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Abstract

Conflict analysis for infeasible subproblems is one of the key ingredients
in modern SAT solvers to cope with large real-world instances. In contrast,
it is common practice for today’s mixed integer programming solvers to just
discard infeasible subproblems and the information they reveal. In this paper
we try to remedy this situation by generalizing SAT infeasibility analysis to
mixed integer programming.

We present heuristics for branch-and-cut solvers to generate valid inequal-
ities from the current infeasible subproblem and the associated branching in-
formation. SAT techniques can then be used to strengthen the resulting cuts.
We performed computational experiments which show the potential of our
method: On feasible MIP instances, the number of required branching nodes
was reduced by 50% in the geometric mean. However, the total solving time
increased by 15%. On infeasible MIPs arising in the context of chip verifica-
tion, the number of nodes was reduced by 90%, thereby reducing the solving
time by 60%.

Keywords: mixed integer programming, branch-and-cut, conflict analysis,
SAT, infeasible MIP

1 Introduction

A well-known approach to solve mixed integer programs (MIPs) is to apply branch-
and-bound type algorithms: the given problem instance is divided into smaller sub-
problems, and this decomposition is continued recursively until an optimal solution
of the respective subproblem can be identified or the subproblem is detected to be
infeasible or to exceed the primal bound. It seems that current state-of-the-art MIP
solvers like CPlex [13], Lindo [14], SIP [16], or XPress [9], simply discard infea-
sible and bound exceeding subproblems without paying further attention to them.

For solving the satisfiability problem (SAT), a similar branching scheme to de-
compose the problem into smaller subproblems is applied, which was proposed by
Davis, Putnam, Longemann, and Loveland [10, 11]. Modern SAT solvers, how-
ever, try to learn from infeasible subproblems, an idea due to Marques-Silva and
Sakallah [15]. The infeasibilities are analyzed in order to generate so-called conflict
clauses. These are implied clauses that help to prune the search tree.

The idea of conflict analysis is to identify a reason of the current subproblem’s
infeasibility and exploit this knowledge. In SAT solving, such a reason is a subset
of the current variable fixings which already suffices to trigger a chain of logical
deductions that ends in a contradiction. That means, the fixing of the variables of
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this conflict set renders the problem instance infeasible. The conflict clause that can
be learned from this conflict states that at least one of the variables in the conflict
set has to take the opposite truth value. This clause is added to the clause database
and can then be used at other subproblems to find additional implications, thereby
pruning the search tree.

In this paper, we propose a generalization of conflict analysis to branch-and-
bound based mixed integer programming. We consider a mixed integer program of
the form

(MIP) max{cT x | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I}

with A ∈ R
m×n, b ∈ R

m, c, l, u ∈ R
n, and I ⊆ N = {1, . . . , n}. Suppose a

subproblem in the branch-and-bound search tree is detected to be infeasible or to
exceed the primal bound. We will show that this situation can be analyzed with
similar techniques as in SAT solving: a conflict graph is constructed from which
conflict constraints can be extracted. These constraints can be used as cutting
planes to strengthen the relaxations of other subproblems in the tree.

Note that the term “conflict graph” is used differently in the SAT and MIP
communities. In MIP solving, the conflict graph consists of implications between
two binary variables each, see e.g., Atamtürk, Nemhauser, and Savelsbergh [5]. It
represents a vertex packing relaxation of the MIP instance and can, e.g., be used to
derive cutting planes like clique cuts. In SAT solving, however, the conflict graph
arises from the implication graph which is a hyper-graph containing all implications
between any number of variables. For each infeasible subproblem, a specific con-
flict graph is constructed to represent the implications from which the infeasibility
follows. In this paper we adopt the nomenclature of the SAT community.

There are two main differences of MIP and SAT solving in the context of conflict
analysis. First, the variables of a MIP need not to be of binary type. We also have
to deal with general integer and continuous variables. Furthermore, the infeasibility
of a subproblem in the MIP search tree usually has its sources in the linear pro-
gramming (LP) relaxation of the subproblem. In this case, we first have to find a
(preferably simple) reason for the LP’s infeasibility before we can apply the SAT
conflict analysis techniques for generating conflict constraints.

The rest of the paper is organized as follows. Section 2 reviews conflict graph
analysis of SAT solvers. For an infeasible subproblem, it is shown how to generate the
conflict graph and how to extract valid conflict clauses out of this graph. Section 3
deals with the generalization of these techniques to mixed integer programming. We
explain how infeasible and bound exceeding linear programs can be analyzed in order
to detect a conflict in the variables’ local bounds. This conflict is used as starting
point to construct the conflict graph from which conflict constraints can be extracted
with the techniques explained in Section 2. Additionally, we discuss how we have to
generalize the notion of the conflict graph in the presence of non-binary variables.
Experimental results in Section 4 demonstrate that conflict analysis can lead to
substantial savings in the number of branching nodes to solve a MIP. However,
time measurements indicate that further enhancements to the given algorithms are
needed in order to produce an overall speed-up on the investigated feasible instances.
For infeasible MIPs, conflict analysis can yield major performance improvements in
both, the number of branching nodes and the time needed to prove the infeasibility.
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2 Conflict Analysis in SAT Solving

In this section we review the conflict analysis techniques used in SAT solving, see
e.g., Marques-Silva and Sakallah [15] or Zhang et al. [23]. The Boolean satisfiability
problem (SAT) is defined as follows. The Boolean truth values false and true are
identified with the values 0 and 1, respectively, and Boolean formulas are evaluated
correspondingly.

Definition 2.1 (SAT) Let C = C1 ∧ . . . ∧ Cm be a logic formula in conjunctive
normal form (CNF) on Boolean variables x1, . . . , xn. Each clause Ci = ℓi

1∨ . . .∨ ℓi
ki

is a disjunction of literals. A literal ℓ ∈ L = {x1, . . . , xn, x̄1, . . . , x̄n} is either a
variable xj or the negation of a variable x̄j. The task is to either find an assignment
x⋆ ∈ {0, 1}n, such that the formula C is satisfied, i.e., each clause Ci evaluates to
1, or to conclude that C is unsatisfiable, i.e., for all x ∈ {0, 1}n at least one Ci

evaluates to 0.

SAT was the first problem shown to be NP-complete by Cook [8]. Besides
its theoretical relevance, it has many practical applications, e.g., in the design and
verification of integrated circuits or in the design of logic-based intelligent systems.
We refer to Biere and Kunz [6] for an overview of SAT techniques in chip verification
and to Truemper [21] for details on logic-based intelligent systems.

Modern SAT solvers like Chaff [18] or BerkMin [12] rely on the following
techniques:

• using a branching scheme (the DPLL-algorithm of Davis, Putnam, Longemann,
and Loveland [10, 11]) to split the problem into smaller subproblems,

• applying Boolean Constraint Propagation (BCP) [22] on the subproblems,
which is a simple node preprocessing, and

• analyzing infeasible subproblems to produce conflict clauses [15], which help
to prune the search tree later on.

The DPLL-algorithm creates two subproblems at each node of the search tree
by fixing a single variable to zero and one, respectively. The nodes are processed in
a depth first fashion. At each node, BCP is applied to derive further deductions by
substituting the fixed variables in the clauses. It may happen that a still unsatisfied
clause is thereby reduced to a single literal, a so-called unit clause. In this case,
the remaining literal can be fixed to 1. BCP is applied iteratively until no more
deductions can be found or a clause gets empty, i.e., all its literals are fixed to 0.
The latter case is called a conflict, and conflict analysis can be performed to produce
a conflict clause, which is explained in the following.

2.1 Conflict Graph Analysis

The deductions performed in BCP can be visualized in a conflict graph G = (V, A).
The vertices V = {ℓ1, . . . , ℓk, λ} ⊂ L ∪ {λ} of this directed graph represent the
current value assignments of the variables, with the special vertex λ representing
the conflict. The arcs can be partitioned into A = A1 ∪ . . . AD ∪ Aλ. Each subset
Ad, d = 1, . . . , D, represents one deduction: whenever a clause Ci = ℓi

1∨ . . .∨ℓi
ki
∨ℓi

r

became a unit clause in BCP with remaining unfixed literal ℓi
r, a set of arcs Ad =

{(ℓ̄i
1, ℓ

i
r), . . . , (ℓ̄

i
ki

, ℓi
r)} is created in order to represent the deduction ℓ̄i

1 ∧ . . .∧ ℓ̄i
ki

→

ℓi
r that is implied by Ci. The additional set of arcs Aλ = {(ℓ̄λ

1 , λ), . . . , (ℓ̄λ
kλ

, λ)}
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Figure 1. Conflict graph of Example 2.2. The vertices in the top row are branching decisions, the
ones below are deductions. Each cut separating the branching vertices and the conflict vertex (λ)
yields a conflict clause.

represents clause Cλ that detected the conflict (i.e., the clause that got empty in
BCP).

Example 2.2 Consider the CNF C = C1 ∧ . . . ∧ C18 with the following clauses:

C1 : x1 ∨ x2 C7 : x̄10 ∨ x11 C13 : x16 ∨ x18

C2 : x̄2 ∨ x̄3 C8 : x̄8 ∨ x12 ∨ x13 C14 : x̄17 ∨ x̄18

C3 : x̄2 ∨ x̄4 ∨ x̄5 C9 : x12 ∨ x14 C15 : x̄12 ∨ x19

C4 : x6 ∨ x̄7 C10 : x̄8 ∨ x̄13 ∨ x̄14 ∨ x15 C16 : x7 ∨ x̄19 ∨ x20

C5 : x3 ∨ x5 ∨ x7 ∨ x8 C11 : x̄8 ∨ x̄9 ∨ x̄15 ∨ x̄16 C17 : x15 ∨ x̄20 ∨ x21

C6 : x3 ∨ x̄8 ∨ x9 C12 : x̄15 ∨ x17 C18 : x̄8 ∨ x̄20 ∨ x̄21

Suppose the fixings x1 = 0, x4 = 1, x6 = 0, x10 = 1, and x12 = 0 were applied in
the branching steps of the DPLL procedure. This leads to a conflict generated by
constraint C14. The corresponding conflict graph is shown in Figure 1.

In the conflict graph, we distinguish between branching vertices VB and deduced
vertices V \ VB. Branching vertices are those without incoming arcs. Each cut
separating the branching vertices VB from the conflict vertex λ gives rise to one
distinct conflict clause (see Figure 1), which is obtained as follows.

Let V = Vr ∪ Vc, Vr ∩ Vc = ∅, be a partition of the vertices arising from a cut
with VB ⊆ Vr and λ ∈ Vc. Vr is called reason side, and Vc is called conflict side.
The reason side’s frontier Vf := {ℓp ∈ Vr | ∃(ℓp, ℓq) ∈ A, ℓq ∈ Vc} is called conflict
set. Fixing the literals in Vf to 1 suffices to produce the conflict. Therefore, the
conflict clause Cf =

∨

ℓj∈Vf
ℓ̄j is valid for all feasible solutions of the SAT instance

at hand.
Figure 1 shows different types of cuts (labeled ’A’ to ’D’), leading to different

conflict clauses. The cut labeled ’A’ produces clause CA = x1 ∨ x̄4 ∨ x6 ∨ x̄10 ∨ x12

consisting of all branching variables. This clause would not help to prune the search
tree, because the current subproblem is the only one where all branching variables
are fixed to these specific values. The clause would never be violated again. Cut ’D’
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is not useful either, because clause CD = x̄17 ∨ x̄18 is equal to the conflict detecting
clause Cλ = C14 and already present in the clause database. Therefore, useful cuts
must be located somewhere “in between”.

There are several methods for generating useful cuts. Two of them are the so-
called All-FUIP and 1-FUIP schemes which proved to be successful for SAT solving.
These are explained in the following. We refer to [23] for a more detailed discussion.

Each vertex in the conflict graph represents a fixing of a variable that was applied
in one of the nodes on the path from the root node to the current node in the search
tree. The depth level of a vertex is the depth of the node in the search tree at
which the variable was fixed. In each depth level, the first fixing corresponds to a
branching vertex while all subsequent fixings are deductions. In the example shown
in Figure 1, there are 5 depth levels (excluding the root node) which are defined by
the successive branching vertices x̄1, x4, x̄6, x10, and x̄12.

Definition 2.3 (unique implication point) An unique implication point (UIP)
of depth level d is a vertex ℓd

u ∈ V representing a fixing in depth level d, such that
every path from the branching vertex of depth level d to the conflict vertex λ goes
through ℓd

u or through a UIP ℓd′

u′ of higher depth level d′ > d. The first unique
implication point (FUIP) of a depth level d is the UIP ℓd

u 6= λ that was fixed last,
i.e., that is closest to the conflict vertex λ.

Note that the UIPs of the different depth levels are defined recursively, starting
at the last depth level, i.e., the level of the conflict. UIPs can be identified in linear
time by a single scan through the conflict graph. In the example, the FUIPs of the
individual depth levels are x15, x11, x8, x̄5, and x̄3, respectively.

The 1-FUIP scheme finds the first UIP in the last depth level. All literals that
were fixed after this FUIP are put to the conflict side. The remaining literals and
the FUIP are put to the reason side. In the example shown in Figure 1, the FUIP
of the last depth level is x15. The 1-FUIP cut is the one labeled ’C’. It corresponds
to the clause CC = x̄8 ∨ x̄9 ∨ x̄15.

The All-FUIP scheme finds the first UIP of every single depth level. From each
depth level, the literals fixed after their corresponding FUIP are put to the conflict
side. The remaining literals and the FUIPs are put to the reason side. In the
example, this results in cut ’B’ which corresponds to the clause CB = x3 ∨ x̄8 ∨ x̄15.

2.2 Reconvergence Cuts

In the previous section it was shown that each cut separating the branching vertices
from the conflict vertex gives rise to a conflict clause, which contains the literals of
the reason side’s frontier. By dropping the requirement that the cut must separate
the conflict vertex from the branching vertices, we get a different class of cuts which
are called cuts not involving conflicts (see [23]). These cuts can also be used to
derive valid clauses from the conflict graph. In order to apply non-chronological
backtracking, which is explained in Section 2.3, one has to generate some of these
cuts, in particular the UIP reconvergence cuts of the last depth level (see below).

Figure 2 gives an example of a cut not involving conflicts. In conflict graph
analysis, the conflict vertex λ is substituted by an arbitrary vertex ℓu representing
a literal. In the example, ℓu = x15 was chosen, which is the first unique implication
point of the last depth level.

Each cut separating the branching vertices VB from the vertex ℓu by partitioning
the vertices V into Vr ⊇ VB and Vc ∋ ℓu gives rise to the clause Cu = (

∨

ℓi∈Vf
ℓ̄i)∨ℓu.
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Figure 2. The cut separating the branching vertices (top row) and a deduced vertex (x15) yields
the reconvergence clause x̄8 ∨ x12 ∨ x15.

Again, Vf consists of the vertices at the reason side’s frontier of the cut. However,
such a clause is only useful if Vc ∪Vf contains an ℓu-reconvergence, i.e., two different
paths from a vertex ℓi ∈ Vc ∪ Vf to ℓu. Otherwise, it can be proved that all possi-
ble deductions of Cu can already be found by iterated BCP on the current clause
database.

The cut shown in Figure 2 is a UIP reconvergence cut which connects the two
successive UIP ’s x̄12 and x15 of depth level 5: by applying all fixings of lower depth
levels, Cu = x̄8 ∨ x12 ∨ x15 reduces to the implication x̄12 → x15. Note that BCP
can now also deduce x̄15 → x12, which is not possible without using Cu.

2.3 Non-chronological Backtracking

Suppose the conflict analysis procedure produced a clause with only one literal ℓd
u

fixed at depth level d in which the conflict was detected. All other literals were
fixed at depth levels smaller or equal to d′ < d. If this clause would have been
known earlier, the literal ℓd

u could already have been fixed to the opposite value in
depth d′. Suppose the conflict analysis procedure also produced all reconvergence
clauses necessary to connect ℓd

u to the branching vertex ℓd
b of depth d. Then, also

the branching variable of depth d could have been fixed to the opposite value in
depth d′.

Therefore, after having found such a conflict clause, the search tree’s node in
depth level d′ can be reevaluated to apply the deductions leading to the opposite
fixing of ℓd

b . Further deductions may lead to another conflict, thus rendering the
whole subtree rooted in depth d′ infeasible without evaluating its remaining leaves.
In [15] it was empirically shown, that this so-called non-chronological backtracking
can lead to large reductions in the number of evaluated nodes to solve SAT instances.

In our Example 2.2, the conflict analysis engine used in this paper produces
the conflict clauses CB = x3 ∨ x̄8 ∨ x̄15 and CC = x̄8 ∨ x̄9 ∨ x̄15. Additionally,
the reconvergence clause CR = x̄8 ∨ x12 ∨ x15 is added to the clause database.
Evaluating the node in depth 3 again, x15 = 0 (using CC) and x12 = 1 (using
CR) can be deduced, leading together with C15, . . . , C18 to another conflict (see
Figure 3). Therefore, the subtree with x1 = 0, x4 = 1, and x6 = 0 can be pruned
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Figure 3. Reevaluation of the node in depth 3 after inserting conflict and reconvergence clauses
again leads to a conflict.

without evaluating the intermediate branching decisions (in this case x10 = 0 and
x10 = 1).

3 Conflict Analysis in MIP

In this section we describe the generalization of conflict analysis of Section 2 to
mixed integer programming. Recall that we consider a mixed integer program of the
form

(MIP) max{cT x | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I}

with A ∈ R
m×n, b ∈ R

m, c, l, u ∈ R
n, and I ⊆ N = {1, . . . , n}. A branch-and-bound

based MIP solver decomposes the problem instance into subproblems typically by
modifying the bounds l and u of the variables. These branching decisions may entail
further deductions on the bounds of other variables. The deductions can be gener-
ated by bound strengthening rules on linear constraints (see, e.g., Savelsbergh [20]).

Suppose we detected a subproblem in the branch-and-bound search tree to be
infeasible, either because a deduction leads to a variable with empty domain or
because the LP relaxation is infeasible. To analyze this conflict, we proceed in the
same fashion as in SAT solving: we construct a conflict graph, choose a cut in this
graph, and produce a conflict constraint which consists of the variables in the conflict
set, i.e., in the cut’s frontier. Because a MIP may contain non-binary variables, we
have to extend the concept of the conflict graph: it has to represent bound changes
instead of fixings of variables. This generalization is described in Section 3.1.

A conflict in SAT solving is always detected due to a single clause that became
empty during the binary constraint propagation process (see Section 2). This con-
flict detecting clause provides the links from the vertices in the conflict graph that
represent fixings of variables to the conflict vertex λ. In contrast, in an LP based
branch-and-bound algorithm to solve mixed integer programs, infeasibility of a sub-
problem is almost always detected due to the infeasibility or bound exceedance of
its LP relaxation. In this case the LP relaxation as a whole is responsible for the
infeasibility. There is no single conflict detecting constraint that defines the pre-
decessors of the conflict vertex in the conflict graph. To cope with this situation,
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we have to analyze the LP in order to identify a subset of the bound changes that
suffices to render the LP infeasible or bound exceeding. The conflict vertex can
then be connected to the vertices of this subset. Section 3.2 explains how to analyze
infeasible LPs and how to identify an appropriate subset of the bound changes. The
case of bound exceedance is treated in Section 3.3.

After the conflict graph has been constructed, we have to choose a cut in the
graph in order to define the conflict set and the resulting conflict constraint. In
the case of a binary program, i.e., I = N , l = 0, u = 1, the conflict graph can
be analyzed by the same algorithms as described in Section 2 to produce a conflict
clause Cf =

∨

ℓj∈Vf
ℓ̄j. This clause can be linearized by the set covering constraint

∑

j:xj∈Vf

(1 − xj) +
∑

j:x̄j∈Vf

xj ≥ 1, (1)

and added to the MIP’s constraint set. However, in the presence of non-binary
variables, the analysis of the conflict graph may produce a conflict set that contains
bound changes on non-binary variables. In this case the conflict constraint can not
be linearized by the set covering constraint (1). Section 3.4 shows how non-binary
variables can be incorporated into the conflict constraints.

3.1 Generalized Conflict Graph

If general integer or continuous variables are present in the problem, a bound on a
specific variable could have been changed more than once on the path from the root
node to the current subproblem. A local bound change on a non-binary variable
can be both reason and consequence of a deduction, similar to a fixing of a binary
variable. Therefore, we generalize the concept of the conflict graph: the vertices now
represent bound changes instead of fixings. Note that there can now exist multiple
vertices corresponding to the same non-binary variable in the conflict graph, each
vertex representing one change of the variable’s bounds.

Example 3.1 Consider the following constraints of an integer program with vari-
ables x1, . . . , x7 ∈ {0, 1} and z1, . . . , z5 ∈ Z≥0.

2x1 +3z1 +2z2 ≤ 9 (2)

+ 9x2 − z1 − 2z2 ≤ 0 (3)

− 3x2 +5x3 − 3x4 ≤ 4 (4)

− 3x2 + 9x4 − 2z3 ≤ 6 (5)

+9x5 − z2 + 2z3 ≤ 8 (6)

− 4x6 − 7x7 + 2z3 ≤ 3 (7)

+5x7 − 2z2 ≤ 2 (8)

− x5 +5x7 +4z2 − 5z3 ≤ 2 (9)

x1 − x2 + x3 − 2x5 + x6 − z1 − 2z2 + z3 − 2z4 + 4z5 ≤ 1 (10)

+ 2x2 − x4 +3x5 − 2x6 − z1 +5z2 + z3 +2z4 − 6z5 ≤ 2 (11)

−2x1 − 2x3 + x4 + x5 + z1 +2z2 − 2z3 +2z4 − 2z5 ≤ 1 (12)

By the basic bound strengthening techniques of Savelsbergh [20], we can deduce
upper bounds z1 ≤ 3, z2 ≤ 4, z3 ≤ 6, z4 ≤ 23, and z5 ≤ 15 on the general integer
variables. Assume we branched on x1 = 1. By applying bound strengthening on
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Figure 4. Conflict graph of Example 3.1. After applying the branching decisions x1 = 1, x3 = 1,
x6 = 0, and all inferred bound changes, the LP relaxation becomes infeasible. The implications on
variables z4 and z5 are not included in the figure.

constraint (2) we can deduce z1 ≤ 2 and z2 ≤ 3 (see Figure 4). Using constraint (3)
and the new bounds on z1 and z2 it follows x2 = 0. By inserting the bound on z2

into constraint (6) we can also infer z3 ≤ 5. After branching on x3 = 1 and x6 = 0
and applying the deductions that follow from these branching decisions we arrive
at the situation depicted in Figure 4 with the LP relaxation being infeasible. Note
that the non-binary variables zi appear more than once in the conflict graph. For
example, the upper bound of z3 was changed once and the lower bound was changed
twice. The implications on variables z4 and z5 are not included in the figure. They
can be tightened to 7 ≤ z4 ≤ 11 and 4 ≤ z5 ≤ 6.

We use the following notation in the rest of the paper. Let BL = {B1, . . . , BK}
with hyperplanes Bk = L

µk

jk
:= {x | xjk

≥ µk} or Bk = U
µk

jk
:= {x | xjk

≤ µk},
1 ≤ jk ≤ n, ljk

≤ µk ≤ ujk
, k = 1, . . . , K. The set BL corresponds to the additional

bounds imposed on the variables in the local subproblem. Thus, the subproblem is
defined as

(MIP′) max{cT x | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I, x ∈
⋂

B∈BL

B}

The vertices of the conflict graph correspond to the local bound changes BL. As
before, the arcs of the graph represent the implications.

3.2 Analyzing Infeasible LPs

In order to analyze the conflict expressed by an infeasible LP, we have to find a subset
BC ⊆ BL of the local bound changes that suffice to render the LP (together with the
global bounds and rows1) infeasible. If all these remaining bound changes are fixings
of binary variables, this already leads to a valid inequality of type (1). Furthermore,

1In a branch-and-cut framework, we have to either remove local cuts from the LP or mark the
resulting conflict clause being only locally valid at the depth level of the last local cut remaining
in the LP. Removing local rows can of course render the LP feasible again, thus making conflict
analysis impossible.
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even if bound changes on non-binary variables are present, such a subset can be
used like the conflict detecting clause in SAT to represent the conflict in the conflict
graph. Analysis of this conflict graph may also lead to a valid inequality.

A reasonable heuristic to select BC ⊆ BL is to try to make |BC | as small as
possible. This would produce a conflict graph with the least possible number of
predecessors of the conflict vertex and thus (hopefully) a small conflict clause. Un-
fortunately, the problem of finding the smallest subset of BL with the LP still being
infeasible is NP-hard:

Definition 3.2 Let A ∈ R
m×n, b ∈ R

m, and F = {x | Ax ≤ b}. Let BL =
{B1, . . . , BK} be additional bounds with Bk = {x | xjk

≥ µk} or Bk = {x | xjk
≤

µk}, 1 ≤ jk ≤ n, for all k = 1, . . . , K, such that F ∩ (
⋂

B∈BL
B) = ∅. Then, the

minimal cardinality bound-IIS2 problem is to find a subset BC ⊆ BL with

F ∩ (
⋂

B∈BC

B) = ∅, and |BC | = min
B⊆BL

{

|B|
∣

∣

∣
F ∩ (

⋂

B∈B

B) = ∅
}

.

Lemma 3.3 The minimal cardinality bound-IIS problem is NP-hard.

Proof. We provide a reduction from the minimal cardinality IIS problem, which is
NP-hard [4]. Given an instance F ′ = (A, b) of the minimal cardinality IIS problem
with {x | Ax ≤ b} = ∅, the task is to find a minimal cardinality subset of the rows
of Ax ≤ b that still defines an infeasible subsystem. Consider now the minimal
cardinality bound-IIS problem instance F = {(x, s) ∈ R

n×m | Ax + s = b} and
BL = {B1, . . . , Bm} with Bi = {(x, s) | si ≥ 0} for i = 1, . . . , m. Then, for each
subset B ⊆ BL, the index set IB = {i | Bi ∈ B} defines an infeasible subsystem of F ′

if and only if F ∩ (
⋂

B∈B B) = ∅. Hence, there exists a one-to-one correspondence
between the set of solutions of (F,BL) and the one of F ′. Because |IB| = |B|, the
optimal solution of (F,BL) defines an optimal solution of F ′. 2

There are various heuristics for minimal cardinality IIS (see [19]). These can
easily be specialized to the minimal cardinality bound-IIS problem. We implemented
a preliminary version of a heuristic based on one of these methods which applies
the Farkas lemma, but the overhead in running time was very large. Therefore, we
employ very simple heuristics using the LP information at hand, which are described
in the following.

First, we will only consider the case with the global lower bounds l and local
lower bounds l̃ being equal to l = l̃ = 0. We further assume that each component
of the global upper bounds u was tightened at most once to obtain the local upper
bounds ũ ≤ u. Thus, the set of local bound changes BL consists of at most one
bound change for each variable.

Suppose the local LP relaxation

(P) max{cT x | Ax ≤ b, 0 ≤ x ≤ ũ}

is infeasible. Then its dual

(D) min{bT y + ũT r | AT y + r ≥ c, (y, r) ≥ 0}

has an unbounded ray, i.e., (ȳ, r̄) ≥ 0 with AT ȳ + r̄ = 0 and bT ȳ + ũT r̄ < 0. Note
that the dual LP does not need to be feasible.

2IIS: irreducible inconsistent subsystem (an infeasible subsystem all of whose proper subsystems
are feasible)

10



We can aggregate the rows and bounds of the primal LP with the non-negative
weights (ȳ, r̄) to get the following proof of infeasibility:

0 = (ȳT A + r̄T )x ≤ ȳT b + r̄T ũ < 0. (13)

Now we try to relax the bounds as much as possible without loosing infeasibility.
Note that the left hand side of (13) does not depend on ũ. Relaxing ũ to some û

with ũ ≤ û ≤ u increases the right hand side of (13), but as long as ȳT b + r̄T û < 0,
the relaxed LP

(P̂ ) min{cT x | Ax ≤ b, 0 ≤ x ≤ û}

is still infeasible with the same infeasibility proof (ȳ, r̄). This leads to the following
heuristic to produce a relaxed upper bound vector û with the corresponding LP still
being infeasible.

Algorithm 3.4 Let max{cT x | Ax ≤ b, 0 ≤ x ≤ ũ ≤ u} be an infeasible LP with
dual ray (ȳ, r̄).

1. Set û := ũ, and calculate the infeasibility measure d := ȳT b + r̄T û < 0.

2. Select a variable j with ûj < uj and dj := d + r̄j(uj − ũj) < 0. If no such
variable exists, stop.

3. Set ûj := uj , update d := dj , and go to 2.

In the general case of multiple bound changes on a single variable, we have to
process these bound changes step by step, always relaxing to the previously active
bound. In the presence of non-zero lower bounds the reduced costs r may also be
negative. In this case, we can split up the reduced cost values into r = ru − rl. It
follows from the Farkas lemma that ru · rl = 0. The infeasibility measure d of the
dual ray has to be defined in Step 1 as d := ȳT b + (r̄u)T û + (r̄l)T l̂. A local lower
bound l̃ can be relaxed in the same way as an upper bound ũ, where u has to be
replaced by l in the formulas of Steps 2 and 3.

Example 3.5 (continued) After applying the deductions on the bounds of the
variables in Example 3.1, the LP relaxation is infeasible. Let y(i) denote the dual
variable of constraint (i) and rj the reduced cost value of variable j. Then the dual
ray ȳ(10) = 2, ȳ(11) = 1, ȳ(12) = 1, r̄z1

= 2, r̄z2
= −3, r̄z3

= −1, and the remaining
coefficients set to zero proves the infeasibility of the LP. In Step 1 of Algorithm 3.4
the infeasibility measure is calculated as

d = ȳ(10)b(10) + ȳ(11)b(11) + ȳ(12)b(12) + r̄u
z1

ũz1
− r̄l

z2
l̃z2

− r̄l
z3

l̃z3

= 2 · 1 + 1 · 2 + 1 · 1 + 2 · 1 − 3 · 2 − 1 · 3 = −2.

In Step 2, all local bounds except the upper bound of z1 and the lower bounds of
z2 and z3 can be relaxed to the corresponding global bounds, because their reduced
cost values in the dual ray are zero. Additionally, the lower bound of z3 can be
relaxed from 3 to 2, which was the lower bound before z3 ≥ 3 was deduced. This
relaxation increases d by 1 to d = −1. No further relaxations are possible without
increasing d to d ≥ 0. Thus, the local bounds z1 ≤ 1, z2 ≥ 2, and z3 ≥ 2 are
identified as initial reason for the conflict, and the “global” arc from the LP to the
conflict vertex in Figure 4 can be replaced by three arcs as shown in Figure 5.
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x1 = 1

x2 = 0

x3 = 1

x4 = 1

x5 = 0

x6 = 0

x7 = 1z1 ≤ 2

z2 ≤ 3

z3 ≤ 5

z3 ≥ 2

z2 ≥ 2

z3 ≥ 3

z1 ≤ 1

λ

AB

Figure 5. Conflict graph of Example 3.1 after the infeasible LP was analyzed. Cut ’A’ is the
1-FUIP cut. Cut ’B’ was constructed by moving the non-binary variables of the conflict set of cut
’A’ to the conflict side.

3.3 Analyzing LPs Exceeding the Primal Bound

In principle, the case of an LP exceeding the primal bound can be handled as in
the previous section by adding an appropriate objective bound inequality to the
constraint system. In the implementation, however, we use the dual solution directly
as a proof of objective bound exceedance. Then, we relax the bounds of the variables
as long as the dual solution’s objective value stays below the primal bound. Again,
we describe the case with l = l̃ = 0 and with at most one upper bound change per
variable on the path from the root node to the local subproblem.

Suppose, the local LP relaxation

(P ) max{cT x | Ax ≤ b, 0 ≤ x ≤ ũ}

exceeds (i.e., falls below) the primal objective bound z̄. Then the dual

(D) min{bT y + ũT r | AT y + r ≥ c, (y, r) ≥ 0}

has an optimal solution (ȳ, r̄) with bT ȳ + ũT r̄ ≤ z̄. Note that the variables’ upper
bounds ũ do not affect dual feasibility. Thus, after relaxing the upper bounds ũ to a
vector û with ũ ≤ û ≤ u that also satisfies bT ȳ + ûT r̄ ≤ z̄, the LP’s objective value
stays below the primal objective bound.

After relaxing the bounds, the vector (ȳ, r̄) is still feasible, but not necessarily
optimal for the dual LP. We may resolve the dual LP in order to get a stronger
dual bound which can be used to relax further local upper bounds. The following
algorithm summarizes this procedure.

Algorithm 3.6 Let max{cT x | Ax ≤ b, 0 ≤ x ≤ ũ ≤ u} be an LP, z̄ a primal
objective bound, and (ȳ, r̄) a dual feasible solution with bT ȳ + ũT r̄ ≤ z̄.

1. Set û := ũ.

2. Calculate the bound exceedance measure d := bT ȳ + ûT r̄ − z̄ ≤ 0.

3. Select a variable j with ûj < uj and dj := d + r̄j(uj − ũj) ≤ 0. If no such
variable exists, go to 5.

12



4. Set ûj := uj , update d := dj , and go to 3.

5. (optional) If at least one upper bound was relaxed in the last iteration, resolve
the dual LP to get the new dual solution (ȳ, r̄), and go to 2.

3.4 Conflict Constraints with Non-binary Variables

Despite the technical issue of dealing with bound changes instead of fixings in the
conflict graph, there is also a principle obstacle in the presence of non-binary vari-
ables, which is the construction of the conflict constraint if non-binary variables
appear in the conflict set.

The conflict graph analysis yields a conflict set, which is a subset Bf ⊆ BL that
together with the global bounds l and u suffices to render the current subproblem
infeasible. This conflict set leads to the conflict constraint

∨

L
µ
j ∈Bf

(xj < µ) ∨
∨

U
µ
j ∈Bf

(xj > µ).

If at least one of the conflict variables xj is continuous, the linearization of the
conflict constraint would remain a strict inequality, which cannot be handled by an
LP solver. If all conflict variables are integers, the conflict constraint has the form

∨

L
µ
j ∈Bf

(xj ≤ µ − 1) ∨
∨

U
µ
j ∈Bf

(xj ≥ µ + 1). (14)

As shown in the introduction of Section 3, this constraint can be expressed by the
set covering constraint (1) if all conflict variables are binary. However, if a general
integer variable is involved in the conflict, we cannot use such a simple linearization.
In this case, (1) can be modeled with the help of auxiliary variables y

µ
j , z

µ
j ∈ {0, 1}:

∑

L
µ
j ∈Bf

y
µ
j +

∑

U
µ
j ∈Bf

z
µ
j ≥ 1

xj − (µ − 1)yµ
j ≤ 0 for all L

µ
j ∈ Bf

xj − (µ + 1)zµ
j ≥ 0 for all U

µ
j ∈ Bf

(15)

The question arises, whether the potential gain in the dual bound justifies the ex-
penses in adding system (15) to the LP. Many fractional points violating conflict
constraint (14) cannot even be separated by (15) if the integrality restrictions on
the auxiliary variables are not enforced through other cutting planes or branching.
This suggests that system (15) is probably very weak, although we did not verify
this hypotheses by computational studies.

We therefore refrain from creating conflict constraints with non-binary variables.
Instead, we modified the cut selection rules in the conflict graph analysis in order
to always choose the cut such that the non-binary variables are not involved in
the resulting conflict set. This can be achieved by moving the bound changes on
non-binary variables from the reason side’s frontier to the conflict side of the cut.
However, this is not possible if the bound change was due to a branching decision,
because branching vertices must be located on the reason side. In this case, we just
remove the bound change from the conflict set, thereby destroying the global validity
of the resulting conflict clause. The clause can therefore only be added to the local
subtree which is rooted at the node where the bound change on the non-binary
variable was applied.
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Example 3.7 (continued) Figure 5 shows the conflict graph of Example 3.1 after
branching on x1 = 1, x3 = 1, and x6 = 0. The analysis of the LP relaxation
identified z1 ≤ 1, z2 ≥ 2, and z3 ≥ 2 as sufficient to cause an infeasibility in the
LP. The 1-FUIP cut selection scheme leads to the cut labeled ’A’ in the figure. The
corresponding conflict constraint is

(z2 ≤ 1) ∨ (z3 ≤ 1).

Because there are non-binary variables involved in the conflict constraint, it cannot
be represented by the set covering constraint (1). To avoid the introduction of the
auxiliary variables of System (15), the bound changes z2 ≥ 2 and z3 ≥ 2 are put to
the conflict side, resulting in cut ’B’. Thus, the conflict constraint that is added to
the constraint database is (x2 = 1) ∨ (x4 = 0) ∨ (x7 = 0), which can be written as

x2 + (1 − x4) + (1 − x7) ≥ 1.

4 Computational Results

In this section we examine the computational effectiveness of conflict analysis on
several MIP instances. All calculations were performed on a 3.2 GHz Pentium-4EE
workstation with 2 GB RAM. In all runs we used a time limit of 3600 seconds.

The conflict analysis techniques described in Sections 2 and 3 were implemented
into the constraint and mixed integer programming framework SCIP version 0.79a
(see [1]). Conflicts detected in constraint propagation and infeasible (or bound
exceeding) LP relaxations of local nodes are analyzed to produce conflict clauses.
Additionally, infeasibilities of LP relaxations that are detected in the strong branch-
ing calls of the reliability branching rule [3] are examined with the same algorithms.
If the initial conflict set produced by the LP analysis already consists of only binary
variables, the corresponding conflict clause is added to the constraint database. In
every case, the conflict graph analysis produces additional conflict clauses with the
1-FUIP and All-FUIP schemes [23] and reconvergence clauses to connect the last
depth level’s first UIP and branching vertex.

To solve the LP relaxations, the dual simplex algorithm of CPlex is applied. It
immediately stops after a dual feasible solution that exceeds the primal bound has
been found. This solution, which is usually not optimal, can result in a very small
initial bound exceedance measure (Algorithm 3.6 Step 2). In order to get useful
initial conflict sets, we continue solving the LP to optimality without objective limit
and use the optimal solution for LP infeasibility analysis. The optional Step 5
of Algorithm 3.6 is not applied, because it usually reduces the size of the initial
conflict set by only a few additional bound changes and therefore does not justify
its additional costs.

We only separate cutting planes in the root node, which seems to yield the best
performance on most MIP instances using SCIP.3 The generated conflict clauses
are added on demand to the LP relaxations at local nodes and take part in the
propagation process inside the local nodes’ solving loop.

Because the recorded conflict clauses increase the costs for processing the sub-
problems, we try to only keep the “useful” conflict clauses. We implemented a
constraint aging mechanism to identify useless conflict clauses. Clauses are deleted,
if they did not help for a couple of consecutive iterations to tighten the LP relaxation

3In the current version, SCIP separates Gomory MIR cuts, strong CG cuts, c-MIR cuts, lifted
knapsack cover cuts, implied bound cuts, and clique cuts.
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during separation or propagation. Longer clauses are discarded earlier than clauses
with fewer literals.

4.1 Test Set

Our first test set consists of instances from Miplib 2003 [2] and instances collected
by Mittelmann [17]. We selected all problems where CPlex 9.03 needs at least 1000
branching nodes and 30 seconds and at most one hour CPU time for solving.4

As a second test set, we use IP models of chip design verification problems. The
data are for a very simple arithmetic logical unit (ALU) of different register widths
ranging from 4 to 10 bits and with different properties to be checked (see, e.g., [7]).
The instances, the ALU model, and the property definitions can be found in the
contributed instances section of Miplib 2003.

The so-called property checking problem addressed here is to prove the validity
of a certain property for a given chip design. This problem can be modeled as IP,
where each feasible solution represents a counter-example of the property. Hence, in
order to prove that the property holds, one has to show the infeasibility of the IP.
All of the ALU instances investigated here correspond to valid properties, i.e., the
IP instances are infeasible.

Note that the ALU design includes signed and unsigned multiplication of the two
input registers. The internal calculations for multiplying the n-bit input registers
operate on 2n-bit variables. Therefore, the IP instances include integer variables and
matrix coefficients that are in the range of 22n. In order to overcome the numerical
difficulties arising from such large values, we had to set the solvers’ feasibility and
integrality tolerances for this second test set to 10−9.

4.2 Description of the Results

Table 1 gives some statistics on the problems in the first test set and shows the results
with the default settings for MIP solving and those with activated conflict analysis.
Columns ‘Rows’, ‘Cols’, ‘Bins’, and ‘Ints’ show the number of rows, columns, binary,
and general integer variables of the problem instances, respectively. Columns ‘Nodes’
and ‘Time’ show the number of branching nodes and the total time in seconds needed
to solve the instances. Values marked with a ‘>’ denote that the instance could not
be solved within the time limit. The comparison with CPlex indicates that SCIP’s
performance (using CPlex as LP solver) is not strictly competitive, but not far
away from a state-of-the-art MIP solver.

We can observe that conflict analysis yields a reduction of branching nodes of
about 50% in terms of the geometric mean. Nevertheless, this does not reduce the
total running time. In fact, the geometric mean of the running time increases by
about 15%. Similar observations can be made for the reduced test set consisting of
only those instances that could be solved by both settings within the time limit. A
closer look at the single instances reveals that activating conflict analysis reduces the
number of nodes on 21 instances and the solving time on 12 instances. The default
MIP setting needs fewer nodes on 5 instances and is faster on 16 instances.

Table 2 gives a more detailed timing analysis of the two settings. The basic time
(BTime) is the time spent for presolving, node processing (including LP solving),
and primal heuristics. In particular, this also includes the additional overhead of
processing the conflict constraints in domain propagation and cut separation. The

4CPlex was run with default settings, except that “absolute mipgap” was set to 10−9 and
“relative mipgap” to 0.0, which are the corresponding values in SCIP.
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Problem Size CPlex 9.03 SCIP 0.79a (default) SCIP 0.79a (conflict)

Name Rows Cols Bins Ints Nodes Time Nodes Time Nodes Time

10teams 230 2025 1800 2 771 63.5 596 73.8 313 77.0

aflow30a 479 842 421 37 116 86.9 14 269 77.6 6 322 66.3

mas74 13 151 150 5 311 878 1306.6 3 378 402 902.1 > 810 784 >3600.0

mas76 12 151 150 375 729 56.8 566 581 152.3 > 437 272 >3600.0

misc07 212 260 259 72 420 60.2 35 210 47.8 41 138 87.1

mzzv11 9499 10240 9989 251 3 820 443.4 4 668 1285.2 2 847 1269.5

pk1 45 86 55 365 710 86.8 230 529 86.3 352 533 644.0

qiu 1192 840 48 11 431 107.5 10 023 166.8 9 275 207.5

rout 291 556 300 15 843 504 1845.2 27 476 52.2 8 988 38.1

acc-6 3047 1335 1335 1 084 656.5 > 8 959 >3600.1 5 398 2582.4

bc1 1913 1751 252 9 939 270.4 62 624 1514.9 564 125.5

bienst1 576 505 28 12 292 113.7 9 064 61.3 5 842 52.2

bienst2 576 505 35 161 843 2381.4 89 989 868.6 77 768 980.8

mkc1 3411 5325 3087 14 236 48.9 > 449 959 >3600.0 > 294 204 >3600.0

neos2 1103 2101 1040 40 193 83.5 129 695 314.9 10 736 125.0

neos3 1442 2747 1360 835 129 2630.7 > 903 445 >3600.0 103 956 1310.7

neos6 1036 8786 8340 5 328 232.6 1 033 191.9 2 224 293.6

neos7 1994 1556 434 20 113 861 423.3 40 056 390.3 36 974 446.3

neos11 2706 1220 900 3 058 179.7 11 247 1018.4 9 832 1537.0

neos21 1085 614 613 7 531 85.1 1 611 36.3 1 579 62.0

neos22 5208 3240 454 13 520 45.2 30 598 282.0 24 615 318.3

prod1 208 250 149 97 507 68.2 67 311 45.2 43 486 64.9

ran10x26 296 520 260 20 176 42.0 50 525 116.0 21 451 85.8

ran12x21 285 504 252 81 525 159.2 129 096 282.2 47 764 218.8

ran13x13 195 338 169 62 936 63.6 103 302 118.2 21 459 60.5

seymour1 4944 1372 451 10 459 1056.2 4 378 880.9 4 206 1103.5

swath1 884 6805 2306 15 860 42.2 378 31.6 387 45.9

swath2 884 6805 2406 150 740 383.2 12 418 120.3 12 450 187.2

swath3 884 6805 2706 728 982 2180.0 54 858 401.0 44 382 545.9

Total (29) 9 410 578 15202.4 6 428 300 20318.4 2 438 749 23335.9

Geom. Mean 41 268 202.0 29 633 257.2 15 441 297.8

Reduced (24) 2 872 522 10502.7 1 120 954 8463.9 787 135 8642.9

Geom. Mean 32 994 178.8 17 509 179.4 9 720 187.4

Table 1. Comparison of runs with CPlex 9.03, SCIP with default MIP settings, and SCIP with
conflict analysis. Results marked with ‘>’ were not solved to optimality within the time limit. The
totals and geometric means are given for the full test set as well as the reduced test set excluding
those instances (printed in bold face) not solved to optimality by one or both of the two SCIP

settings.

switching time (STime) denotes the time used for setting up the subproblems to
be processed. This includes updating the set of local constraints and the variables’
local bounds. The conflict analysis time (CTime) summarizes the extraction of
starting conflicts from infeasible and bound exceeding LPs as well as the conflict
graph analysis itself. The largest fraction of this time is usually spent to continue
solving bound exceeding LPs to optimality in order to get useful initial conflict sets.
The additional columns ’Confs’ and ’∅Lits’ show the number of conflict clauses
generated during each run and the average number of literals per conflict clause,
respectively.

One can see that the reduction of 50% in the number of branching nodes ob-
tained with conflict analysis lead to a saving of 10% in the basic solution time in
terms of the geometric mean. Unfortunately, this does not result in an overall per-
formance improvement, because the additional costs for the conflict analysis itself
(in particular to continue solving the LPs to optimality) outweigh the benefit of the
node reduction. In addition, due to the additional constraints generated in the local
nodes, the switching time increases. This increase in switching time has the most
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SCIP 0.79a (default MIP) SCIP 0.79a (conflict analysis)

Name Nodes Time BTime STime Nodes Time BTime STime CTime Confs ∅Lits

10teams 596 73.8 73.8 0.1 313 77.0 76.3 0.1 0.5 193 523.7

aflow30a 14269 77.6 76.1 1.5 6322 66.3 48.3 1.7 16.3 5757 41.3

mas74 3378402 902.1 773.7 128.4 >810784 >3600.0 2650.4 891.0 58.6 257919 19.0

mas76 566581 152.3 130.0 22.2 >437272 >3600.0 2481.4 1070.9 47.7 236310 20.2

misc07 35210 47.8 46.0 1.8 41138 87.1 66.1 4.9 16.1 38062 44.4

mzzv11 4668 1285.2 1278.1 7.1 2847 1269.5 1136.0 8.8 124.7 1858 26.4

pk1 230529 86.3 77.6 8.8 352533 644.0 454.9 158.8 30.2 160614 15.3

qiu 10023 166.8 165.3 1.6 9275 207.5 161.9 3.2 42.4 6245 16.3

rout 27476 52.2 49.8 2.4 8988 38.1 27.1 1.5 9.5 5931 12.6

acc-6 >8959 >3600.1 3598.5 1.6 5398 2582.4 2430.1 1.0 151.3 5197 138.3

bc1 62624 1514.9 1270.7 244.2 564 125.5 79.7 1.2 44.6 103 54.7

bienst1 9064 61.3 59.3 2.0 5842 52.2 46.5 1.0 4.7 3728 12.7

bienst2 89989 868.6 844.8 23.8 77768 980.8 787.7 86.6 106.4 58335 18.1

mkc1 >449959 >3600.0 3516.9 83.2 >294204 >3600.0 2242.1 88.9 1269.1 144076 76.8

neos2 129695 314.9 308.8 6.2 10736 125.0 96.6 2.4 26.0 11610 49.7

neos3 >903445 >3600.0 3546.8 53.2 103956 1310.7 935.4 45.2 330.1 91179 83.3

neos6 1033 191.9 191.0 0.9 2224 293.6 253.9 2.8 37.0 911 379.5

neos7 40056 390.3 375.9 14.4 36974 446.3 368.1 12.7 65.4 14335 4.6

neos11 11247 1018.4 1015.4 3.0 9832 1537.0 974.3 3.7 558.9 8358 17.9

neos21 1611 36.3 36.2 0.1 1579 62.0 44.2 0.2 17.6 3098 93.5

neos22 30598 282.0 273.7 8.3 24615 318.3 238.8 8.3 71.1 14380 14.4

prod1 67311 45.2 41.6 3.6 43486 64.9 53.5 8.5 3.0 24775 18.2

ran10x26 50525 116.0 112.8 3.1 21451 85.8 64.3 4.0 17.4 12403 19.3

ran12x21 129096 282.2 273.4 8.8 47764 218.8 163.3 15.0 40.5 25323 20.3

ran13x13 103302 118.2 115.1 3.1 21459 60.5 45.4 3.0 12.1 12440 16.2

seymour1 4378 880.9 879.9 0.9 4206 1103.5 906.7 1.2 195.7 3142 15.9

swath1 378 31.6 31.5 0.2 387 45.9 32.9 0.2 12.8 1021 149.4

swath2 12418 120.3 116.6 3.7 12450 187.2 120.9 3.8 62.5 7211 339.0

swath3 54858 401.0 380.6 20.4 44382 545.9 354.0 19.6 172.3 15272 211.4

Total (29) 6428300 20318.4 19659.6 658.8 2438749 23335.9 17341.0 2450.4 3544.5

Geom. Mean 29633 257.2 247.0 5.7 15441 297.8 225.0 7.2 40.7

Reduced (24) 1120954 8463.9 8093.7 370.2 787135 8642.9 6601.7 353.4 1687.8

Geom. Mean 17509 179.4 173.4 4.1 9720 187.4 142.5 4.4 30.0

Table 2. More detailed timing analysis of runs with default MIP settings and conflict analysis.

significant impact for the small instances mas74, mas76, and pk1.
Table 3 shows the results for the infeasible ALU instances. About 80% of the

variables in these instances are binary, and the remaining 20% are of general integer
type. The width of the input and output registers range from 4 to 10 bits, denoted
by the name of the instance. For each width, eight different properties were checked.
Properties 3–5 are trivial for all of the three solvers, and they are not listed in the
table. The reduced test set excludes the instances for properties 2 and 6 (printed in
bold face), which were solved by SCIP’s preprocessing algorithm.

On this test set, conflict analysis clearly outperforms the default MIP settings
in both, branching nodes and solving time. Most notably, property 1 can be solved
with conflict analysis quite easily even for 10-bit input registers, while SCIP with
default settings needs over a million branching nodes to prove the property, i.e., to
show the infeasibility of the instance.

In contrast to the conflict clauses generated for the feasible MIP instances in
Table 2, the clauses found for the ALU instances contain only very few literals.
Therefore, they cut off a much larger part of the search tree, which is a possible
explanation for the success of conflict analysis on these instances. However, the
sizes of the conflict clauses and the performance of conflict analysis for the instances
of Table 2 do not seem to be correlated.

While the results on infeasible IPs are very promising, it remains to be seen in
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Size CPlex 9.03 SCIP 0.79a (default) SCIP 0.79a (conflict)

Name Rows Cols Nodes Time Nodes Time Nodes Time Confs ∅Lits

alu4 1 609 283 15 427 9.3 931 7.2 81 5.6 207 5.5

alu4 2 609 285 105 0.2 0 0.0 0 0.0 0 0.0

alu4 6 623 290 5 877 1.9 0 0.1 0 0.1 0 0.0

alu4 7 620 287 753 0.6 8 033 7.8 2 652 5.2 656 2.2

alu4 8 641 299 3 938 1.8 9 409 9.1 9 552 11.7 1 603 2.2

alu5 1 624 293 246 385 111.2 239 4.4 34 3.5 106 3.8

alu5 2 624 295 1 180 0.5 0 0.0 0 0.0 0 0.0

alu5 6 638 300 30 528 8.0 0 0.1 0 0.1 0 0.0

alu5 7 641 299 4 907 2.2 62 221 39.0 34 212 32.3 6 081 1.9

alu5 8 664 313 16 008 5.9 24 677 20.3 10 994 14.8 1 293 2.0

alu6 1 627 295 356 337 170.4 37 153 48.4 138 6.0 288 6.0

alu6 2 627 297 4 938 1.7 0 0.0 0 0.0 0 0.0

alu6 6 641 302 118 734 32.8 0 0.1 0 0.1 0 0.0

alu6 7 644 301 14 651 7.5 280 971 160.4 143 089 128.8 22 479 1.7

alu6 8 667 315 347 037 112.7 76 557 60.4 40 018 47.8 5 331 1.8

alu7 1 636 301 322 706 150.1 67 555 89.0 48 3.4 128 3.8

alu7 2 636 303 18 601 7.7 0 0.0 0 0.0 0 0.0

alu7 6 650 308 218 851 66.7 0 0.1 0 0.1 0 0.0

alu7 7 656 308 197 121 99.4 646 307 375.4 223 494 199.1 50 951 2.6

alu7 8 680 323 727 242 281.0 646 777 493.4 183 340 231.1 18 144 1.8

alu8 1 645 307 3 153 983 1844.7 24 397 36.4 31 3.2 138 4.0

alu8 2 645 309 118 720 54.5 0 0.0 0 0.0 0 0.0

alu8 6 659 314 4 972 884 1403.9 0 0.1 0 0.1 0 0.0

alu8 7 668 315 1 459 674 485.7 2 086 829 1304.1 366 487 360.5 70 800 2.3

alu8 8 693 331 >8 505 766 >3600.0 2 316 613 1944.3 1 043 928 1348.5 89 898 2.1

alu9 1 660 317 745 348 453.1 507 6.2 65 4.9 176 4.2

alu9 2 660 319 2 436 102 868.6 0 0.0 0 0.0 0 0.0

alu9 6 674 324 10 886 390 3257.6 0 0.1 0 0.1 0 0.0

alu9 7 689 327 >6 847 385 >3600.0 >5 209 565 >3600.0 1 800 438 1857.8 315433 2.2

alu9 8 716 345 >9 320 110 >3600.0 3 260 385 3558.3 1 847 070 3200.7 220764 1.6

alu10 1 669 323 >5 679 319 >3600.0 1 141 285 1454.8 177 6.9 316 6.2

alu10 2 669 325 >7 951 888 >3600.0 0 0.0 0 0.1 0 0.0

alu10 6 683 330 >13 836 405 >3600.0 0 0.1 0 0.1 0 0.0

alu10 7 701 334 >8 340 048 >3600.0 >3 926 913 >3600.0 >3 085 949 >3600.0 569980 2.7

alu10 8 729 353 >7 391 679 >3600.0 >2 807 538 >3600.0 >2 525 710 >3600.0 87 204 1.6

Total (35) 94 297 027 38239.7 22 634 862 20419.4 11 317 507 14672.6

Geom. Mean 215 146 101.4 1 059 19.7 289 11.5

Reduced (21) 53 695 824 25335.8 22 634 862 20418.7 11 317 507 14671.8

Geom. Mean 322 700 157.3 110 033 143.1 12 671 58.6

Table 3. Results for the ALU test set. Results marked with ‘>’ were not solved to optimality
within the time limit. For the calculations of the geometric mean, values smaller than 1.0 were
treated as being equal to 1.0.

the future, whether more clever and faster heuristics to derive conflict clauses out
of infeasible LPs as well as a more appropriate way of dealing with huge amounts
of conflict clauses can also lead to an overall improvement in solving feasible mixed
integer programs. The latter issue is also addressed in the SAT community, e.g., in
Goldberg and Novikov [12]. Incorporating their ideas of clause database management
should further improve the performance of conflict analysis for MIP solving.
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