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Abstract

Adaptive numerical methods in space and time are introduced and
studied for multiscale cardiac reaction-diffusion models in three dimen-
sions. The evolution of a complete heartbeat, from the excitation to
the recovery phase, is simulated with both the anisotropic Bidomain
and Monodomain models, coupled with either a variant of the sim-
ple FitzHugh-Nagumo model or the more complex phase-I Luo-Rudy
ionic model. The simulations are performed with the kardos library,
that employs adaptive finite elements in space and adaptive linearly
implicit methods in time. The numerical results show that this adap-
tive method successfully solves these complex cardiac reaction-diffusion
models on three-dimensional domains of moderate sizes. By automat-
ically adapting the spatial meshes and time steps to the proper scales
in each phase of the heartbeat, the method accurately resolves the evo-
lution of the intra- and extra-cellular potentials, gating variables and
ion concentrations during the excitation, plateau and recovery phases.

Keywords: reaction-diffusion equations, cardiac Bidomain and Mono-
domain models, adaptive finite elements, adaptive time integration

1 Introduction

Recent advances in contemporary cardiac electrophysiology are progressively
revealing the complex multiscale structure of the bioelectrical activity of the
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heart, from the microscopic activity of ion channels of the cellular membrane
to the macroscopic properties of the anisotropic propagation of excitation
and recovery fronts in the whole heart; see e.g. Zipes and Jalife [67],
Kleber and Rudy [34], Panfilov and Holden [45]. The experimental
study of these complex phenomena has been increasingly coupled with mul-
tiscale modeling and simulations, including more detailed features of each
component in more refined mathematical models with appropriate space
and time scales. The most complete of these models describe the cardiac
tissue by a reaction-diffusion system of partial differential equations (the
Bidomain model), coupled with a system of ordinary differential equations
(e.g. Luo-Rudy ionic models) describing the ionic currents associated with
the reaction terms. These models can be computationally very expensive
because of the different space and time scales involved. We recall here that
meaningful portions of cardiac tissue have sizes on the order of centimeters,
while the steep excitation front requires discretizations on the order of a
tenth of millimeter. Moreover, while a normal heartbeat is on the order of
one second, the time constants of the rapid kinetics involved range from 0.1
to 500 milliseconds, requiring in some phases time steps on the order of the
hundredths of milliseconds (or less when currents or shocks are applied).
Hence, realistic three-dimensional models employing uniform grids can yield
discrete problems with more than O(107) unknowns at every time step and
simulations can run for many thousands of time steps; see Colli Franzone

and Pavarino [13, 46, 14] for some large scale parallel simulations.
In order to overcome these computational limits, in this paper we in-

troduce and study an adaptive numerical method in both space and time
for cardiac reaction-diffusion models in three dimensions. We consider both
the anisotropic Bidomain and Monodomain models, coupled with either a
variant of the simple FitzHugh-Nagumo model or the more complex phase-I
Luo-Rudy ionic model. We simulate the evolution of a complete heartbeat,
from the excitation (depolarization) phase to the following plateau and re-
covery (repolarization) phases. Our simulations are performed with the
kardos library [21, 1], that employs adaptive finite elements in space and
adaptive linearly implicit methods in time. The results presented in this
paper show that our adaptive method can successfully solve these complex
cardiac reaction-diffusion models on three-dimensional domains of moder-
ate sizes, but further research is needed in order to extend the simulations
to larger and more realistic cardiac domains. For previous work on adap-
tive methods for parabolic reaction-diffusion systems in two dimensions, see
Cherry et al. [9], Yu [66], Trangenstein [61], while see Moore [42] for
an alternative adaptive method in three dimensions.
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We remark that most simulations in computational electrocardiology
are based on the simpler Monodomain model, while in this paper we also
consider the full Bidomain system in three dimensions. The few other Bido-
main simulations present in the literature often employ some simplifications
of the model, such as two-dimensional domains, simpler ionic models, oper-
ator splitting of the elliptic-parabolic formulation of the Bidomain system,
coarser time or space mesh size for the elliptic subproblem, etc.; see Colli

Franzone et al. [10, 11], Roth [52, 53, 54], Hooke et al. [31], Pormann

[48], Henriquez et al.[28, 29, 44], Vigmond et al. [64], Sambelashvili

and Efimov [55], Ashihara et al. [3], Dos Santos et al. [65], Murillo

and Cai [43], Pennacchio and Simoncini [47], Sundnes et al. [58].
The rest of the paper is organized as follows. In Section 2, we intro-

duce the standard model of cardiac tissue including its fiber structure and
conductivity tensors (2.1), the anisotropic Bidomain model for the intra-
and extra-cellular potentials (2.2) and the simpler anisotropic Monodomain
model (2.3). In Section 3, the basic ideas of cellular ionic models of Hodgkin-
Huxley type are reviewed, focusing on a FitzHugh-Nagumo variant (3.1)
and the phase-I Luo-Rudy model (3.2) that will be employed in our cardiac
model. In Section 4, we describe the adaptive numerical discretization of our
models using the kardos library, focusing on the adaptive time discretiza-
tion by linearly implicit methods (4.1) and the multilevel finite elements
employed in the adaptive space discretization (4.2). Finally, in Section 5 we
present the results of several numerical experiments in three dimensions.

2 Cardiac reaction-diffusion models

2.1 Cardiac fibers and conductivity tensors

The cardiac ventricular tissue can be modeled as an arrangement of cardiac
fibers which rotate counterclockwise from epi- to endocardium (Streeter

[59]) and which has a laminar organization modeled as a set of muscle sheets
running radially from epi- to endocardium (LeGrice et al. [39]). There-
fore, at every point x it is possible to identify a triplet of orthonormal princi-
pal axes al(x), at(x), an(x), with al(x) parallel to the local fiber direction,
at(x) and an(x) tangent and orthogonal to the radial laminae, respectively,
and both being transversal to the fiber axis. The macroscopic Bidomain
model represents the cardiac tissue as the superposition of two anisotropic
continuous media, the intra- (i) and extra- (e) cellular media, coexisting
at every point of the tissue and separated by a distributed continuous cel-
lular membrane; see e.g. Henriquez [28] and Keener and Sneyd [33].

3



Denoting by σi,e
l , σi,e

t , σi,e
n the conductivity coefficients in the intra- and

extra-cellular media measured along the corresponding directions al,at,an,
then the anisotropic conductivity tensors Di(x) and De(x) related to or-
thotropic anisotropy of the media are given by:

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x). (1)

For axisymmetric anisotropic media, σi,e
n = σi,e

t , we have

Di,e(x) = σt
i,eI + (σl

i,e − σt
i,e)al(x)aT

l (x).

2.2 The anisotropic Bidomain model

The intra- and extra-cellular electric potentials ui, ue in the anisotropic Bido-
main model are described by a reaction-diffusion system coupled with a sys-
tem of ODEs for ionic gating variables w and for the ion concentrations c.
We denote by v = ui − ue the transmembrane potential and by

Im = cm
∂v

∂t
+ Iion(v, w, c)

the membrane current per unit volume, where cm = χ ∗ Cm, Iion = χ ∗
iion, with χ the ratio of membrane area per tissue volume, Cm the surface
capacitance and iion the ionic current of the membrane per unit area. Let
Ie
app be an applied extra-cellular current per unit volume, satisfying the

compatibility condition
∫

Ω Ie
app dx = 0, and ji,e = −Di,e∇ui,e the intra- and

extra-cellular current density. Due to the current conservation law, we have

div ji = −Im, div je = Im − Ie
app.

Then the anisotropic Bidomain model in the unknown potentials
(ui(x, t), ue(x, t)), v(x, t) = ui(x, t) − ue(x, t), gating variables w(x, t) and
ion concentrations c(x, t) can be written as:

cm∂tv − div(Di∇ui) + Iion(v, w, c) = 0 in Ω × (0, T )

−cm∂tv − div(De∇ue) − Iion(v, w, c) = −Ie
app in Ω × (0, T )

∂tw − R(v, w) = 0, ∂tc − S(v, w, c) = 0 in Ω × (0, T )

nT Di,e∇ui,e = 0 in ∂Ω × (0, T )
v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω,

(2)

where we have imposed insulated boundary conditions. The system uniquely
determines v, while the potentials ui and ue are defined only up to a same
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additive time-dependent constant relating to the reference potential. This
potential is chosen to be the average extra-cellular potential in the cardiac
volume by imposing

∫

Ω ue dx = 0. We refer to [12] for a mathematical
analysis of the Bidomain model. In the following, we will consider as ionic
membrane models some Luo-Rudy models which are briefly recalled in Sec-
tion 3; (see Luo and Rudy [41]). These models specify the reaction term
Iion and the functions R(v, w) and S(v, w, c) determining the evolution of
the gating variables w and the ions concentrations c.

In terms of the transmembrane and extra-cellular potentials v(x, t) and
ue(x, t), we obtain the following equivalent formulation of the reaction-
diffusion equations of the anisotropic Bidomain Model:

cm∂tv + Iion(v, w, c) + div(De∇ue) = Ie
app in Ω × (0, T )

−div((Di + De)∇ue) = div(Di∇v) − Ie
app in Ω × (0, T ).

(3)

2.3 The simplified anisotropic Monodomain model

It is well known that the Bidomain system reduces to the Monodomain
model if we assume equal anisotropy ratio of the two media. We shall men-
tion here another interesting derivation of a reduced Bidomain model which
does not make such an assumption and that we will still call Monodomain
model. Denoting by Jtot = ji + je the total current flowing in the two media,
since Jtot = −Di∇ui − De∇ue, substituting ui = v + ue, we get

∇ue = −D−1Di∇v − D−1Jtot, (4)

with D = Di + De. Therefore, the second equation in the Bidomain system
can be written as

−cm∂tv + div(DeD
−1Di∇v) + div(DeD

−1Jtot) − Iion(v, w) = −Ie
app. (5)

Since the tensors (1) can be written as

Di,e(x) = σi,e
l I + (σi,e

t − σi,e
l )at(x)aT

t (x) + (σi,e
n − σi,e

l )an(x)aT
n (x),

then

DeD
−1 = µe

l I + (µe
t − µe

l )at(x)aT
t (x) + (µe

n − µe
l )an(x)aT

n (x), (6)
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with µe
l,t,n = σe

l,t,n/(σe
l,t,n + σi

l,t,n). Assuming constant conductivity coeffi-
cients and taking into account that div Jtot = −Ie

app, we have

div(DeD
−1Jtot) = µe

l div Jtot + (µe
t − µe

l ) div(at(x)aT
t (x)Jtot)

+ (µe
n − µe

l ) div(an(x)aT
n (x)Jtot)

= − µe
l I

e
app + (µe

t − µe
l ) div(at(x)aT

t (x)Jtot)

+ (µe
n − µe

l ) div(an(x)aT
n (x)Jtot.

(7)

From (4) it follows −DeD
−1Di∇v = DeD

−1Jtot + De∇ue, hence the flux
relationship

nT DeD
−1Di∇v = nT DeD

−1Jtot + nT De∇ue. (8)

Using (6), the first term on the right–hand side can be written as

nT (DeD
−1Jtot) = µe

l n
T Jtot+(µe

t−µe
l )(n

Tat)(a
T
t Jtot)+(µe

ν−µe
l )(n

Taν)(a
T
ν Jtot).

The insulating conditions nT ji = nT je = 0 imply nT Jtot = 0, i.e., Jtot is
tangent to ∂Ω, and assuming that the fibers are also tangent to ∂Ω, we have
nTaν = 0 and aT

t Jtot = 0. Substituting these conditions in (8) it follows the
Monodomain boundary condition

nT DeD
−1Di∇v = 0. (9)

Disregarding the two additional terms in (7) related to the projections of Jtot

on the directions across fiber at and an (which disappear for media having
equal anisotropic ratio µe

l = µe
t = µe

n), it results div(DeD
−1Jtot) ≈ −µe

l I
e
app.

Substituting this approximation in (5) and considering the boundary con-
dition (9), we obtain the anisotropic Monodomain model consisting in a
single parabolic reaction-diffusion equation for v with the conductivity ten-
sor Dm = DeD

−1Di, Im
app = −Ie

appσ
i
l/(σe

l + σi
l) and coupled with the same

gating system

cm∂tv − div(Dm∇v) + Iion(v, w, c) = Im
app in Ω × (0, T )

∂tw − R(v, w) = 0, ∂tc − S(v, w, c) = 0 in Ω × (0, T )

nT Dm∇v = 0 in ∂Ω × (0, T )

v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω.

(10)

From the knowledge of the distribution of v(x, t) the extra-cellular potential
distribution ue is derived by solving the elliptic boundary value problem

−div(D∇ue) = div(Di∇v), −nT D∇ue = nT Di∇v.
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3 Membrane models and ionic currents

Following the celebrated work by Hodgkin and Huxley [30] (1963 Medicine
Nobel prize) on nerve action potential, many models of Hodgkin-Huxley
type have later been developed for the cardiac action potential. In these
models, the ionic current through channels of the membrane, due to the
transmembrane potential v, M gating and Q ionic concentration variables
w := (w1, . . . , wM ), c := (c1, . . . , cQ), is given by

Iion(v, w, c) =

N
∑

k=1

Gk(v)

M
∏

j=1

w
pjk

j (v − vk(c)),

where Gk(v) is the membrane conductance, vk is the Nerst equilibrium po-
tential for the k-th current and pjk

are integers. The dynamics of the gating
and concentration variables is described by a system of ordinary differential
equations which when wj is a gating variable (0 ≤ wj ≤ 1) have the form

∂twj = αj(v)(1 − wj) − βj(v)(wj), (11)

with coefficients αj > 0, βj > 0, and appropriate initial conditions.
Many refinements of the original Hodgkin-Huxley model have been pro-

posed by fitting improved experimental data with more complex models; for
example, we recall here the models by Beeler-Reuter (1977, N = 4, M = 7),
phase-I Luo-Rudy (1991, N = 6, M = 7), phase-II Luo-Rudy (1994, N = 10,
M = 7); see Hund and Rudy [32] for current developments.

3.1 A FitzHugh-Nagumo variant

Simplified models of lower complexity (with 1 or 2 gating variables) have
been proposed too. The simplest and most used is the FitzHugh-Nagumo
(FHN) model (N = 1, M = 1), that yields only a coarse approximation of a
typical cardiac action potential, particularly in the plateau and repolariza-
tion phases. A better approximation is given by the following FHN variant
by Rogers and McCulloch[50]

Iion(v, w) = Gv

(

1 −
v

vth

)(

1 −
v

vp

)

+ η1vw,

∂w

∂t
= η2

(

v

vp
− η3w

)

,

where G, η1, η2, η3 are positive real coefficients, vth is a threshold potential
and vp the peak potential. The gating variable w satisfies

∂tw = ηv − γw,
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with η, γ > 0. We will consider this FHN variant as our simplest gating
model.

3.2 The LR1 ionic model

In this paper, we will also consider the more detailed phase-I Luo-Rudy
(LR1) model (see [41]), where Iion is the sum of N = 6 currents

Iion = INa + Isi + IK + IK1 + IKp + Ib,

two inwards (INa and Isi) and four outwards (IK , IK1, IKp, Ib). The first
three currents depend on six gating variables and one ion (calcium) concen-
tration, while the last three are time-independent.

The fast sodium current INa is given by

INa = gNam
3hj(v − vNa),

where gNa = 23 mS/cm2, vNa = 54.4 mV, and the gating variables h, j, m
satisfy ordinary differential equations (11) with coefficients

αh =







0 v ≥ −40

0.135 exp
(80 + v

−6.8

)

v < −40,

βh =







0.13(1 + exp
(10.66 + v

−11.1

)

v ≥ −40

3.56 exp(0.079 v) + 3.1 · 105 exp(0.35 v) v < −40,

αj =

{

0 v ≥ −40
−1.2714 · 105 exp(0.2444 v) − 3.474 · 105 exp(−0.04391 v) v < −40,

βj =



















0.3
exp(−2.535 · 10−7v)

1 + exp(−0.1(32 + v))
v ≥ −40

0.1212
exp(−0.01052 v)

1 + exp(−0.1378(40.14 + v))
v < −40,

αm = 0.32
47.13 + v

1 − exp(−47.13 − v)
, βm = 0.08 exp

(−v

11

)

.
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The slow inward current Isi is given by

Isi = gsi d f (v − vsi),

where gsi = 0.09 mS/cm2, vsi = 7.7−13.0287 log([Ca]i), [Ca]i is the calcium
ion concentration satisfying a special ordinary differential equation

d[Ca]i/dt = 0.07(10−4 − [Ca]i) − 10−4Isi

and the gating variables d, f satisfy equations (11) with coefficients

αd = 0.095
exp(−0.01(v − 5))

1 + exp(−0.072(v − 5))
, βd = 0.07

exp(−0.017(v + 44))

1 + exp(0.05(v + 44))
,

αf = 0.012
exp(−0.008(v + 28))

1 + exp(0.15(v + 28))
, βf = 0.0065

exp(−0.02(v + 30))

1 + exp(−0.2(v + 30))
.

The time-dependent potassium current IK is given by

IK = gKXXi(v − vK),

where gK = 0.282 mS/cm2, vK = −77 mV , X is a gating variable satisfying
(11) with coefficients

αX = 0.0005
exp(0.083(v + 50))

1 + exp(0.057(v + 50))
, βX = 0.0013

exp(−0.06(v + 20))

1 + exp(−0.04(v + 20))
,

and Xi is an additional variable given by

Xi =







2.837
exp(0.04(v + 77)) − 1

(v + 77) exp(0.04(v + 35))
v > −100

1 v ≤ −100.

The time-independent potassium current IK1 is given by

IK1 = gK1K1∞(v − vK1),

where gK1 = 0.6047
√

[K]o/5.4, vK1 =
vNalog([K]o/[K]i)/ log([Na]o/[Na]i), with the constant ion concentra-
tions [K]o = 5.4, [K]i = 145, [Na]o = 140, [Na]i = 18 (all in mM), and
K1∞ = αK1/(αK1 + βK1), with

αK1 =
1.02

1 + exp(0.2385(v − vK1 − 59.215))
,

βK1 =
0.49124 exp(0.08032(v − vK1 + 5.476)) + exp(0.06175(v − vK1 − 594.31))

1 + exp(−0.5143(v − vK1 + 4.753))
.
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The plateau potassium current IKp is given by

IKp = gKpKp(v − vKp),

where gKp = 0.0183 mS/cm2, vKp = vK1 and Kp = 1/(1 + exp((7.488 −
v)/5.98).

The background current Ib is given by

Ib = gb(v − vb),

where gb = 0.03921 mS/cm2 and vb = −59.87 mV .

4 Adaptive numerical discretization and the

KARDOS library

The anisotropic Monodomain (10) and Bidomain models (2) are discretized
by linearly implicit methods in time and adaptive finite elements in space,
using the kardos library [21, 1].

One of the important requirements that modern software must meet
today is to judge the quality of its numerical approximations in order to
assess safely the modelling process. Adaptive methods have proven to work
efficiently providing a posteriori error estimates and appropriate strategies
to improve the accuracy where needed. They are now entering into real–
life applications and starting to become a standard feature in simulation
programs. The present paper reports on one successful way to construct
discretization methods adaptive in space and time, which are applicable to
a wide range of practically relevant problems.

We concentrate on reaction–diffusion problems which can be written in
the form

B(x, t, u,∇u)∂tu = ∇ · (D(x, t, u,∇u)∇u) + F (x, t, u,∇u) , (12)

supplemented with suitable boundary and initial conditions. The vector–
valued solution u = (u1, . . . , um)T is supposed to be unique.

In the classical method of lines (MOL) approach, the spatial discretiza-
tion is done once and kept fixed during the time integration. Here, we
allow a local spatial refinement in each time step, which results in a dis-
cretization sequence first in time then in space. The spatial discretization is
considered as a perturbation, which has to be controlled within each time
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step. Combined with a posteriori error estimates this approach is known
as adaptive Rothe method. First theoretical investigations have been made
by Bornemann [7] for linear parabolic equations. Lang and Walter [38]
have generalized the adaptive Rothe approach to reaction–diffusion systems.
A rigorous analysis for nonlinear parabolic systems is given in Lang [36].
For a comparative study, we refer to Deuflhard, Lang, and Nowak [20].

Since differential operators give rise to infinite stiffness, often an implicit
method is applied to discretize in time. We use linearly implicit methods
of Rosenbrock type, which are constructed by incorporating the Jacobian
directly into the formula. These methods offer several advantages. They
completely avoid the solution of nonlinear equations, that means no Newton
iteration has to be controlled. There is no problem to construct Rosenbrock
methods with optimum linear stability properties for stiff equations. Ac-
cording to their one–step nature, they allow a rapid change of step sizes
and an efficient adaptation of the spatial discretization in each time step.
Moreover, a simple embedding technique can be used to estimate the error
in time satisfactorily. A description of the main idea of linearly implicit
methods is given in Subsection 4.1.

Linear finite elements are used for the spatial discretization. To esti-
mate the error in space, the hierarchical basis technique has been extended
to Rosenbrock schemes in Lang [36]. Hierarchical error estimators have
been accepted to provide efficient and reliable assessment of spatial errors.
They can be used to steer a multilevel process, which aims at getting a
successively improved spatial discretization drastically reducing the size of
the arising linear algebraic systems with respect to a prescribed tolerance
(Bornemann, Erdmann, and Kornhuber [8], Deuflhard, Leinen and
Yserentant [19], Bank and Smith [4]). A brief introduction to multilevel
finite element methods is given in Subsection 4.2.

The described algorithm has been coded in the fully adaptive software
package Kardos at the Konrad–Zuse–Zentrum in Berlin. Several types
of embedded Rosenbrock solvers and adaptive finite elements were imple-
mented. Kardos is based on the Kaskade–toolbox [22]. Nowadays both
codes are efficient and reliable workhorses to solve a wide class of PDEs in
one, two, or three space dimensions.

4.1 Linearly implicit methods

In this section a short description of the linearly implicit discretization idea
is given. More details can be found in the books of Hairer and Wanner

[27], Deuflhard and Bornemann [18], Strehmel and Weiner [57]. For
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ease of presentation, we firstly set B=I in (12) and consider the autonomous
case. Then we can look at (12) as an abstract Cauchy problem of the form

∂tu = f(u) , u(t0) = u0 , t > t0 , (13)

where the differential operators and the boundary conditions are incorpo-
rated into the nonlinear function f(u). Since differential operators give rise
to infinite stiffness, often an implicit discretization method is applied to
integrate in time. The simplest scheme is the implicit (backward) Euler
method

un+1 = un + τ f(un+1) , (14)

where τ = tn+1−tn is the step size and un denotes an approximation of u(t)
at t= tn. This equation is implicit in un+1 and thus usually a Newton–like
iteration method has to be used to approximate the numerical solution itself.
The implementation of an efficient nonlinear solver is the main problem for
a fully implicit method.

Investigating the convergence of Newton’s method in function space,
Deuflhard [16] pointed out that one calculation of the Jacobian or an
approximation of it per time step is sufficient to integrate stiff problems
efficiently. Using un as an initial iterate in a Newton method applied to
(14), we find

(I − τ Jn) Kn = τf(un) , (15)

un+1 = un + Kn , (16)

where Jn stands for the Jacobian matrix ∂uf(un). The arising scheme is
known as the linearly implicit Euler method. The numerical solution is now
effectively computed by solving the system of linear equations that defines
the increment Kn. Among the methods which are capable of integrating
stiff equations efficiently, the linearly implicit methods are the easiest to
program, since they completely avoid the numerical solution of nonlinear
systems.

One important class of higher–order linearly implicit methods consists
of extrapolation methods that are very effective in reducing the error, see
Deuflhard [17]. However, in the case of higher spatial dimension, several
drawbacks of extrapolation methods have shown up in numerical experi-
ments made by Bornemann [6]. Another generalization of the linearly
implicit approach we will follow here leads to Rosenbrock methods (Rosen-

brock [51]). They have found wide–spread use in the ODE context. Applied
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to (13) a so–called s–stage Rosenbrock method has the recursive form

(I − τγii Jn) Kni = τf(un+

i−1
∑

j=1

αij Knj) + τJn

i−1
∑

j=1

γij Knj , i = 1(1)s ,(17)

un+1 = un +

s
∑

i=1

biKni , (18)

where the step number s and the defining formula coefficients bi, αij , and
γij are chosen to obtain a desired order of consistency and good stability
properties for stiff equations (see e.g. Hairer and Wanner [27], IV.7). We
assume γii = γ > 0 for all i, which is the standard simplification to derive
Rosenbrock methods with one and the same operator on the left–hand side
of (17). The linearly implicit Euler method mentioned above is recovered
for s=1 and γ=1.

For the general system

B(t, u)∂tu = f(t, u) , u(t0) = u0 , t > t0 , (19)

an efficient implementation that avoids matrix–vector multiplications with
the Jacobian was given by Lubich and Roche [40]. In the case of a time–
or solution–dependent matrix B, an approximation of ∂tu has to be taken
into account, leading to the generalized Rosenbrock method of the form

(

1

τγ
B(tn, un) − Jn

)

Uni = f(ti, Ui) − B(tn, un)
i−1
∑

j=1

cij

τ
Unj + τγiCn

+ (B(tn, un) − B(ti, Ui))Zi , i = 1(1)s ,
(20)

where the internal values are given by

ti = tn + αiτ , Ui =un +

i−1
∑

j=1

aij Unj , Zi =(1 − σi)zn +

i−1
∑

j=1

sij

τ
Unj ,

and the Jacobians are defined by

Jn := ∂u(f(t, u) − B(t, u)z)|u=un,t=tn,z=zn
,

Cn := ∂t(f(t, u) − B(t, u)z)|u=un,t=tn,z=zn
.

This yields the new solution

un+1 = un +
s
∑

i=1

mi Uni

13



and an approximation of the temporal derivative ∂tu

zn+1 = zn +
s
∑

i=1

mi (
1

τ

i
∑

j=1

(cij − sij)Unj + (σi − 1)zn) .

The new coefficients can be derived from αij , γij , and bi [40]. In the special
case B(t, u)=I, we get (17) setting Uni =τ

∑

j=1,...,i γijKnj , i=1, . . . , s.
Various Rosenbrock solvers have been constructed to integrate systems of

the form (19). An important fact is that the formulation (19) includes prob-
lems of higher differential index. Thus, the coefficients of the Rosenbrock
methods have to be specially designed to obtain a certain order of conver-
gence. Otherwise, order reduction might happen. Among the Rosenbrock
methods suitable for index 1 problems we mention Ros2 [15], Ros2pos[62],
Ros3p [37], and Rodas4 [27]. More information can be found in [36]. These
Rosenbrock solvers have been used in our simulations presented here.

Usually, one wishes to adapt the step size in order to control the temporal
error. For linearly implicit methods of Rosenbrock type a second solution
of inferior order, say p̂, can be computed by a so–called embedded formula

ûn+1 = un +
s
∑

i=1

m̂iUni ,

ẑn+1 = zn +

s
∑

i=1

m̂i (
1

τ

i
∑

j=1

(cij − sij)Unj + (σi − 1)zn) ,

where the original weights mi are simply replaced by m̂i. If p is the order
of un+1, we call such a pair of formulas to be of order p(p̂). Introducing an
appropriate scaled norm ‖ · ‖, the local error estimator

rn+1 = ‖un+1 − ûn+1‖ + ‖τ(zn+1 − ẑn+1)‖ (21)

can be used to propose a new time step by

τn+1 =
τn

τn−1

(

TOLt rn

rn+1 rn+1

)1/(p̂+1)

τn . (22)

Here, TOLt is a desired tolerance prescribed by the user. This formula is
related to a discrete PI–controller first established in the pioneering works
of Gustafsson, Lundh, and Söderlind [25, 24]. A more standard step
size selection strategy can be found in Hairer, Nørsett, and Wanner

([26], II.4).
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Rosenbrock methods offer several structural advantages. They preserve
conservation properties like fully implicit methods. There is no problem
to construct Rosenbrock methods with optimum linear stability properties
for stiff equations. Because of their one–step nature, they allow a rapid
change of step sizes and an efficient adaptation of the underlying spatial
discretizations as will be seen in the next section. Thus, they are attractive
for solving real world problems.

4.2 Multilevel finite elements

In the context of PDEs, system (20) consists of linear elliptic boundary
value problems. In the spirit of spatial adaptivity a multilevel finite ele-
ment method is used to solve this system. The main idea of the multilevel
technique consists of replacing the solution space by a sequence of discrete
spaces with successively increasing dimension to improve their approxima-
tion property. A posteriori error estimates provide the appropriate frame-
work to determine where a mesh refinement is necessary and where degrees
of freedom are no longer needed. Adaptive multilevel methods have proven
to be a useful tool for drastically reducing the size of the arising linear al-
gebraic systems and to achieve high and controlled accuracy of the spatial
discretization (see e.g. Bank [5], Deuflhard, Leinen, and Yserentant

[19], Lang [35]).
Let Th be an admissible finite element mesh at t = tn and Sq

h be the
associated finite dimensional space consisting of all continuous functions
which are polynomials of order q on each finite element T ∈ Th. Then the
standard Galerkin finite element approximation Uh

ni ∈ Sq
h of the intermediate

values Uni satisfies the equation

(Ln Uh
ni, φ) = (rni, φ) for all φ ∈ Sq

h , (23)

where Ln is the weak representation of the differential operator on the left–
hand side in (20) and rni stands for the entire right–hand side in (20). Since
the operator Ln is independent of i its calculation is required only once
within each time step.

The linear systems are solved by direct or iterative methods. While
direct methods work quite satisfactorily in one-dimensional and even two-
dimensional applications, iterative solvers such as Krylov subspace methods
perform considerably better with respect to CPU–time and memory require-
ments for large two– and three-dimensional problems. We mainly use the
Bicgstab–algorithm [63] with Ilu–preconditioning.
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After computing the approximate intermediate values Uh
ni a posteriori

error estimates can be used to give specific assessment of the error distribu-
tion. Considering a hierarchical decomposition

Sq+1
h = Sq

h ⊕ Zq+1
h , (24)

where Zq+1
h is the subspace that corresponds to the span of all additional

basis functions needed to extend the space Sq
h to higher order, an attractive

idea of an efficient error estimation is to bound the spatial error by evalu-
ating its components in the space Zq+1

h only. This technique is known as
hierarchical error estimation and has been accepted to provide efficient and
reliable assessment of spatial errors (Bornemann, Erdmann, and Korn-

huber [8], Deuflhard, Leinen and Yserentant [19], Bank and Smith

[4]). In Lang [36], the hierarchical basis technique has been carried over to
time–dependent nonlinear problems. Defining an a posteriori error estimator
Eh

n+1 ∈ Zq+1
h by

Eh
n+1 = Eh

n0 +
s
∑

i=1

miE
h
ni (25)

with Eh
n0 approximating the projection error of the initial value un in Zq+1

h

and Eh
ni estimating the spatial error of the intermediate value Uh

ni, the local
spatial error for a finite element T ∈ Th can be estimated by ηT :=‖Eh

n+1‖T .
The error estimator Eh

n+1 is computed by linear systems which can be de-
rived from (23). For practical computations the spatially global calculation
of Eh

n+1 is normally approximated by a small element–by–element calcula-
tion. This leads to an efficient algorithm for computing a posteriori error
estimates which can be used to determine an adaptive strategy to improve
the accuracy of the numerical approximation where needed. A rigorous a
posteriori error analysis for a Rosenbrock–Galerkin finite element method
applied to nonlinear parabolic systems is given in Lang [36]. In our appli-
cations we applied linear finite elements and measured the spatial errors in
the space of quadratic functions.

In order to produce a nearly optimal mesh, those finite elements T hav-
ing an error ηT larger than a certain threshold are refined. After the refine-
ment improved finite element solutions Uh

ni defined by (23) are computed.
The whole procedure solve–estimate–refine is applied several times until a
prescribed spatial tolerance ‖Eh

n+1‖ ≤ TOLx is reached. To maintain the
nesting property of the finite element subspaces coarsening takes place only
after an accepted time step before starting the multilevel process at a new
time. Regions of small errors are identified by their η–values.
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5 Numerical simulations

Before proceeding, we show how the monodomain and the Bidomain model
fit into the abstract setting (19)

B(t, u)∂tu = f(t, u) , u(t0) = u0 , t > t0 ,

used above to describe time and spatial discretization.
We start with the monodomain model and set

B(t, u) =

(

cm 0
0 I

)

,

f(t, u) =

(

Iapp − Iion(u) + ∇ · (Dm∇u1)

P (u)

)

,

where

u = (v, w)T , I = 1 , P = η2

(

v

vp
− η3w

)

,

for the FitzHugh-Nagumo variant and

u = (v, h, j, m, d, f,X, [Ca]i)
T , I = diag(1, 1, 1, 1, 1, 1, 1) ,

P = (R1, ...R7, S)T , Rk = αk(u1)(1 − uk+1) − βk(u1)uk+1 , k = 1, . . . , 7

S = 0.07(10−4 − u8) − 10−4Isi(u)

for the LR1 ion model. Here, uk is the k-th component of the solution vector
u. We note that the matrix B is regular.

For the Bidomain model, we have

B(t, u) =





cm −cm 0
−cm cm 0

0 0 I



 ,

f(t, u) =







−Iion + ∇ · (Dm∇u1)

−Iapp + Iion + ∇ · (Dm∇u2)

P (u)






,

where

u = (ui, ue, w)T , I = 1 , P = η2

(

v

vp
− η3w

)

,
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for the FitzHugh-Nagumo variant and

u = (ui, ue, h, j,m, d, f, X, [Ca]i)
T , v = u1 − u2, I = diag(1, 1, 1, 1, 1, 1, 1) ,

P = (R1, ...R7, S)T , Rk = αk(v)(1 − uk+2) − βk(v)uk+2, k = 1, . . . , 7,

S = 0.07(10−4 − u9) − 10−4Isi(v, u3, ..u9)

for the LR1 ion model. Here, uk is the k-th component of u. The ma-
trix B is singular due to the upper 2 × 2-matrix showing the differential–
algebraic character of the Bidomain system (see also the equivalent formu-
lation (3)). In all models, the Jacobians Cn and Jn reduce to Cn = 0 and
Jn = ∂uf(u)|u=un

.

Setting u = (u1, u2, q)
T the nonlinear terms Iion and P depend only on

the difference v = u1 − u2, i.e., I = Iion(u1 − u2, q) and P = P (u1 − u2, q).
The operator matrix related to the problem (20) is given by

M :=
1

τγ
B(u) − J(u) =









cm

τγ −∇ · (Di∇·)+∂vIion(v, q) −cmτγ−∂vIion(v, q) ∂qIion(v, q)

− cm

τγ −∂vIion(v, q) cm

τγ −∇ · (De∇·)+∂vIion(v, q) −∂qIion(v, q)

∂vP (v, q) −∂vP (v, q)) I
τγ − ∂qP (v, q)









The vector (µ, µ, 0)T , with µ constant, is the eigenfunction associated to
the zero eigenvalue of B and M as well. Therefore the solvability of the
Bidomain problem is assured for right–hand sides that are orthogonal to
this eigenfunction, i.e., f(t, u) · (µ, µ, 0) = 0. It is easy to verify that for (20)
the orthogonality condition holds if

∫

Ω Iapp dx = 0, then the system admits
a unique solution apart from an additive constant in the components ui and
ue. The condition

∫

Ω ue dx = 0 determines a solution and is enforced during
each time step.

We have performed various simulations on a three-dimensional domain
Ω = [1, 2]×[1, 2]×[1, 1.1] of size 1∗1∗0.1cm3, including both the Monodomain
and the Bidomain model. Results are presented for the FHN-variant ionic
model and the LR1 ionic model. The parameters used in our computations
are given in Tab. 1. The fibers have constant direction and lie in the x-y
plane (they are horizontal), forming a −45o angle with the x-axis.

The application that we study is a complete heartbeat in its three main
phases at each point x ∈ Ω:

(a) the excitation phase (depolarization), where the potential v undergoes
an abrupt temporal change within 2 msec, followed by an exponential
decay;
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general χ = 103 cm−1, Cm = 10−3 mF/cm2

Monodomain σl = 1.2 · 10−3 Ω−1cm−1, σt = 2.5562 · 10−4 Ω−1cm−1

σe
l = 2 · 10−3 Ω−1cm−1, σi

l = 3 · 10−3 Ω−1cm−1

Bidomain σe
t = 1.3514 · 10−3 Ω−1cm−1

σi
t = 3.1525 · 10−4 Ω−1cm−1

σe
n = σe

t /µ1, σi
n = σi

t/µ2

µ1 = µ2 = 1 axial isotropic case
µ1 = 2, µ2 = 10 orthotropic case

FHN-variant G = 1.5 Ω−1cm−2, vth = 13 mV, vp = 100 mV
η1 = 4.4 Ω−1cm−2, η2 = 0.012, η3 = 1

LR1 as in original paper [41]
except Gsi reduced by a factor 2/3

Table 1: Parameters calibration for numerical tests

(b) the plateau phase lasting from 40-50 msec to about 400 msec according
to the ionic model chosen and the type of propagating front considered;
v varies very little and slowly compared to the excitation phase and
the cardiac tissue is refractory, i.e., any applied stimulus does not elicit
another action potential;

(c) the recovery phase (repolarization), where v returns to the rest value
during a period of 20-50 msec, after which the tissue becomes excitable
again.

The excitation process is started by applying a stimulus of 200 µA/cm3

for 1 msec in a small area close to the center of the epicardium.
For all computations we use an initial coarse mesh consisting of 600

tetrahedral finite elements, see Figure 1. Our kardos code automatically
adapts the spatial meshes and time steps in order to follow local phenomena
of the whole heartbeat. While locally refined meshes and small time steps
are chosen to accurately resolve the travelling excitation and repolarization
fronts, coarse meshes and larger time steps are sufficient during the plateau
phase.

Normally, we choose as tolerances for accuracy in time TOLt = 0.01 and
in space TOLx = 0.01. This might lead to exceeding our memory resources
because too many points are necessary to guarantee the required precision in
space. Therefore, we allow mesh refinement only up to depth 3 (LR1 model)
or 4 (FHN model). The parameter depth counts how often a tetrahedron
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Figure 1: Initial mesh.

in the initial mesh is refined. Alternatively, we could restrict the maximum
number of points in the grid.

5.1 Monodomain–FHN model
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Figure 2: Monodomain–FHN model: potential v and gating variable w in
point (1.65,1.65,1.10) as a function of time. Time integrator: ROS3P.

Our first results for the Monodomain–FHN model are taken from a simu-
lation with the time integrator ros3p. We show in Figure 3 the evolution of
the potential v and the corresponding adaptive meshes during propagation
of the excitation front and the subsequent plateau phase. Typical profiles of
the solution components observed in the spatial point x = (1.65, 1.65, 1.10)
are presented in Figure 2. One can clearly see the exponential increase and
decrease of the potential v between the phases that are numerically resolved
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Figure 3: Monodomain–FHN model: mesh and potential v at times 1, 7, 13,
50 msec.
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Figure 4: Monodomain–FHN model: number of vertices and time step size
as functions of time for different time integrators: ros3p (row 1), rodas4

row 2), ros2pos (row 3), ros2 (row 4).
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by smaller time steps, see Figure 4 (right).
Next, we examine the performance of several Rosenbrock methods for

the same tolerances TOLt and TOLx. We compare the number of grid
points and the time steps chosen by the second–order methods Ros2 (s = 2
in (20)) and Ros2pos (s = 3 in (20)), the third–order method Ros3p (s = 3
in (20)) and the fourth–order method Rodas4 (s = 6 in (20)). All integra-
tors select small time steps and finer grids for the transition between the
phases, i.e., from excitation to plateau and from plateau to recovery, whereas
elsewhere rather coarse grids and large time steps are chosen, see Figure 4.
Due to their higher order Ros3p and Rodas4 select larger time steps than
Ros2 and Ros2pos. Rodas4 reaches the final time in 108 steps, Ros3p

needs 130 steps, Ros2pos 208 steps, and Ros2 even 360 steps. Though one
step of ros2 is much cheaper than one step of rodas4, it takes twice as
much computing time for the whole calculation. The best performance with
respect to accuracy and computing time is obtained by Ros3p.

A closer look at the potential v at point x = (1.65, 1.65, 1.10) in the
time interval [90, 110] reveals that Ros2 produces a slower propagation of
the recovery front compared to the other Rosenbrock solvers, Figure 6. The
reason for this behavior is the insufficient resolution in space provided by
Ros2 – a fact that can be seen from Figure 4, bottom left.

5.2 Monodomain–LR1 model

For the Monodomain–LR1 model, we have also compared various Rosen-
brock integrators, and again ROS3P proved to be most efficient. Plots of
the action potential v, gating variables w1, ..., w6, and calcium concentration
w7 in the point (1.9,1.9,1.0) as a function of time are shown in Figure 5.

Small time steps are necessary only in the depolarization and repolariza-
tion phases; elsewhere the time step increases by two orders of magnitude.
Similar observations can be made for the spatial resolution, see Figure 7.

In Figure 8, we present results for the action potential v and the gating
variables w1 and w2 which are obtained for two different spatial tolerances.
Whereas a less accurate resolution in space yields unphysical oscillations
in all solution components, a more restrictive tolerance reduces this effect
drastically.

5.3 Bidomain–FHN model

We used the Rosenbrock method ROS3P for integrating the Bidomain–
FHN model. Plots of the intra- and extra-cellular electric potentials ui,

23



-100

-80

-60

-40

-20

 0

 20

 0  50  100  150  200  250  300  350  400

v

time

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400

m
 g

at
e 

(w
1)

time

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400

h 
ga

te
 (

w
2)

time

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400

j g
at

e 
(w

3)

time

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400

d 
ga

te
 (

w
4)

time

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400

f g
at

e 
(w

5)

time

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  50  100  150  200  250  300  350  400

X
 g

at
e 

(w
6)

time

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0  50  100  150  200  250  300  350  400

C
a 

(w
7)

time

Figure 5: LR1 membrane model: action potential v, gating variables w1,
..., w6, calcium concentration w7 in point (1.9,1.9,1.0) as a function of time.
Time integrator: ROS3P
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Figure 7: Monodomain–LR1 model: number of vertices and time step size
as functions of time. Time integrator: ROS3P

ue in two different points, (1.65,1.65,1.1) and (1.9,1.9,1.0), as a function of
time are shown in Figure 9. We recognize that there is not only a front
moving through the space, but much more dynamics. In particular, the
extra-cellular potentials vary a lot depending on the point x, both in the first
wave complex (the QRS) and the last little wave (the T wave). Figure 10
shows the behaviour of ui and ue in more detail for the first 20 msec. The
development of the gating variable w is less complex, see Figure 11.

The evolution of the number of points and time steps are shown in Fig-
ure 12. The mechanism of local error control works as optimal as in the
Monodomain models.
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Figure 8: LR1 membrane model: action potential v, gating variables w1,
w2 in point (1.9,1.9,1.0) as a function of time, computed with spatial accu-
racy TOLx = 0.01 (left column) or TOLx = 0.001 (right column). Time
integrator: ROS3P
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Figure 9: Bidomain–FHN model: intra- and extra-cellular electric potentials
ui, ue in point (1.65,1.65,1.1) (top row) and in point (1.9,1.9,1.0) (bottom
row) as a function of time. Time integrator: ROS3P.

5.4 Bidomain–LR1 model

Even in the most complex example of Bidomain–LR1 model the adaptive
strategy of the code KARDOS works properly. Here we present results
from calculations based on the time discretizations ROS3P and RODAS4.
Figure 13 shows the extra- and intra-cellular electric potentials ue and ui

over the whole period of 400 msec.
The detailed behaviour of ue and ui in the excitation phase can be seen

in Figure 14. Here and in the transient phase between plateau and repolar-
ization phase we need fine grids and small time steps, but elsewhere we save
computer resources by large time steps and coarse grids, compare Figure 15
for method ROS3P and Figure 16 for RODAS4.
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Figure 11: Bidomain–FHN model: gating variable w in point (1.65,1.65,1.1)
(left) and in point (1.9,1.9,1.0) (right) as a function of time. Time integrator:
ROS3P.

6 Conclusions and Outlook

We have presented a fully adaptive approach to solve various three-
dimensional reaction–diffusion models arising in computational electrocar-
diology. The model complexity ranges from a simple Monodomain–FHN
model to a more complex Bidomain–LR1 model. Due to steep solution gra-
dients and travelling fronts an appropriate local adaptation of spatial and
temporal discretizations in an automatic way turns out to be an impor-
tant issue not only to maintain computer resources but also to get accurate
solutions.

We have compared several linearly implicit one–step methods of
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Figure 12: Bidomain–FHN model: number of vertices and time step size as
functions of time. Time integrator: ROS3P
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Figure 13: Bidomain–LR1 model: intra- and extra-cellular electric poten-
tials ui, ue in point (1.65,1.65,1.1) as a function of time. Time integrator:
ROS3P.

Rosenbrock–type. The three–stage third–order method Ros3p performed
best.

Future work will focus on more general computational domains. More-
over, we are planning to compare the efficiency of the method presented here
with the parallel solver of Colli Franzone and Pavarino, [13, 14].
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Figure 14: Bidomain–LR1 model: excitation phase of intra- and extra-
cellular electric potentials ui, ue in point (1.65,1.65,1.1) (left) and in point
(1.9,1.9,1.0) (right) in the first 20 msec. Time integrator: ROS3P.
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Figure 15: Bidomain–LR1 model: number of vertices and time step size as
functions of time. Time integrator: ROS3P.

All visualizations in this paper have been created using AMIRA – a
system for advanced visual data analysis, see [2, 56].
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