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Abstract

We provide conditions for convergence of polyhedral surfaces and their

discrete geometric properties to smooth surfaces embedded in R
3. The

notion of totally normal convergence is shown to be equivalent to the con-

vergence of either one of the following: surface area, intrinsic metric, and

Laplace-Beltrami operators. We further show that totally normal conver-

gence implies convergence results for shortest geodesics, mean curvature,

and solutions to the Dirichlet problem. This work provides the justifi-

cation for a discrete theory of differential geometric operators defined on

polyhedral surfaces based on a variational formulation.

1 Introduction

Discrete differential geometry of polyhedral surfaces studies discrete analogous
of smooth differential geometric concepts. It is a theory sui iuris where poly-
hedral surfaces and discrete operators take the place of smooth ones, relying
solely on the information inherent to a discrete mesh. Many properties of
smooth manifolds remain valid in a purely polyhedral setting, for example, the
discrete Gauß-Bonnet theorem which relates discrete Gauß curvature, discrete
geodesic curvature and surface topology, closely resembles the continuous case.
Polyhedral meshes are beginning to show major applications in areas such as
computational mechanics and computer graphics, where discrete curvature and
discrete differential operators provide the machinery for numerical simulations.

There exists a long history of rigorous definitions for discrete differential ge-
ometry. Alexandrov [1] and Reshetnyak [20] developed a theory of manifolds
of bounded curvature. Thurston [23] and Schramm [21] used circle packings to
approximate smooth holomorphic maps and prove a discrete Riemann mapping
theorem. Federer [8] and Fu [9] developed geometric measure theory, Cheeger,
Müller and Schrader [4] use Lipschitz-Killing curvatures, and Morvan and co-
workers [6] [14] [15] recently used the theory of normal cycles to calculate a
discrete shape operator. Combinatorial approaches were introduced by Mer-
cat [13] and Bobenko et.al. [2] to discretize the underlying conformal structure
of Riemann surfaces.

∗This work was supported by the DFG Research Center Matheon “Mathematics for key

technologies” in Berlin.
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Our methodology is to employ a variational approach, where energy func-
tionals on polyhedral surfaces give rise to discrete curvature and differential
operators. As a subset of Euclidean space, polyhedral surfaces carry an induced
cone structure, and finite-dimensional function spaces over polyhedral surfaces
arise naturally as subspaces of Sobolev spaces. Dziuk [7] was the first to use
the discrete variational approach for studying solutions to the Dirichlet problem
directly on polyhedral surfaces instead of planar parameter domains. The vari-
ational view provides a variety of discrete concepts: from differential-geometric
operators such as gradient, divergence, and Laplace-Beltrami operator over a
distributional interpretation of mean curvature to a discrete notion of geodesics
(see eg. [16] [17] [18]). The variational approach has led to the first numerical
construction of compact constant mean curvature surfaces of genus greater than
one [11].

However, albeit its popularity, an essential piece of justification for this dis-
crete approach has been missing: a proof that the classical smooth case arises
as the limit of the discrete theory. The current paper, to a large part, provides
this missing link.

We consider the following question: If a sequence of triangulated polyhedral
surfaces embedded in Euclidian 3-space converges to a smooth surface in Haus-
dorff distance; under which conditions do metric and geometric properties such
as intrinsic distance, area, mean curvature, geodesics, and Laplace-Beltrami
operators converge, too? The Schwarz lantern [22] is an informative counterex-
ample to convergence of surface area: here convergence fails since the normal
fields of the approximating sequence of polyhedra diverge. Morvan [15] showed
that convergence of the normal fields implies convergence of surface area. We
generalize this result considerably.

In Theorem 2 we prove the following convergence result: if a sequence of
polyhedral surfaces Mτ converges to a smooth surface M in Hausdorff distance
then the following conditions are equivalent:

i convergence of normal fields,

ii convergence of metric tensors,

iii convergence of area,

iv convergence of Laplace-Beltrami operators.

Such convergence is called totally normal.
The second part of this paper derives several corollaries from this general

convergence result, such as: uniform convergence of geodesics on compact sets,
convergence of solutions to the Dirichlet problem (generalizing a result of Dz-
iuk [7] who considered interpolating sequences of polyhedral meshes only), as
well as weak convergence of polyhedral mean curvature. In particular, it is
shown that a smooth limit surface of a sequence of discrete minimal surfaces is
a minimal surface in the classical sense.
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2 Approximating smooth surfaces

2.1 Polyhedral surfaces

A polyhedral surface Mτ ⊂ R
3 is a connected topological 2-manifold which is

made up of flat triangles that are glued along their common edges such that no
vertex appears in the interior of an edge. We only consider finite and connected
triangulations. If γ : [a, b] → Mτ is a continuous curve, then the length of γ is
the supremum over all partitions Z = {t0 = a ≤ t1 ≤ ... ≤ tn = b} of [a, b]:

l(γ) = sup
Z

n
∑

i=1

dR3(γ(ti−1), γ(ti)),

where dR3 denotes the Euclidian metric of R
3. Let x and y be two points in

Mτ . Then the distance d(x, y) between x and y is defined as

d(x, y) := inf
γ

l(γ), (1)

the infimum taken over all continuous curves γ : [a, b] → Mτ . Following Gro-
mov [10], Mτ equipped with this metric is called a length space. On individual
triangles the length metric coincides with the induced flat metric from ambi-
ent R

3. Across an edge of two adjacent triangles this metric is still flat as one
can rotate those triangles about their common edge until they become coplanar.
The situation changes at vertices where the metric exhibits cone points, cp. [24].

θ

Figure 1: A neighborhood of a vertex with total vertex angle θ equipped with
the length metric is isometric to a metric cone with cone angle θ.

Definition 1 (metric cone). The set Cθ := {(r, ϕ)|0 ≤ r; ϕ ∈ R/θZ}/∼,
where (0, ϕ1) ∼ (0, ϕ2), together with the (infinitesimal) metric

ds2 = dr2 + r2 dϕ2

is called a metric cone with cone angle θ. The cone point is the coset consisting
of all points (0, ϕ) ∈ Cθ.

A cone point is called singular if the cone angle does not equal 2π. A
singular cone point is spherical if the cone angle is less than 2π; otherwise it is
hyperbolic. The cone metric ds2 is the infinitesimal version of the length metric,
see Figure 1.
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2.2 Normal graph and shortest distance map

In this paragraph the shortest distance map is introduced in order to compare
a smooth surface to a polyhedral surface nearby.

Definition 2. Let M ⊂ R
3 be a closed subset. The medial axis of M is the set

of those points in R
3 which do not have a unique closest neighbor in M . The

reach of M is the distance of M to its medial axis.

Figure 2: Medial axis of a smooth shape.

If M ⊂ R
3 is a smoothly embedded surface then its medial axis corresponds

to the locus of centers of spheres tangentially touching M in at least two points
without intersecting M (see Figure 2); and the reach of M is the infimum over
the radii of such spheres. The reach of a smooth surface M is bounded above
by the radii of osculating spheres of M :

reach(M) ≤ inf
x∈M

1

|κ|max(x)
, (2)

where |κ|max(x) denotes the maximal absolute value of the normal curvatures
at x ∈ M . Note that a compact and smoothly embedded surface M always has
positive reach (but a polyhedron does not). For a general treatment of sets of
positive reach we refer to Federer [8].

The notion of reach serves as the core tool for parameterizing polyhedral
surfaces directly over smooth manifolds.

Definition 3 (normal graph). A polyhedral surface Mτ is a normal graph
over the smooth surface M if it is within the reach of M and the map which
maps each point on Mτ to its closest point on M is a bijection, see Figure 3.

Then there is a bijection Φ : M → Mτ which takes x ∈ M to the intersection
point Φ(x) ∈ Mτ of the normal line through x with the polyhedral surface Mτ .
We call this map shortest distance map. The map Φ naturally splits into a
tangential and a normal component:

Φ(x) = IdM (x) + φ(x) · N(x), (3)

where N is the oriented normal of M , IdM is the embedding of M into R
3 and

φ is the scalar-valued distance function.

2.3 The metric distortion tensor

The shortest distance map Φ induces a metric on M which allows to compare
the spaces Mτ and M as metric spaces. Define a metric gτ on M by

gτ (X,Y ) := gMτ
( dΦ(X), dΦ(Y )) = 〈dΦ(X), dΦ(Y )〉R3 a.e., (4)
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x

τ

Φ

Figure 3: Mτ is a normal graph over M . At each point x ∈ M , the map Φ takes
x to the intersection of the normal line through x with the polyhedral surface
Mτ . The inverse Φ−1 thus realizes the shortest distance from Mτ to M .

where 〈·, ·〉R3 denotes the standard inner product on R
3.

Definition 4 (metric distortion tensor). There exists a symmetric positive
definite 2×2 matrix field A(x), x ∈ M , uniquely defined M -almost everywhere,
such that for all vector fields X and Y on M

gτ (X,Y ) = g(A(X), Y ) a.e. (5)

The metric distortion tensor A is smooth on the pre-image of the interior of
triangles of Mτ . The next theorem shows that A only depends on the distance
between the surfaces M and Mτ , the angle between their normals and the
curvature of the smooth surface M .

Theorem 1 (geometric splitting of metric distortion tensor). Let Mτ be
a closed polyhedral surface with normal field Nτ which is a normal graph over
an embedded, closed, smooth surface M with normal field N . Then the metric
distortion tensor A satisfies

A = P ◦ Q−1 ◦ P a.e., (6)

a decomposition into symmetric positive definite matrices P and Q which can
be diagonalized (possibly in different ON-frames) to take the form

P =

(

1 − φ · κ1 0
0 1 − φ · κ2

)

(7)

Q =

(

〈N,Nτ ◦ Φ〉2 0
0 1

)

, (8)

where κ1 and κ2 denote the principal curvatures of the smooth manifold M and
φ is as in equation (3).

Remark 1. The matrix P is positive definite by the assumption that Mτ is in
the reach of M since 1 − φ · κi > 0 by inequality (2).
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Theorem 1. It suffices to work over a single triangle T of Mτ . Consider the map
Ψ = Φ−1 : Mτ → M . For any map f : M → R, let fT : T → R denote the
pullback fT = f ◦ Ψ|T to the triangle T . Then Ψ can be written as

Ψ = IdMτ
− φT · NT . (9)

Note that NT stands for the pullback of N to the triangle T , rather than the
normal Nτ to T . Differentiating (9) yields

dΨ = IdMτ
− NT · dφT − φT · dNT , (10)

where the differential d is taken with respect to the canonical smooth structure
on T . But

dNT = dM N ◦ dΨ = −S ◦ dΨ, (11)

where dM denotes the outer differential on M , and S = −dMN is the Wein-
garten operator on M . Formulas (10) and (11) imply that

dΨ = (IdM − φ · S)−1 ◦ (IdMτ
− NT · dφT ). (12)

The tangent spaces TxM and TΦ(x)T are linear subspaces of R
3. Let

P = (IdM − φ · S) : TxM → TxM, (13)

Q̃ = (IdMτ
− NT · dφT ) : TΦ(x)T → TxM. (14)

Then P is a symmetric endomorphism of TxM , and Q̃ is a linear map from
TΦ(x)T to TxM . By equation (12),

dΦ = dΨ−1 = Q̃−1 ◦ P. (15)

For vectors X1,X2 ∈ TxM , define the symmetric endomorphism Q of TxM by

〈Q−1(X1),X2〉R3 = 〈Q̃−1(X1), Q̃
−1(X2)〉R3 .

By the definition of the metric distortion tensor A and equation (15) it follows
that

〈A(X1),X2〉R3 = 〈dΦ(X1), dΦ(X2)〉R3

= 〈PQ−1P (X1),X2〉R3 ,

proving (6). Equation (7) follows from (13). It remains to show that for
X1,X2 ∈ TxM the quadratic form

〈Q̃−1(X1), Q̃
−1(X2)〉R3

on TxM can be diagonalized as stated in equation (8). To show that, let Y be
a vector field on the triangle T . Applying (10) and taking into account that as
subspaces of R

3, NT ⊥ im(dΨ) and NT ⊥ im(dNT ), it follows that

0 = 〈dΨ(Y ), NT 〉 = 〈Y,NT 〉 − dφT (Y ). (16)

Equations (14) and (16) then imply that Q̃ is the projection operator

Q̃(Y ) = Y − NT · 〈NT , Y 〉. (17)

So, if α denotes the angle between the normal N(x) to M and Nτ (Φ(x)) to
Mτ , then the quadratic form 〈Q̃(Y1), Q̃(Y2)〉R3 has eigenvalues 1 and cos α =
〈N(x), Nτ (Φ(x))〉, which implies (8).
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C
Cτ

Figure 4: The shortest distance map may induce isometrics between non-
congruent shapes. Left: The shortest distance map of the half unit circle C
induces an isometry to a circle Cτ of radius 1/2. Right: By patching together
pieces of the left picture one gets isometrics of the unit circle with a dented
circle.

Corollary 1 (area distortion). Under the assumptions of Theorem 1, the
volume elements of M and Mτ satisfy

dvolτ
dvol

= (detA)
1/2

=
1 + φ2 · κ − φ · H

〈N,Nτ ◦ Φ〉
a.e., (18)

where κ denotes the Gauß curvature, and H denotes the mean curvature of M .

Proof. Equation (18) follows immediately from the explicit representation of
the distortion tensor A in Theorem 1, and by using that κ = κ1 · κ2 as well as
H = κ1 + κ2.

By bounding the smallest and largest eigenvalues of A one also finds that

Corollary 2 (length distortion). The infinitesimal distortion of length sat-
isfies

min
i

(1 − φ · κi) ≤
dlτ
dl

≤
maxi(1 − φ · κi)

〈N,Nτ ◦ Φ〉
a.e. (19)

Remark 2 (dented circle). Note that even if the metric distortion induced by the
shortest distance map equals the identity (so that the surfaces are isometric)
the surfaces still need not be congruent. For example, consider the half unit
circle C = {(cos t, sin t) : t ∈ [0, π]} . Any normal graph Cτ over C can then be
written as

Cτ =
{

((1 − φ(t)) · cos t, (1 − φ(t)) · sin t) ∈ R
2 : t ∈ [0, π]

}

,

where φ is the (signed) shortest distance map from C to Cτ along the unit
circle’s (outward) normal. Setting

φ(t) := 1 − sin t

one readily checks that Cτ becomes a circle of radius 1/2 and with center (0, 1/2),
compare Figure 4. The inner product between the normals N of C and Nτ of
Cτ is given by

〈N,Nτ 〉 =
〈N, ∂2Cτ/∂t2〉

||∂2Cτ/∂t2||
= sin t = 1 − φ(t). (20)
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Let κ denote the curvature of C. The metric distortion between the two planar
curves C and Cτ with respect to the shortest distance map Φ is then given by

a =
1 − φ · κ

〈N,Nτ 〉
=

1 − φ

〈N,Nτ 〉
= 1, (21)

where the last equality follows from (20). Note that formula (21) is a special
case of (6). Hence, in this case, the metric distortion a between C and Cτ is
the identity, so that the shortest distance map induces an isometry, although
the shapes of C and Cτ are not congruent.

3 Convergence

Under the assumption of convergence in Hausdorff distance of a sequence of poly-
hedral surfaces to a smooth surface, we show that the following conditions are
equivalent: (i) convergence of normals, (ii) convergence of the metric distortion
tensors, (iii) convergence of area, and (iv) convergence of the Laplace-Beltrami
operators. The proof is based on translating these geometric conditions into
algebraic properties of the metric distortion tensor as defined in (5). The equiv-
alence of such algebraic conditions, in turn, is then derived from the splitting
A = P ◦ Q−1 ◦ P into a product of symmetric operators P and Q as in Theo-
rem 1. We first set up the relevant terminology.

Hausdorff distance. Let M1,M2 ⊂ R
3 be non empty subsets. Then the

Hausdorff distance between M1 and M2 is defined as

dH(M1,M2) = inf {ε > 0 |M1 ⊂ Uε(M2) and M2 ⊂ Uε(M1)} ,

where Uε(M) =
{

x ∈ R
3 | ∃y ∈ M : d(x, y) < ε

}

.

Definition 5 (totally normal convergence). A sequence of polyhedra Mτ,n

is said to converge normally to a smooth surface M if the sequence of normal
fields converges in L∞ under the shortest distance maps Φn, i.e. ‖Nτ,n ◦ Φn −
N‖∞ → 0. Normal convergence is called totally normal if the Hausdorff distances
dH(M,Mτ,n) also go to zero.

Convergence of metric tensors. Each element Mτ,n in the approximating
sequence induces a metric on the smooth reference surface M determined by
the respective distortion tensor An. For almost every x ∈ M , An(x) is an en-
domorphism of TxM . Let ‖An‖∞ = ess supx∈M ‖An(x)‖op. Then convergence
of metric tensors means limn→∞ ‖An − Id‖∞ = 0.

Laplace-Beltrami Operators. Let H1
0 (M) denote the Sobolev space of weakly

differentiable functions u on the smooth surface M which either vanish along
the (non empty) boundary of M or for which ū =

∫

u dvol = 0 (if M has no
boundary). Let H−1(M) be the dual space, and let 〈·|·〉 denote the dual pairing
between H−1 and H1

0 . We will consider the space H1
0 (M) to be equipped with

the norm

‖u‖2
H1

0
(M) =

∫

M

g(∇u,∇u) dvol.
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The shortest distance map Φ allows to pull back the polyhedral metric on Mτ

to the smooth reference space M . In particular, M comes with two Laplace-
Beltrami operators ∆,∆τ : H1

0 (M) → H−1(M), given by

〈∆u|v〉 = −

∫

M

g(∇u,∇v) dvol (22)

〈∆τu|v〉 = −

∫

M

g(A−1∇u,∇v)(det A)1/2 dvol. (23)

Convergence of these operators is to be understood in the operator norm of
linear bounded maps between the spaces H1

0 (M) and H−1(M).

Remark 3. The definition of the Laplace-Beltrami operator ∆τ is based on
the pullback of the polyhedral metric gMτ

to the smooth surface M . On the
other hand, ∆τ is equal to the pullback of an intrinsically defined Laplace-
Beltrami operator ∆Mτ

on the polyhedral surfaces Mτ ; however, we will omit
its construction here. The main technical difficulty is to rigorously define the
Sobolev space H1

0 (Mτ ) on a polyhedral surface. For a very general scheme
for defining H1

0 (based on a version of Rademacher’s theorem which assures
that weak differentiability is preserved under bi-Lipschitz maps), we refer to
Cheeger [3] and Ziemer [25].

We now prove the main convergence result for polyhedral surfaces.

Theorem 2 (equivalent conditions for convergence). Let M ⊂ R
3 be

a compact smooth surface, and let {Mτ,n} be a sequence of polyhedral surfaces
which are normal graphs over M and which converge to M in Hausdorff distance.
Then the following conditions are equivalent:

i Convergence of normals: ‖Nτ,n ◦ Φn − N‖∞ → 0.

ii Convergence of metric tensors: ‖An − Id‖∞ → 0.

iii Convergence of area: ‖dvolτ,n − dvol‖∞ → 0.

iv Convergence of Laplace-Beltrami operators: ‖∆τ,n − ∆‖op → 0.

Remark 4. Remark 2 describes a case in which the metric tensors converge but
the surfaces themselves do not. Hence the prerequisite in Theorem 2 that the
Hausdorff distance between the surfaces must go to zero cannot be dropped in
general.

Theorem 2. For simplicity, we constrain ourselves to surfaces without boundary.
The proof of the theorem is based on first translating the geometric conditions
(ii), (iii) and (iv) into algebraic properties of the metric distortion tensors An:
convergence of the metric tensors by definition means ‖An − Id‖∞ → 0, conver-
gence of area measure is equivalent to ‖det An‖∞ → 1, and Lemma 1 provides
algebraic conditions for convergence of Laplace-Beltrami operators. In a second
step one shows that these algebraic conditions are equivalent to convergence of
normals. Let An = Pn◦Q−1

n ◦Pn as in Theorem 1, and let Ān = (detAn)1/2A−1
n .

We claim that

‖An − Id‖∞ → 0 ⇐⇒ ‖det An‖∞ → 1 ⇐⇒ ‖Ān − Id‖∞ → 0

⇐⇒ ‖tr(Ān − Id)‖∞ → 0
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are all equivalent conditions to normal convergence. By assumption the sur-
faces converge in Hausdorff distance, so that ‖Pn − Id‖∞ → 0. Then from the
diagonalization

Qn =

(

〈N,Nτ,n ◦ Φn〉
2 0

0 1

)

,

it becomes evident that all of the above algebraic expressions converge if and
only if 〈N,Nτ,n ◦ Φn〉 → 1 in L∞ - which is normal convergence. To complete
the proof of the theorem, it remains to give algebraic conditions for convergence
of the Laplace-Beltrami operators. The next lemma provides an upper and a
lower bound for the difference between ∆ and ∆τ in terms of the distortion
tensor A.

Lemma 1 (convergence of Laplace-Beltrami operators). Let Mτ ⊂ R
3 be

an embedded compact polyhedral surface which is a normal graph over a smooth
embedded closed surface M with corresponding distortion tensor A, and let Ā :=
(detA)1/2A−1. Then

1

2
‖tr(Ā − Id)‖∞ ≤ ‖∆τ − ∆‖op ≤ ‖Ā − Id‖∞. (24)

Proof. Let 〈·|·〉 denote the dual pairing between H−1 and H1
0 . The upper bound

in (24) is a straightforward application of Hölder’s inequality. By definitions (22)
and (23), we have

|〈(∆τ − ∆)u|v〉| =

∣

∣

∣

∣

∫

M

g((Ā − Id)∇u,∇v) dvol

∣

∣

∣

∣

≤ ‖Ā − Id‖∞ · ‖u‖H1

0
‖v‖H1

0
.

The proof of the lower bound in (24) is more technical. Define the com-
pactum K ⊂ M to be the pre-image under Φ of the 1-complex of Mτ (its
edges and vertices). Then K is a measure zero set. For an arbitrary but fixed
x ∈ M \ K we will construct a family of functions (fε) in H1

0 (M) such that

lim
ε→0

|〈(∆τ − ∆)fε|fε〉|

‖fε‖2
H1

0

=
1

2
tr(Ā − Id)(x), (25)

proving our claim since it implies ‖∆τ − ∆‖op ≥ 1
2 supx∈M\K tr(Ā − Id)(x).

Let Dε(x) ⊂ M \ K be a small ε-ball around x, and define Fε ∈ H1(M) in
polar coordinates (r, ϕ) by

Fε(r, ϕ) =

{

ε − r for r < ε
0 else,

compare Figure 5. Project Fε to fε ∈ H1
0 (M) by

fε = Fε −
1

|M |

∫

M

Fε dvol.

By construction, g(∇fε,∇fε) = 1 on Dε(x) \ {x} and ∇fε = 0 on M \ Dε(x),
so that

‖fε‖
2
H1

0

=

∫

M

g(∇fε,∇fε) dvol = |Dε(x)|.

10



ε
ε
x

M

Fε

Figure 5: The family of functions (Fε) for ε → 0 gives a lower bound for the
operator norm of the difference between the Laplacians.

On the other hand,

〈(∆τ − ∆)fε|fε〉 = −

∫

M

g((Ā − Id)∇fε,∇fε) dvol,

so that equation (25) is equivalent to

lim
ε→0

1

|Dε(x)|

∫

Dε(x)

g(Ā∇fε,∇fε) dvol =
1

2
tr(Ā)(x). (26)

The idea is now to work first in the tangent space TxM over x, and then use
the exponential map to treat the general case. Let gx denote the restriction of
the metric tensor g to TxM . Let dvolx denote the volume form on TxM , and
let ∂r denote the unit radial vector field on TxM . The matrix Āx := Ā(x) acts
as a linear map from TxM to itself with eigenvalues λ and 1/λ. Then on the
ball of radius ε, Bε(0) ⊂ TxM , we have

∫

Bε(0)

gx(Āx∂r, ∂r) dvolx =

∫ ε

0

∫ 2π

0

(λ cos2 ϕ +
1

λ
sin2 ϕ)r dr dϕ

=
1

2
(λ +

1

λ
) · |Bε(0)|

=
1

2
trĀx · |Bε(0)|,

which proves (26) in the flat case (on TxM). To prove (26) in the general case,
we define a 2-form ω0 on Bε(0) ⊂ Tx(M) and a 2-form ω1 on Dε(x) by

ω0 := gx(Āx∂r, ∂r) dvolx

ω1 := g(Ā∇fε,∇fε) dvol.

To complete the proof, we are going to show that

lim
ε→0

1

|Bε(0)|

∫

Bε(0)

ω0 = lim
ε→0

1

|Dε(x)|

∫

Dε(x)

ω1. (27)

Indeed, consider the exponential map expx : Bε(0) ⊂ TxM → Dε(x). Let ω∗
1

denote the pullback of ω1 from Dε(x) to Bε(0), and let Ā∗ be the pullback of Ā
to Bε(0) under this map. By the Gauß Lemma, the exponential map is a radial
isometry, so that d exp(∂r) = ∇fε and hence

gx(Ā∗∂r, ∂r) = gexp(x)(Āexp(x)( d exp(∂r)), d exp(∂r))

= gexp(x)(Āexp(x)∇fε,∇fε),

11



Let dvol∗ denote the pullback of the volume form dvol on Dε(x) to Bε(0).
Then the last equation shows that

ω∗
1 = gx(Ā∗∂r, ∂r) dvol∗.

This implies ‖ω∗
1 − ω0‖∞,Bε(0) → 0, so that

∣

∣

∣

∣

∣

1

|Dε(x)|

∫

Dε(x)

ω1 −
1

|Bε(0)|

∫

Bε(0)

ω0

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

|Dε(x)|

∫

Bε(0)

ω∗
1 −

1

|Bε(0)|

∫

Bε(0)

ω0

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

|Dε(x)|
−

1

|Bε(0))|

∣

∣

∣

∣

∫

Bε(0)

|ω∗
1 | +

1

|Bε(0)|

∫

Bε(0)

|ω∗
1 − ω0|

≤

∣

∣

∣

∣

|Bε(0)|

|Dε(x)|
− 1

∣

∣

∣

∣

‖ω∗
1‖∞,Bε(0) + ‖ω∗

1 − ω0‖∞,Bε(0) −→ 0,

proving (27) and hence our claim.

4 Applications of normal convergence

In this section the general convergence results of Theorem 2 are applied to show
convergence of discrete notions of geodesics, solutions to the Dirichlet problem
as well as mean curvature.

4.1 Convergence of geodesics

Definition 6 (shortest geodesic). A shortest geodesic in a metric space (V, d)
is a continuous curve γ : [a, b] → V such that d(γ(t), γ(t′)) = |t′− t| for all t and
t′ in the interval [a, b].

The Hopf-Rinow theorem for metrically complete length spaces [10] asserts
that any two points can be connected by a shortest geodesic. This ensures that
the infimum over all curves which was used in (1) to define the distance between
two points is actually attained as a minimum.

Corollary 3 (convergence of geodesics). Let {Mτ,n} be a family of polyhe-
dral surfaces converging totally normally to a compact smooth surface M with
associated shortest distance maps Φn. Let x, y ∈ M be two points, and let γn

be a shortest geodesic connecting Φn(x) to Φn(y) on Mτ,n. Then each accu-
mulation point of {γn} in the compact-open topology on C0(R, R3) is a shortest
geodesic on M . The set of such accumulation points is not empty. In particular,
there exists a shortest geodesic γ on M and a sub-sequence of shortest geodesics
(γni

) on Mτ,ni
such that γni

→ γ uniformly.

Proof. We consider all objects to be defined on the smooth reference surface M
by using the pull-backs with the maps Φn. Let An denote the metric distortion

tensor corresponding to gτ,n, and let cn := 1/‖A−1
n ‖

1/2
∞ and cn := ‖An‖

1/2
∞ . If β

is a Lipschitz curve on M , then the gτ,n-length ln(β) and the g-length l(β) are
related by

cn · l(β) ≤ ln(β) ≤ cn · l(β).

12



The distance between the points x and y equals the infimum over the length of
all Lipschitz curves connecting these points. The last inequality then implies:

cn · d(x, y) ≤ dn(x, y) ≤ cn · d(x, y).

Hence, if γn is a shortest geodesic connecting x and y in the gτ,n-metric, then

cn · d(x, y) ≤ dn(x, y) = ln(γn) ≤ cn · l(γn)

cn · d(x, y) ≥ dn(x, y) = ln(γn) ≥ cn · l(γn).

This implies

cn

cn
· d(x, y) ≤ l(γn) ≤

cn

cn

d(x, y).

By assumption, cn → 1 and cn → 1, so that

l(γn) → d(x, y). (28)

Now, assume γ is an accumulation point of {γn}. Since the length functional
l : C0(R, R3) → R is lower semi-continuous, (28) implies

l(γ) ≤ lim inf l(γn) = d(x, y).

Hence γ is indeed a shortest geodesic connecting x to y.
It remains to show that the set of such accumulation points is not empty. But

d(γn(t), γn(t′)) ≤
1

cn

· dn(γn(t), γn(t′)) =
1

cn

· |t − t′|,

for each t, t′ in the domain of γn. Hence the family {γn} is equicontinuous. Since
|t− t′| can be bounded by supn diam(Mτ,n) ≤ supn cn ·diam(M), it follows from
the Arzela-Ascoli theorem that there is an accumulation point in the compact-
open topology on C0(R, R3).

4.2 Convergence of the Dirichlet problem

Assume Mτ is a normal graph over M and that both surfaces have non empty
boundary. Given f ∈ L2(M), the Dirichlet problem with respect to the elliptic
operators ∆, ∆τ : H1

0 (M) → H−1(M) is to find u, uτ ∈ H1
0 (M) such that

〈∆u|ϕ〉 =

∫

M

fϕdvol ∀ϕ ∈ C∞
0 (M) (29)

〈∆τuτ |ϕ〉 =

∫

M

fϕdvolτ ∀ϕ ∈ C∞
0 (M), (30)

where dvolτ = (detA)1/2 dvol.

Remark 5. For compact surfaces without boundary the right hand sides have
to be adjusted by replacing f by (f − f) in (29), respectively (f − f

τ
) in (30),

where f := 1
|M |

∫

M
f dvol and f

τ
:= 1

|Mτ |

∫

M
f dvolτ . In what follows we will

treat surfaces with non empty boundary explicitly and remark on the necessary
adjustments for surfaces without boundary.

13



Remark 6. We will make repeated use of the following identity: Let A be a
positive definite, symmetric 2 × 2 matrix. Then (detA)1/2A−1 has positive
eigenvalues λ and 1/λ and ‖(det A)1/2A−1 − Id‖op = ‖(det A)1/2A−1‖op − 1.

Corollary 4 (explicit consistency error). Let the compact polyhedral surface
Mτ be a normal graph over the smooth surface M , and let A be the distortion
tensor. Assume M and Mτ have non empty boundary. For f ∈ L2(M), let
u, uτ be solutions to the Dirichlet problems (29) and (30). Then

‖u − uτ‖H1

0
≤

(

(CA − 1) +
∥

∥

∥
1 − (det A)1/2

∥

∥

∥

∞

)

· CA · ‖E‖op · ‖f‖L2 ,

where CA := ‖(det A)1/2A−1‖∞ and E : H1
0 (M) ↪→ L2(M) denotes the natural

embedding.

Proof. Define two operators E∗, E∗
τ : L2(M) → H−1(M) by

〈E∗(f)|ϕ〉 =

∫

M

fϕdvol

〈E∗
τ (f)|ϕ〉 =

∫

M

fϕdvolτ .

Then the Dirichlet problems amount to solving

∆u = E∗(f) and ∆τuτ = E∗
τ (f). (31)

As linear maps from H1
0 (M) to H−1(M), the operators ∆ and ∆τ are elliptic

and bounded; the ellipticity constant of ∆ equals 1 and the ellipticity constant
of ∆τ is 1/CA. By the Lax-Milgram Lemma, both operators can be inverted.
Hence,

‖u − uτ‖H1

0
= ‖∆−1E∗(f) − ∆−1

τ E∗
τ (f)‖H1

0

= ‖∆−1E∗(f) − ∆−1
τ E∗(f) + ∆−1

τ E∗(f) − ∆−1
τ E∗

τ (f)‖H1

0

≤ ‖∆−1 − ∆−1
τ ‖op‖E

∗(f)‖H−1 + ‖∆−1
τ ‖op‖E

∗(f) − E∗
τ (f)‖H−1 .

We now examine these terms one by one. First,

‖∆−1 − ∆−1
τ ‖op ≤ ‖∆−1‖op · ‖∆ − ∆τ‖op · ‖∆−1

τ ‖op.

From Lemma 1 and Remark 6 we know that ‖∆ − ∆τ‖op ≤ (CA − 1). As the
ellipticity constant of −∆τ is 1/CA it follows that

‖∆−1
τ ‖op ≤ CA. (32)

Hence,

‖∆−1 − ∆−1
τ ‖op ≤ CA · (CA − 1). (33)

Secondly, let ‖E‖op denote the embedding constant of E : H1
0 (M) ↪→ L2(M).

E∗ is the adjoint operator to E, so that

‖E∗(f)‖H−1 ≤ ‖E‖op · ‖f‖L2 . (34)

Finally, from the definitions of E∗ and E∗
τ it follows that

‖E∗(f) − E∗
τ (f)‖H−1 ≤ ‖1 − (det A)1/2‖∞ · ‖E‖op · ‖f‖L2 . (35)

Combining (32), (33), (34), and (35) proves the estimate stated in the corollary.
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Corollary 5 (convergence of Dirichlet problem). If a sequence of polyhe-
dral surfaces {Mτ,n} converges totally normally to M , then the solutions to the
respective Dirichlet problems converge in H1

0 .

Remark 7. Corollary 4 generalizes a result of Dziuk [7] who proves h2-estimates
for interpolating sequences of polyhedral surfaces (interpolating meaning that
the vertices of the approximating sequence of meshes all reside on the smooth
surface M).

Remark 8. Using the operator form (31) of the Dirichlet problem instead of the
classical definition has the advantage that the above convergence proof easily
carries over to surfaces without boundary. In fact, only the definitions of E∗

and E∗
τ and the estimate of ‖E∗(f) − E∗

τ (f)‖H−1 have to be slightly adjusted
in what was said above.

4.2.1 Convergence of Galerkin scheme

For numerical purposes, the solution uτ is approximated by a finite element
solution uh. We quickly review how to compute uh explicitly, and then show
that the total error ‖u−uh‖ must go to zero under totally normal convergence.
Again, we only treat the case ∂M 6= ∅ explicitly. As in the planar case, a
Galerkin scheme on a polyhedral surface Mτ is defined by restricting the space
of test functions as well as the space of solutions of the Dirichlet problem to the
same finite-dimensional subspace Sh,0 ⊂ H1

0 (Mτ ).

Definition 7 (finite element space). For vertices p ∈ Mτ \∂Mτ and q ∈ Mτ

define

φp(q) :=

{

1 for q = p
0 for q 6= p,

and extended φp to all of Mτ by linear interpolation on triangles. The finite
element space Sh,0 ⊂ H1

0 (Mτ ) is spanned by the functions {φp}.

Every uh ∈ Sh,0 can be written as uh =
∑

q uq
hφq with coefficients uq

h. Let

∆pq := −

∫

Mτ

gτ (∇τφp,∇τφq) dvolτ and bp :=

∫

Mτ

f · φp dvolτ .

Then the Dirichlet problem becomes a finite linear problem: Find the vector
(uq

h) satisfying

∑

q

∆pqu
q
h = bp. (36)

One readily verifies the cotan representation (cp. [16]) of ∆pq.

Lemma 2 (cotan formula). The non-zero entries of the discrete Laplacian
on a polyhedral surface Mτ ⊂ R

3 are given by

∆pq =
1

2
(cot αpq + cot βpq) and ∆pp = −

∑

qi∈link(p)

∆pqi
, (37)

if p and q share an edge, and where αpq and βpq denote the vertex angles opposite
to the edge (pq) in the two triangles adjacent to (pq).
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α pq

β pq

q

p

Figure 6: Only the angles αpq and βpq enter into the expression for ∆pq.

Since the surface Mτ consists of flat triangles, the error ‖uh − uτ‖H1

0
can be

treated exactly as in the planar case [5] (it only depends on the aspect ratio of
the triangles comprising Mτ ),

‖uτ − uh‖L2 + h‖uτ − uh‖H1

0
≤ C · h2 · ‖f‖L2 .

Then, together with the explicit estimate of Corollary 4, the total error of the
Galerkin scheme simply follows from the triangle inequality

‖u − uh‖H1

0
≤ ‖u − uτ‖H1

0
+ ‖uτ − uh‖H1

0
. (38)

Corollary 6 (convergence of cotan formula). If a sequence of polyhedral
surfaces {Mτ,n} totally normally converges to M , then the solutions to the finite
element Dirichlet problems (36) converge in norm to the solution of (29).

4.3 Convergence of Mean Curvature

We discuss convergence of weak and discrete mean curvature. Weak mean cur-
vature corresponds to mean curvature viewed as a functional. Discrete mean
curvature will denote the corresponding PL-function. In this section we show
that the functional does converge, whereas the corresponding function does in
general not converge. We treat the two cases ∂M = ∅ and ∂M 6= ∅ simultane-
ously.

Definition 8 (weak mean curvature). Let ~I : M → R
3 be the embedding

of M , and let ~Iτ := Φ ◦ ~I : M → R
3 denote the embedding of Mτ . Then the

weak mean curvatures are functionals defined by

~H := ∆~I ∈ (H−1(M))3,

~Hτ := ∆τ
~Iτ ∈ (H−1(M))3.

Weak mean curvature is a 3-valued functional, with norm defined as

‖ ~H‖H−1 := sup
06=u∈H1

0

‖〈 ~H|u〉‖R3

‖u‖H1

0

.

Corollary 7 (convergence of weak mean curvature). Let Mτ be normal
graph over the closed smooth surface M with distortion tensor A and shortest
distance map Φ. Then

‖ ~H − ~Hτ‖H−1 ≤
√

|M | · (CA − 1 + CA‖Id − dΦ‖∞) , (39)
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where CA = ‖(det A)1/2A−1‖∞, |M | is the total area of M , and ‖Id − dΦ‖∞
denotes the essential supremum over the pointwise operator norm of the operator
(Id− dΦ)(x) : TxM → R

3. Hence if a sequence of polyhedral surfaces converges
to M totally normally then their weak mean curvatures converge in H−1.

Proof. Consider the triangle inequality

(∆~I − ∆τ
~Iτ ) = (∆~I − ∆τ

~I) + (∆τ
~I − ∆τ

~Iτ ).

The second term can be estimated by Hölder’s inequality

∥

∥

∥
〈∆~I − ∆τ

~I|u〉
∥

∥

∥

R3

=

∥

∥

∥

∥

∫

M

(A−1(det A)1/2 − Id)∇u dvol

∥

∥

∥

∥

R3

≤
√

|M | · (CA − 1) · ‖u‖H1

0
.

For the last term, note that 〈∇~I,∇u〉 = ∇u and 〈∇~Iτ ,∇u〉 = dΦ(∇u). Hence

∥

∥

∥
〈∆τ

~I − ∆τ
~Iτ |u〉

∥

∥

∥

R3

=

∥

∥

∥

∥

∫

M

〈

(∇~I −∇~Iτ ), A−1(det A)1/2∇u
〉

dvol

∥

∥

∥

∥

R3

≤
√

|M | · CA · ‖Id − dΦ‖∞ · ‖u‖H1

0
,

proving (39). For the convergence statement, it remains to show that totally
normal convergence implies ‖Id − dΦ‖∞ → 0. To show that, we work over
a single triangle T of Mτ . Let NT = N ◦ Φ−1 denote the pullback of the
normal field N on M to the triangle T . Then from equation (15) we know
that dΦ = Q̃−1 ◦ P, where P is as in Theorem 1 and Q̃ is given by Q̃(Y ) =
Y − NT · 〈NT , Y 〉, cp. equation (17). Then totally normal convergence implies
P → Id and Q̃ → Id, and hence dΦ → Id.

4.3.1 Polyhedral minimal surfaces

In [16], Pinkall and Polthier for the first time started a systematic treatment of
discrete minimal surfaces. Their approach has spawned a rich pool of examples
of discrete minimal surfaces, cp. [12] [11] [19]. In this section we show that if
sequences of discrete minimal surfaces converge to a smooth surfaces in Haus-
dorff distance, then the smooth limit surface must be a minimal surface in the
classical sense.

We first note that weak mean curvature can be computed explicitly on a
polyhedral surface by evaluation on the nodal basis (compare Figure 6 for the
notation of angles):

〈 ~Hτ |φp〉 =
1

2

∑

q∈link(p)

(q − p)(cot αpq + cot βpq) ∀p ∈ Mτ \ ∂Mτ . (40)

A polyhedral surface is called minimal if 〈 ~Hτ |φp〉 = 0 for all p ∈ Mτ \∂Mτ . If all
degrees of freedom are put into the vertices, then polyhedral minimal surfaces
are - just like their smooth counterparts - critical points of the area functional.

Although discrete minimality only requires that 〈 ~Hτ |uh〉 = 0 for all uh in

the finite element space Sh, so that it is a weaker condition than ~Hτ = 0, we
have the following convergence result:
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Corollary 8 (convergence of polyhedral minimal surfaces). Let {Mτ,n}
be a sequence of polyhedral minimal surfaces converging totally normally to a
smooth closed surface M ⊂ R

3. Assume the aspect ratios of all triangles in this
sequence are uniformly bounded above. Then M is a minimal surface in the
classical sense.

Proof. Let ~H denote the mean curvature of the smooth surface M . Let u ∈
H1

0 (M) and let un ∈ Shn,0 be the projection of u to the finite-element space
Shn,0 ⊂ H1

0 (M) induced by Mτ,n. Then

∥

∥

∥
〈 ~H|u〉

∥

∥

∥

R3

≤
∥

∥

∥
〈 ~H|u − un〉

∥

∥

∥

R3

+
∥

∥

∥
〈 ~H|un〉

∥

∥

∥

R3

. (41)

We are going to show that 〈 ~H|u〉 = 0 by showing that the right hand side of

(41) must vanish. Since ~H is smooth,

∥

∥

∥
〈 ~H|u − un〉

∥

∥

∥

R3

=

∥

∥

∥

∥

∫

M

~H · (u − un) dvol

∥

∥

∥

∥

R3

≤
∥

∥

∥

~H
∥

∥

∥

L2(M)
‖u − un‖L2(M) .

But ‖u − un‖L2(M) ≤ C · hn · ‖u‖H1

0
(M) → 0, where hn denotes the longest

edge length of the triangulation of Mτ,n, and C is independent of n because the
sequence is assumed to have bounded aspect ratio (one argues just like in the

planar case [5]). To estimate the last term in (41), let ~Hτ,n denote the weak

mean curvature associated with Mτ,n. By assumption ~Hτ,n vanishes on Shn,0

and hence
∥

∥

∥
〈 ~H|un〉

∥

∥

∥

R3

=
∥

∥

∥
〈 ~H − ~Hτ,n|un〉

∥

∥

∥

R3

≤
∥

∥

∥

~H − ~Hτ,n

∥

∥

∥

H−1

· ‖un‖H1

0
(M).

From Corollary 7 it follows that ‖ ~H − ~Hτ,n‖H−1 → 0. Since un is a projection

of u, it follows that ‖un‖H1

0
≤ ‖u‖H1

0
, so that ‖〈 ~H|un〉‖R3 → 0. From (41) we

then get ~H = 0, as asserted.

4.3.2 Discrete Mean Curvature

Weak mean curvature is a 3-valued functional. Discrete mean curvature is the
3-valued PL-function associated with this functional. Corollary 7 shows that
the mean curvature functionals converges in H−1. However, the objective of
this section is to show that the discrete mean curvature functions in general fail
to converge in L2.

Definition 9 (discrete mean curvature). Discrete mean curvature is the

3-valued PL-function ~Hdis ∈ Sh,0 defined by

∫

Mτ

~Hdis · uh dvolτ = 〈 ~Hτ |uh〉 ∀uh ∈ Sh,0. (42)

Note, only because the dimension of Sh,0 is finite, it is possible to associate
a discrete function to the mean curvature functional. In general, there is no
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infinite-dimensional analogue of this construction. The discrete mean curvature
function can be computed explicitly on a polyhedral surface Mτ :

~Hdis =
∑

p,q∈Mτ

〈 ~Hτ |φp〉M
pqφq, (43)

where 〈 ~Hτ |φp〉 denotes the evaluation of the mean curvature functional ~Hτ on
the nodal basis function φp as in (40), and Mpq denotes the inverse of the mass
matrix Mpq whose coefficients are given by

Mpq =

∫

Mτ

φpφq dvolτ .

Example 1 (counterexample to L2-convergence). Let {Mτ,n} be a sequence of
polyhedral surfaces converging to a smooth surface M totally normally. We
show that in general ‖ ~Hdis,n − ~H‖L2 does not converge to zero. Consider the
cylinder M of height 2π and radius 1. We construct a sequence of a polyhedral
surfaces {Mτ,n} whose vertices lie on this cylinder and which converges to M
totally normally. Let the cylinder be parameterized as

x = cos u, y = sin u, z = v.

Let the vertices of Mτ,n be given by

u =
iπ

n
i = 0, ..., 2n − 1

v =

{

2j sin π
2n j = 0, ..., 2n − 1

2π j = 2n

This corresponds (up the uppermost layer) to folding along the vertical lines a
regular planar quad-grid of edge length

hn = 2 sin
π

2n
.

In other words, all faces of Mτ,n are rectangular (in fact quadratic except for the
uppermost layer). It will now depend on the tessellation pattern of this quad-

p

h

h p
8

4

Figure 7: Discrete mean curvature does not converge in L2 for a 4−8 tessellation
of a regular quad grid, because the ratio between the areas of the stencils of p4

and p8 does not converge to 1.

grid whether there is L2-convergence of discrete mean curvature or not. Indeed,
consider the regular 4 − 8 tessellation scheme depicted in Figure 7. There are
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two kinds of vertices - those of valence 4 and those of valence 8. Call them
p4 and p8, respectively. Let φp4

and φp8
denote the corresponding nodal basis

functions. Then by equation (40) the coefficients of the weak mean curvature
satisfy

〈 ~H|φp4
〉 = 〈 ~H|φp8

〉 = −2
(

1 − cos
π

n

)

· ∂r,

where ∂r denotes the (radial) outward cylinder normal. By the symmetry of the
problem there exist constants an, bn ∈ R such that

~Hdis,n =
∑

p4

an · φp4
· ∂r +

∑

p8

bn · φp8
· ∂r + boundary contributions.

Set

λn := −
(

1 − cos
π

n

)

.

Using equation (43) one verifies that

an = 12 ·
λn

h2
n

·
4 + λn

8 − λ2
n

bn = 12 ·
λn

h2
n

·
λn

λ2
n − 8

.

Since limn→∞(λn/h2
n) = −1/2, it follows that

lim
n→∞

an = −3 and lim
n→∞

bn = 0,

so that asymptotically only the vertices of valence 4 but not those of valence 8
contribute to discrete mean curvature,

~Hdis,n ∼ −3
∑

p4

φp4
· ∂r + boundary contributions.

Hence, ~Hdis,n is a family of PL-functions oscillating between −3 (at the vertices
of valence 4) and 0 (at the vertices of valence 8) with ever growing frequencies.
Such a family does not converge in L2.
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