that the frequency of a line is zero whenever
it is not used. Here, F' is an upper bound on the frequency of a line; for
technical reasons, we assume that F' > A, for all e € E, see Section 4 for
more information.



Let us discuss some properties of the model before we investigate its
algorithmic tractability.

Objectives: The objective of the model has two competing parts, namely,
to minimize total passenger traveling time 7'y and to minimize costs CTx+
cTf. Here, CTx is the fixed cost for setting up lines, and ¢Lf is the variable
cost for operating these lines at frequencies f. The model allows to adjust
the relative importance of one part over the other by an appropriate scaling
of the respective objective coefficients. Including fixed costs allows to con-
sider objectives such as minimizing the number of lines; note that LPP is a
linear program (LP) if all fixed costs are zero.

OD-Matrices: Each entry in an OD-matrix gives the number of passengers
who want to travel from one point in the network to another point within
a fixed time horizon. It is well known that such data have certain defi-
ciencies. For instance, OD-matrices depend on the geometric discretization
used, they are highly aggregated, they give only a snapshot type of view, it
is often questionable how well the entries represent the real situation, and
they should only be used when the transportation demand can be assumed
to be fixed. However, OD-matrices are at present the industry standard
for estimating transportation demand. It is already quite an art and rather
costly to assemble this data, and currently, no alternative is in sight.

Time horizon: The LPP implicitly contains a time horizon via the OD-
matrix. Usually, OD-data are aggregated over one day, but it is similarly
appropriate to consider, for instance, peak traffic in rush hours. In fact, the
asymmetry of demands in rush hours was one of the reasons why we consider
directed passenger paths.

Passenger Routes: Because the traveling times 7 are nonnegative, we can
assume passenger routes to be (simple) paths.

Our model does not fix passenger paths according to a system split, but
allows to freely route passengers according to the computed lines. This is
targeted at local public transport systems, where, in our opinion, people
determine their traveling paths according to the line system and not only
according to the network topology. Except for the work of Schobel and
Scholl [23, 24], which is independent of ours, such routings have not been
considered in the context of line planning before.

Our model computes a set of passenger paths that minimize the total
traveling times 7Ty in the sense of a system optimum. However, in our case,
with a linear objective function and linear capacities, it can be shown that
the resulting system optimum is also a user equilibrium, namely, the so-called
Beckmann user equilibrium, see Correa, Schulz, and Stier Moses [11]. We do
not address the question of why passengers should choose this equilibrium
out of several possible equilibria that can arise in routing with capacities.

The routing in our model allows for passengers paths of arbitrary travel
times, which may force some passengers to long detours. We remark that



this problem could be handled by introducing appropriate bounds on the
travel times of paths. This would, however, turn the pricing problem for the
passenger paths into an NP-hard resource-constrained shortest path prob-
lem; see Section 4.1. Note also that such an approach would measure travel
times with respect to shortest paths in the underlying network (indepen-
dent of any line system). Ideally, however, one would like to compare to the
shortest paths using only arcs covered by the computed line system.

Line Routes: The literature generally takes line routes as (simple) bidi-
rected paths, and we do the same in this article. In fact, a restriction forcing
some sort of simplicity is necessary to prevent repetitions around cycles. As
a slight generalization of the concept of simplicity, one could investigate the
case in which one assumes that every line route is bounded in length or
“almost” simple, i.e., no node is repeated within a given interval.

It is easy to incorporate additional constraints on the formation of indi-
vidual lines and constraints on sets of lines, e.g., that the length of a line
should not deviate too much from a shortest path between its endpoints or
bounds on the number of lines using an edge. Such constraints are impor-
tant in practice. In this article we consider bounds on the number of edges
in a line. Let us give two arguments why this case is practically relevant.

The first argument is based on an idea of a transportation network as a
planar graph, probably of high connectivity. Suppose this network occupies
a square, in which n nodes are evenly distributed. A typical line starts in
the outer regions of the network, passes through the center, and ends in
another outer region; we would expect such a line to be of length O(y/n).

Real networks, however, are not only (more or less) planar, but often

resemble trees. But in a balanced and preprocessed tree, where each node
degree is at least three, the length of a path between any two nodes is only
O(logn).
Transfers: Transfers between lines are currently ignored in our model,
because constraints (ii) only control the total capacity on edges and not the
assignment of passengers to lines. The problem are not transfers between
different modes, which can be handled by linking the mode networks G;
with appropriate transfer edges, weighted by estimated transfer times. In
principle, a similar trick could be used for transfers between lines of the same
mode, using an appropriate expansion of the graph. However, this greatly
increases the complexity of the model, and it introduces degeneracy; it is
unclear whether such a model remains tractable for practical data.

Frequencies: Frequencies indicate the (approximate) number of times ve-
hicles need to be employed to serve the demand over the time horizon. In
a real-world line plan, frequencies often have to produce a regular timetable
and, hence, are not allowed to take arbitrary fractional values. Our model,
however, treats frequencies as continuous values. This is a simplification.
We have introduced fixed costs to reduce the number of lines and decrease



the likelihood of low frequencies. In addition, we could have forced our
model to accept only a finite number of frequencies by enumerating lines
with fixed frequencies in a similar way as Claessens, van Dijk, and Zwan-
eveld [10] and Goossens, van Hoesel, and Kroon [16, 17]; but the resulting
model would be much harder to solve. However, as the frequencies mainly
are used to adjust line capacities, we do (at present) not care so much about
“nice” frequencies and view the fractional values as approximations or clues
to “sensible” values.

4 Column Generation

The LP relaxation of (LPP) can be simplified by eliminating the x-variables.
In fact, since (LPP) minimizes over nonnegative costs, one can assume
w.l.o.g. that inequalities (iv) above are satisfied with equality, i.e., there
is an optimal LP solution such that Fxy, = f; < xy = fy/F for all lines /.
Substituting for x, we observe that the inequalities f; < F' remaining after
the elimination are dominated by inequalities (iii) and, hence, can be omit-
ted (recall that we assumed F > A.). Setting v, = Cy/F + ¢4, we arrive at
the following equivalent, but simpler, linear program:

(LP) min 7Yy + ~Tf

y(ipst) =dg I (S,t) eD (1)

Y(Pa) = D> kefe <0 VaecA (ii)
Le(a)el

f(Le) < Ae Vee E (iii)

>0  vierl (iv)

yp >0 Vped. (v)

Note that (LP) contains only a polynomial number of inequalities (apart
from the nonnegativity constraints (iv) and (v)).

We aim at solving (LP) with a column-generation approach (see Barn-
hart et al. [2] for an introduction) and therefore investigate the corresponding
pricing problems. These pricing problems are studied in terms of the dual
of (LP). Denote the variables of the dual as follows: 7 = (1) € R” (flow
constraints (1)), u = (us) € R4 (capacity constraints (ii)), and n € RF
(frequency constraints (iii)). The dual of (LP) is:

max d'im — ATy
Tst — y’(p) < Tp Vp € ﬂ)stv (Svt) €D
kepl) —ml) <y  VILEL
m, m=0,

where

1) = (Bage) T Ha(e))-

ect



It will turn out that the pricing problem for the line variables f; is a
longest path problem; the pricing problem for the passenger variables y,,
however, is a shortest path problem.

4.1 Pricing of the Passenger Variables

The reduced cost 7, for variable y, with p € Py, (s,t) € D, is

Tp = Tp — T+ (D) =Ty~ Mot £ D ta =~ + (st + Ta).
acp agep

The pricing problem for the y-variables is to find a path p such that 7, < 0 or
to conclude that no such path exists. This easily can be done in polynomial
time as follows. For all (s,t) € D, we search for a shortest (s,t)-path p with
respect to the nonnegative weights (1, +7,) on the arcs; we can, for instance,
use Dijkstra’s algorithm. If the length of this path p is less than 7, then y,
is a candidate variable to be added to the LP, otherwise, we proved that no
such path exists (for the pair (s,t)). Note that we can assume that each
passenger path is simple: just remove cycles of length 0 — or trust Dijkstra’s
algorithm, which produces only simple paths.

4.2 Pricing of the Line Variables

The pricing problem for line variables fy is more complicated. The reduced
cost 7, for a variable f; is

Fo =0 — ke p(0) +0(0) = ve =Y _ (ke (tage) + Hate)) = Ne)-
ecl

The corresponding pricing problem consists of finding a (simple) path ¢ of
mode ¢ such that

0> = Ye— Yeer (Kt (Hage) + Ha(e)) — 7e)
= Co/F+co— 3 oeq (R (Hage) + Hate)) = 7e)

- CZ/F + Zeeé cle N Zeeg (K/i (Na(e) + Na(e)) - 77@)
= CZ/F + Zeeé (cle — R (Na(e) + :u'ﬁ(e)) + Tle)

At Zeeé("ii (:u'a(e) + ,U*a(e)) —Ne — Cé) > CZ/F

This problem turns out to be a maximum weighted path problem, because
the weights (ki (Ha(e) + Ha(e)) — Me — C) are not restricted in sign. Hence,
the pricing problem for the line variables is AN"P-hard [15]. This shows that
solving the LP relaxation (LP) is N"P-hard as well. In fact, we can prove
the stronger result that the line-planning problem itself is NP-hard, even
with fixed costs zero, independent of the model (Proposition 4.1 implies that
(LP) is N'P-hard, because (LPP) is equivalent to (LP) for fixed costs 0).



Proposition 4.1. The line-planning problem LPP is N'P-hard, even with
fixed costs 0.

Proof. We reduce the Hamiltonian path problem, which is strongly N7P-
complete [15], to the LPP with fixed costs 0. Let (H, s, t) be an instance of
the Hamiltonian path problem, i.e., H = (V, E) is a graph and s and t are
two distinct nodes of H.

Figure 2: Example for the node splitting gadget in the proof of Proposition 4.1

For the reduction, we are going to derive an appropriate instance of LPP.
The underlying network is formed by a graph H' = (V' E’), which arises
from H by splitting each node v into three copies v, v9, and vs. For each
node v € V, we add edges {v1,v2} and {v2,v3} to E’ and for each edge {u, v}
the edges {u1,v3} and {us,v1}, see Figure 2. Our instance of LPP contains
just a single mode with only two terminals s; and t3 such that every line
must start at s; and end at t3. The demands are dy,», =1 (v € V) and 0
otherwise, and the capacity of every line is 1 For every e € E’, we set A,
to some high value (e.g., to |V’|). The cost of all edges is set to 0, except
for the edges incident to s1, for which the costs are set to 1. The traveling
times are set to 0 everywhere. It follows that the value of a solution to LPP
is the sum of the frequencies of all lines.

Assume that p = (s,v!, ..., 0" t) (for v!,... 0% € V) is an (s,t)-Hamil-
tonian path in H. Then p’ = (s1,s2,53,0],v8, 03, ... vF 05 o 1 9, t3) is
an (s1,t3)-Hamiltonian path in H', which gives rise to an optimal solution of
LPP. Namely, we can take p’ as the route of a single line with frequency 1
and route the demands dy,,, = 1 for every v € V on this line directly
from v to vo. As the frequency of p’ is 1, the objective value of this solution
is also 1. On the other hand, every solution to LPP must have value at least
one, because every line has to pass an edge incident to s; and the sum of
the frequencies of lines visiting an arbitrary edge of type {vq,va}, for v € V,
is at least 1. This proves that LPP has a solution of value 1, if (H,s,t)
contains a Hamiltonian path.

For the converse, assume that there exists a solution to LPP of value 1,
for which we ignore lines with frequency 0. We know that every edge {v1,va}
(v € V) is covered by at least one line of the solution. If every line contains
all edges {vi,v2} (v € V), each such line gives rise to a Hamiltonian path
(because the line paths are simple) and we are done. Otherwise, there must
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be an edge e = {v1,v2} (v € V) that is not covered by all of the lines.
Because the lines have to provide enough capacity, the sum of the frequencies
of the lines covering e is at least 1. However, the edges incident to s are
covered by the lines covering edge e plus at least one more line of nonzero
frequency. Hence, the total sum of all frequencies is larger than one, which
is a contradiction to the assumption that the solution has value 1.

This shows that there exists an (s,¢)-Hamiltonian path in H if and only
if an optimal solution of LPP with respect to H’ has value 1. O

4.3 Pricing of Length Restricted Lines

Let us now consider the pricing problem for line-planning problems with
bounds on the lengths of the lines, i.e., the number of edges of a line. Con-
sider for this purpose the graph G = (V, E) (for simplicity of notation with
only one mode) with arbitrary edge weights w. € Q for all e € E, and a
source node s and a sink node t. We let n = |V| and m = |E|. In this
setting, the line-pricing problem is to find a maximum weight path from s
to t with respect to w. We first show that this problem is A"P-hard for the
case in which the length of a line is bounded by O(y/n).

Proposition 4.2. It is N'P-hard to compute a maximum weight path from s
to t of length at most k, if k € O(nl/N) for any fired N € N\ {0}.

Proof. Let (H,s,t) be an instance of the Hamiltonian path problem, where
H is a graph with n nodes. We add (n” — n) isolated nodes to H in order
to obtain a graph H’ with n’V nodes; note that nV is polynomial in n for
fixed N. Let the weights on the edges be 1. If we could find a maximum
weight path from s to ¢ with at most k = (nN)l/N = n edges in polynomial
time, we could solve the Hamiltonian path problem for H in polynomial
time. ]

We now provide a result that shows that the maximum weighted path
problem can be solved in polynomial time in the case when the lengths of
the paths are at most O(logn). Our method is a direct generalization of
work by Alon, Yuster, and Zwick [1] on the unweighted case; it works both
for directed and undirected graphs.

Alon et al. consider the problem to find simple paths of fixed length k—1
in a graph. Their basic idea is to randomly color the nodes of the graph
with k colors and only allow paths that use distinct colors for each node;
such paths are called colorful with respect to the coloring and are necessarily
simple. Choosing a coloring ¢ : V' — {1,...,k} uniformly at random, every
path using at most k& — 1 edges has a chance of at least k!/k¥ > e=* to be
colorful with respect to c. If we repeat this process « - ¥ times with a > 0,
the probability that a given path p with at most k— 1 edges is never colorful
is less than

(1 — e_k)a'ek < e .

11



Hence, the probability that p is colorful at least once is at least 1 — e™“.

The search for such colorful paths can be performed using dynamic pro-
gramming, which leads to an algorithm running in m - 2°%*) expected time.
This algorithm is then derandomized.

These arguments yield the following result for the weighted undirected
case, which is easily seen to be valid for directed graphs as well.

Proposition 4.3. Let G = (V, E) be a graph with m edges, k be a fixed
number, and ¢ : V — {1,...,k} be a coloring of the nodes of G. Let s be a
node in G and (we) be edge weights. Then a colorful mazximum weight path
with respect to w using at most k — 1 edges from s to every other node can
be found in time O(m k- 2’“), if such paths exist.

Proof. We find the maximum weight of such paths by dynamic program-
ming. Let v € Vi € {1,...,k}, and C C {1,...,k} with |C| < i. Define
w(v, C, i) to be the weight of the maximum weight colorful path with respect
to w from s to v using at most ¢ — 1 edges and using the colors in C'. Hence,
for each iteration ¢, we store the set of colors of all maximum weight colorful
paths from s to v using at most ¢ — 1 edges. Note that we do not store the
set of paths, only their colors. Hence, at each node, we store at most 2°
entries. The entries of the table are initialized with minus infinity, and we
set w(s,{c(s)},1) =0.

At iteration ¢ > 1, let (u, C, i) be an entry in the dynamic programming
table. If for some edge e = {u,v} € E we have c¢(v) ¢ C, let C' = CU{c(v)}
and set

w(v,C’,i+ 1) = max {w(u, C,i) + we, w(v,C’ i+ 1), w(v, C’/,i)}.

The term w(v,C’,i + 1) accounts for the cases in which we already found
a path to v (using at most ¢ edges) with higher weight, whereas w(v,C’, 1)
makes sure that paths using at most ¢ — 1 edges to v are accounted for.
After iteration ¢ = k, we take the maximum of all entries corresponding to

each node v, which is the wanted result. The number of updating steps is
bounded by

k
dir2em=m- (242" (k—1)) =O(m-k-2").
1=0

The sum on the left side of this equation arises as follows. In iteration i, m
edges are considered; each edge {u,v} starts at node u, to which at most 2!
labels w(u, C, 1) are associated, one for each possible set C’; for each such set,
checking whether ¢(v) € C takes time O(7). The summation formula itself
can be proved by induction, see also [22, Exc. 5.7.1, p. 95]. The algorithm
can be easily modified to actually find the maximum weight paths. O
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We can use Proposition 4.3 to produce an algorithm that finds a maxi-
mum weight path in o e® O(mk2k) =« O(m . 2O(k)) time with high proba-
bility. Then a derandomization can be performed by a clever enumeration
of colorings such that each path with at most k — 1 edges is colorful with
respect to at least one such coloring. Alon et al. combine several techniques
to show that 29 . logn colorings suffice. Applying this result we obtain
the following.

Theorem 4.1. Let G = (V, E) be a graph with n nodes and m edges and k
be a fired number. Let s be a node in G and (we) be edge weights. Then a
maximum weight path with respect to w using at most k — 1 edges from s
to every other node can be found in time O(m . 20(K) . Jog n), if such paths
exist.

If £ € O(logn), this yields a polynomial time algorithm. Hence, by the
discussion above, we get the following result.

Corollary 4.1. The LP relazation of (LPP) can be solved in polynomial
time, if the lengths of the lines are most k, with k € O(logn).

4.4 Algorithm

We used the results of the previous sections to implement a column-gen-
eration algorithm for the solution of the model (LPP) with length-restricted
lines. As an overall objective function, we used the weighted sum

AMCTz+clf)+(1-N)Tly,

where A € [0, 1] is a parameter weighing the two parts.

The algorithm solves the LP relaxation in a first phase and constructs a
feasible line plan using a greedy type heuristic in a second phase.

To solve the LP relaxation, our algorithm iteratively prices out pas-
senger and line path variables until no improving variables are found. We
solve the master LP with the barrier algorithm and, toward the end of the
process, with the primal simplex algorithm of CPLEX 9.1. We check for
new passenger path variables for all OD-pairs using Dijkstra’s algorithm,
see Section 4.1, until no more improving passenger paths are found. If we
do not find an improving passenger path, we price out line variables for all
line modes and all feasible terminal pairs. We have implemented two dif-
ferent methods for the pricing of (simple) line paths, namely, we either use
an enumeration or the randomized coloring algorithm of Section 4.3 (we do
not derandomize the algorithm). If an improving passenger or line path has
been found, another iteration is started; otherwise, the LP is solved.

In the second phase, our algorithm tries to construct a good integer so-
lution from a line pool consisting of the lines having nonzero frequencies
in the optimal LP solution. The heuristic is motivated by the observation
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that the solution of the LP relaxation of a line-planning problem often con-
tains lines with very low frequencies. We try to remove these lines by a
simple greedy method based on a strong branching selection criterion. In
the beginning, the x-variables of all lines in the pool are set to 1. In each
iteration, we tentatively remove a line (set its z-variable to 0), compute the
objective AeTf + (1 — \) 7Ty of the LP obtained by fixing the line vari-
ables as described, pricing passenger variables as needed, and add the fixed
costs CT of all lines that are fixed to 1. After probing candidate lines with
the smallest f-values in this way, we permanently delete the line whose re-
moval resulted in the smallest objective. We repeat this elimination as long
as the remaining set of lines is still feasible, i.e., all demands can be routed,
and the objective function decreases.

5 Computational Results

In this section, we report on computational experience with line-planning
problems for the city of Potsdam, Germany. The experiments originate
from a joint project with the two local public transport companies, ViP
Verkehrsgesellschaft GmbH and Havelbus Verkehrsgesellschaft mbH, the city
of Potsdam, and the software company IVU Traffic Technologies AG.
Potsdam is a medium sized town near Berlin; it has about 150,000 inhabi-
tants. Its public transportation system uses city buses and trams (operated
by ViP) and regional buses (operated by Havelbus). Additionally, regional
trains connect Potsdam to its surroundings (operated by Deutsche Bahn
AG) and a city railroad (operated by S-Bahn Berlin) provides connections
to Berlin. Because regional trains and the city railroad are not operated by
ViP and Havelbus, the associated lines routes are assumed to be fixed.

5.1 Data

Our data consists of a multimodal traffic network of Potsdam and an asso-
ciated OD-matrix, which had been used by IVU in a consulting project for
planning the Potsdam network (Nahverkehrsplan). The data represents the
1998 line system of Potsdam. It has 27 bus lines and 4 tram lines. Including
line variants, the total number of lines was 80. The network has 951 nodes,
including 111 OD-nodes, and 1,321 edges. The maximum length of a line is
47 edges.

The network was preprocessed as follows. We removed isolated nodes.
Then, we iteratively removed “leaves” in the graph—i.e., nodes with only one
neighbor—and iteratively contracted nodes with two neighbors. The prepro-
cessed graph has 410 nodes, 106 of which were OD-nodes, and 891 edges.
We remark that although such preprocessing steps are conceptually easy,
the data handling can be quite intricate in practice; for instance, our data
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included information on possible turnings of a line at road/rail crossings,
which must be updated in the course of the preprocessing.

The OD-matrix was also modified. Nodes with zero traffic were removed.
The original time horizon was one day, but we wanted to construct a line plan
for the peak hour. We therefore scaled the matrix to 40% in an (admittedly
rough) attempt to simulate afternoon traffic (3 p.m. to 6 p.m.). Note that the
resulting matrix is still quite symmetric (the maximum difference between
each of the two directions was 25) whereas a real afternoon OD-matrix would
not be symmetric. The scaled OD-matrix had 4685 nonzeros and the total
scaled travel demand was 42796.

All traveling times are measured in seconds and we always restricted the
maximum length of a line to 55 edges. Because no data was available on line
costs, we decided on Cy = 10000 (fixed costs) for each line £ and c. = 100
(operating costs) for each edge e and mode i. Hence, we do not distinguish
between costs of different modes (an unrealistic assumption in practice).

5.2 Experiments

Table 2 reports the results of several computational experiments with the
data and implementation we have described. All experiments were per-
formed on a 3.4 GHz Pentium 4 machine running Linux. In the table, the
total traveling time is 71y and total line cost is ¥ f, the scaled values are
(1—X) 7Ty and Ay Tf, respectively; all four values refer to the LP relaxation
(LP). The LP objective value is Ay f + (1 — X\) 71y, the integer objective
value refers to A (CTx4cTf)+ (1 —\) 7Ty. The last line in each block of re-
sults gives the number of active (i.e., nonzero) line and passenger variables,
and the number of passenger transfers (first number) that were needed as
well as the number of transfering passengers (second number). Note that we
can compute transfers from passenger routes as an afterthought, although
our optimization model is currently insensitive to them.

Let us point out explicitly that we do not claim that our results are
already practically significant; we only want to show that there is potential
to apply our methods to practical data. For example, our costs are not
realistic. Therefore, the frequencies we compute cannot be compared to
ones used in practice. To allow some adaptation to our cost model, we let
the frequencies of all lines be variable, in particular, the frequencies of the
city railroad and regional train lines.

In our first experiment, we solved the LP relaxation (LP) of the Potsdam
problem, pricing lines either by enumeration or by the randomized coloring
method of Section 4.3, see top of Table 2. We set A = 0.9978, which roughly
balances the two parts of the objective function. The resulting LP had 5761
rows. Using enumeration, we obtained an optimal solution after 451 seconds
and 283 iterations (i.e., solutions of the master LP), of which 15 were used
to price lines. The pricing problems needed a total time of 183 seconds of
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Table 2: Experimental results of line planning for A = 0.9978.

Optimized LP solution — enumeration:

total traveling time: 108,360,036.33 [scaled: 238,392.08]

total line cost: 233,776.86 [scaled: 233,262.55]

LP objective value: 471,654.63

active line/pass. var.: 60/4,879 transfers: 8,777/64,607
Optimized LP solution — randomized coloring — 5 trials:

total traveling time: 108,396,741.75 [scaled: 238,472.83]

total line cost: 239,099.73 [scaled: 238,573.71]

LP objective value: 477,046.54

active line/pass. var.: 61/4,880 transfers: 9,143/66,546
Optimized LP solution — randomized coloring — 15 trials:

total traveling time: 108,491,234.25 [scaled: 238,680.72]

total line cost: 237,422.50 [scaled: 236,900.17)

LP objective value: 475,580.88

active line/pass. var.: 62/4,885 transfers: 9,387/68,049
Optimized integer solution — greedy heuristic:

total traveling time: 112,581,291.50 [scaled: 247,678.84]

total line cost: 287,060.90 [scaled: 286,429.37]

integer objective value: 818,491.68

active line/pass. var.: 30/4,767 transfers: 8,638/60,539
Reference LP solution:

total traveling time: 105,269,846.00 [scaled: 231,593.66]

total line cost: 501,376.24 [scaled: 500,273.21]

LP objective value: 731,866.87

active line/pass. var.: 61/4,857 transfers: 8,618/63,310
Reference integer solution — greedy heuristic:

total traveling time: 106,952,869.00 [scaled: 235,296.31]

total line cost: 562,964.54 [scaled: 561,726.02]

integer objective value: 1,213,221.49

active line/pass. var.: 44/4,814 transfers: 9,509/70,525

which most was used for the pricing of line paths. Hence, more than half
the time is spent for solving the master LPs.

We repeated this experiment using the randomized coloring algorithm
with 5 and 15 trials for line pricing. With 5 trials, we needed 397 master LPs
and 394 seconds in total; line pricing used only 99 seconds. One can see,
however, that the objective is about 1% higher than for the enumeration
variant. Using 15 trials resulted in 269 master LPs and 473 seconds in
total. Line pricing now uses 265 seconds, and the difference in the objective
function relative to the enumeration variant is reduced to 0.8%. Hence, one
can achieve a good approximation of the optimal value using randomized
line pricing, although approaching the optimum solution comes at the cost
of larger computation times.
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We also investigated in more detail the passenger routing of our LP solu-
tion for the enumeration variant. To connect the 4,685 OD-pairs only 4,879
paths are needed, i.e., most OD-pairs are connected by a unique path. The
total traveling time is 108,360,036.33 seconds, see Table 2. For comparison,
when we ignore capacities and route all passengers between every OD-pair on
the fastest path in the final line system, the total traveling time is 95,391,460
seconds. This relative difference of 12% seems to be an acceptable deviation.

In our second experiment, we computed two integer solutions for (LPP)
associated with the parameter A = 0.9978, as above. The first solution
is obtained by rounding all nonzero x-variables in the solution of the LP
relaxation, computed with the enumeration variant, to 1. The (integer) ob-
jective of this rounded solution is 1,058,079.69, which leads to a gap of 55%
compared to the LP relaxation value of 471,654.63. The second solution is
obtained by the greedy algorithm described in Section 4.4, starting from the
same LP solution (only lines for city buses, trams, and regional buses were
removed). It has 30 lines (17 bus lines and 2 tram lines), down from 60
in the first solution, see Table 2; it took 1,368 seconds to compute. The
final (scaled) operating costs are 286,429.37, while the final fixed costs are
A- 300,000 = 299, 340. The integer objective of 818,491.68 has a gap of 42%
with respect to the LP relaxation value of 471,654.63. Note that the results
heavily depend on the cost structure: decreasing the fixed costs automati-
cally reduces the gap. In our context, with high fixed costs, emphasis is on
reducing the number of lines (recall that the costs were artificial). The result
obtained seems to be quite good, given that the original line system con-
tained 27 bus lines and 4 tram lines; it seems unlikely that one can further
reduce the number. Furthermore, the lower bound of the LP relaxations
typically is very weak for such fixed-cost problems. Still, more research is
needed to provide better lower bounds and primal solutions.

We compare the LP and integer solutions to “reference solutions” shown
in the lower part of Table 2. The reference LP solution is obtained by fixing
the paths of the original lines of Potsdam and then solving the resulting
LP relaxation without generating new lines, but allowing the frequencies of
the lines to change. The reference integer solution is obtained by applying
the greedy heuristic to the reference LP solution. The results show that
allowing the generation of new line paths reduces line costs in both cases to
roughly 50% and the total objective to roughly 2/3 of the original values,
while the total traveling time increases by a small percent. Hence, in these
experiments, the greedy algorithm has not changed the relative improvement
obtained from optimizing lines.

Our third experiment investigates the influence of the parameter A on
the solution. We computed the solutions to the LP relaxation for 21 different
values of \;, taking \; = 1 — (1 — i/20)4, for ¢ = 0,...,20. This collects
increasingly more samples near A = 1, a region where the total traveling
time and total line cost are about equal.
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Figure 3: Total traveling time (solid, left axis) and total line cost (dashed, right axis) in
dependence on A (z-axis in logscale).

The results are plotted in Figure 3. This figure shows the total traveling
time and the total line cost depending on A. The extreme cases are as
expected: For A = 0, the line costs do not contribute to the objective and are
therefore high, while the total traveling time is low. For A = 1, only the total
line cost contributes to the objective and is therefore minimized as much as
possible at the cost of increasing the total traveling time. With increasing A,
the total line cost monotonically decreases, while the total traveling time
increases. Note that each computed pair of total traveling time and line
cost constitutes a Pareto optimal point, i.e., is not dominated by any other
attainable combination. Conversely, any Pareto optimal solution of the LP
relaxation can be obtained as the solution for some A € [0,1], see, e.g.,
Ehrgott [14].

6 Conclusions

We proposed a new model for line planning in public transport that allows
to generate lines dynamically and to freely route passengers according to
the computed lines. The model allows to deal with manifold requirements
from practice. We showed that line-planning problems for a medium-sized
town can be solved within reasonable quality with integer programming
techniques. Our computational results indicate significant optimization po-
tential. Our results on the polynomial time solvability of the LP relaxation
for the case of logarithmic line lengths raises our hope that the model is
suited to deal with larger problems as well.

Acknowledgment. The authors thank Volker Kaibel for pointing out Propo-
sition 4.2.
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