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Zusammenfassung

Spreading processes are important drivers of change in social systems. To understand the mechanisms of
spreading it is fundamental to have information about the underlying contact network and the dynamical
parameters of the process. However, in many real-wold examples, this information is not known and needs
to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern
social systems, as they rely on availability of very detailed data. In this paper we study the inference
challenges for historical spreading processes, for which only very fragmented information is available. To
cope with this problem, we extend existing network models by formulating a model on a mesoscale with
temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the
extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset,
and study properties of the inferred time-evolving interregional networks. As a result, we show that (1)
optimal solutions consist of very different network structures and spreading rate functions; and that (2)
these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant
interregional connections are related to available archaeological traces. Historical networks resulting from
our approach can help understanding complex processes of cultural change in ancient times.

Keywords:
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1 Introduction

Spreading dynamics has played a crucial role in shaping humankind since it emerged, as it led to the biggest
human discoveries and societal transformations. Understanding the dynamics of spreading processes has thus
been a topic of great interest in various scientific fields, such as diffusion of religion [1] in humanities, rumor
spreading [2] in social sciences and virus spreading in epidemiology [3]. Different types of models have been
developed in order to study dynamics of spreading on various spatio-temporal scales based on available data-
sets [3-6].

Typical data from real-world spreading processes includes observations of e.g. the number of infected indivi-
duals at different time points. More detailed information needed for understanding and predicting the spreading
dynamics, such as the underlying contact structure between individuals and dynamical properties of the sprea-
ding, e.g. the spreading rate «, are usually unknown. For large population numbers, it can be assumed that
the considered population is well-mixed. Then, the spreading can be modelled by the so-called compartmen-
tal models with deterministic dynamics given by the system of ordinary differential equations (ODEs) [3,7].
These models are shown to be able to reproduce the data coming from real-world observations [8-10]. Using
appropriate parameter estimation methods, the spreading dynamics can be easily recovered by solving the ODE
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system. Due to their simple formulation and cheap computational cost, compartmental ODE models are often
a model of choice for various spreading processes. However, these models don’t offer detailed information about
the dynamics on a resolution of each individual.

Recently, new models have been introduced with a focus on heterogeneous spatio-temporal interactions
of individuals with realistic mobility and behavioral patterns. These models assume an underlying network
structure that determines the possible interactions between individuals [11-14]. Additionally, by taking into
account the mobility of individuals, e.g. using the airline travel data [15,16] or cell-phone data [13,17], the
underlying network naturally becomes time-evolving [18]. A structure of such networks has been shown to have
a strong impact on the dynamics of the spreading [15,19].

Developing formal mathematical models for such systems has been a topic of many recent publications [11].
For example, ODE equations for compartmental models have been extended to account for the network structure,
but the resulting ODE systems can usually not be analytically solved. When a network G is known, then the
ODE systems can be solved numerically, however, in many real-world examples these networks are not known
and need to be inferred together with other dynamical parameters, e.g. «, of the process. The inference of both «
and G, based on partial observations poses a new parameter inference challenge [20-23]. The difficulty arises due
to the fact that different combinations of o and G can produce very similar overall spreading patterns. Hence,
the inference method has multiple valid parameter configurations to choose from. In this work, we shed light
on the challenges of inferring the network and the dynamical parameters together, using a concrete real-world
example.

In this paper, we study the historical process of Romanization spreading in Northern Tunisia during the
period 146 BC-350 AD. Romanization is a complex meta-process with different interacting layers, e.g. on a
social, political, and economic level. Processes of change on these different levels govern cultural change and
are therefore considered to be important indicators of the Romanization. However, very little is known about
these processes and their complex interaction mechanisms, which makes modelling of Romanization spreading
a challenging task. Here, we will focus on the changes in the civil administration system of Northern Tunisia
and thus consider a city status to be the main indicator of the Romanization process. Cities with established
roman administrative status will be considered to be romanized. Thus, we will model the Romanization process
as an SI epidemic process, where susceptible will refer to non-romanized cities and infected to romanized cities.
The spreading parameters and the underlying connections between these cities that govern the SI process
are unknown. Observation data on this process was obtained from archaeological evidence about the cities in
Northern Tunisia in the period 146 BC-350 AD, see [24,25] for more details. However, due to a limited amount
of archaeological traces, available data is sparse, incomplete and uncertain. This makes the problem of inferring
the unknown connections on a city-level infeasible.

To overcome this, we study the Romanization spreading on a mesoscale, i.e. between different regions in
Tunisia. Grouping of cities into regions will have two main advantages compared to modelling on a city-level.
Firstly, it will reduce the effect of data sparsity by considering several cities together instead of each city indivi-
dually. Secondly, it will account for complex spreading mechanisms of cultural transmission, as an interregional
model will essentially substitute two-city interactions by interactions between a number of cities from different
regions. Aggregation of cities into regions will result in a model reduction, and the new dynamics on a mesoscale
will be an SI epidemic process on an interregional network. Our model builds on standard epidemic spreading
models on networks [12] and extends these by considering time-evolving networks. The aim of this paper is
to infer possible interregional networks underlying the Romanization spreading that could have produced the
observed spreading patterns.

The remainder of the paper is organized in following way: In Section 2, we discuss the historical background
of the Romanization process in ancient Tunisia and present the main characteristics of the available dataset.
In Section 3, we introduce our model, an SI epidemic model on an interregional network for the romanization
process, and the respective inverse problem to infer its model parameters. In Section 4, we present the general
methodology of the numerical methods used to perform the numerical experiments in the paper. In Section 5,
we collate the multitude of networks and dynamic parameters which exhibit very similar overall spreading
behaviour. From these, we shortlist three contrasting networks, and show how these networks induce a similar
spreading but over different edges in the networks. In Section 6, we cross-validate our inferred model with
another historical data source. Lastly, we discuss the significance of our inferred model in understanding the
romanization spreading in northern Tunisia, and discuss open problems with respect to the solving of such
mixed—network parameters and dynamic parameter—based inverse problems.

2 Background

Romanization process of northern Africa started in 146 BC when the region known nowadays as Tunisia was
annexed by Rome in the aftermath of the Third Punic War. In the following centuries the African province
expanded further with its greatest extend around 117 AD. During this period, cultural exchange, spreading of



socio-economic and technological innovations led gradually to adaptation to the Roman influence. The most
import indicators of the cultural change, can be observed in the Romanization of towns, cities and entire
settlement systems on an administrative level. Romans established a settlement hierarchy with a tripartite
taxonomy of status: colonia, municipium and civitas. Colonias were cities with the highest ranks and initially
these cities were strategically located. Municipia had a lower rank than colonias and their inhabitants did not
have all Romans civil rights, but still had a certain amount of autonomy. In comparison to municipia, civitates
had a lower rank and they were only semi-autonomous.

During the period 146 BC - 350 AD cities in ancient Tunisia gradually got romanized, which was reflected
in their administrative status, that often changed mostly to a higher rank. The data-base we are working with
is publicly available on the server of the German Archaeological Institute [26]. This data-base contains the
administrative status of 88 cities from 146 BC until 350 AD. In Figure 1 (a) we plot these cities and mark
them according to their status at 350 AD. Status of some cities (marked with *) is assumed, but could not be
confirmed by archaeological records, so for these cities we plot only the last confirmed status. This reflects the
uncertainty of already sparse data we have at hand. Note that in the following, we will focus only on the notion
of a city being romanized or not and not on the particular status. More details on archaeological context and a
detailed statistical analysis of this data-base are given in [24, 25].

We will use the romanization data on a city level to uncover the interregional interactions and how these
changed over time under Roman influence. Based on the expert knowledge, we partitioned the area of interest
in 4 regions, see Figure 1 (b). These regions cover areas that have different geographical properties, natural
resources and socio-economic characteristics. They differ in size, as well as in the number of cities contained in
the data-set, with a range between 7 and 33 cities per region. Additionally, we aggregate the temporal data,
such at that at time point 0 we account for cities that obtained a roman status before 0AD; at time point 50 we
aggregate information about cities that got romanized in the period [0,50)AD and so on. For each region, we
plot the number of romanized cities in these discrete time points, see Fig. 1 (c). We see diverse spreading curves
for the four regions. For example, Region 1 is characterized by an almost constant number of romanized cities
until 150 AD with a steep increase in the period 150 — 250 AD. On the contrary, the spreading curve of Region
2 is almost flat, since most of the cities got romanized in the first time-frame. Regions 3 and 4, both have a
fast accelerating number of romanized cities. In the next sections, we will introduce an approach for inferring
interregional interactions that could have produced spreading curves shown in Figure 1 (c).

3 Modeling Romanization spreading between regions

Model formulation

We model the Romanization spreading in ancient Tunisia by an SI epidemic model [27] on a network of connected
regions. In our context, this means that a city is considered to be infected if it has a Roman city status'. Likewise,
a city is susceptible if it doesn’t have a Roman status. Susceptible cities can become romanized through a cultural
influence from already romanized cities. On a mesoscale, every region m is characterized by the fixed number
of cities inside this region P, and a regions state at time ¢ given by a pair (s,,(t),i,,(t)) denoting the number
of susceptible and infected cities in m at time ¢t € [0, 7T]. Formally, we model the Romanization spreading over
a contact network of Nr nodes. For every region m = 1,..., Nr a change of its state is given by the following
set of ordinary differential equations:

dsm(t) all .
E = —s(t) a(t) n; Gom in(t), (1)

im(t) = Pm — 8m(t),

where o : R — R denotes the spreading rate function and G is an adjacency matrix of the underlying weighted
contact network. This model builds on existing work for SIR epidemic spreading on networks [12,28], and extends
these approaches by considering spreading rate function «(t) instead of a constant spreading rate. Given the
underlying structure of our system, we define the contact network by

Gmmn =

: (2)

Win,m
Pm

Win,n Wi,m
o+ o form #n,
for m =n,
where W,, , represents the connectivity between regions m and n and W,,, /P, denotes the contact rate
between cities in region m and cities in region n. Our definition of the contact network G builds on the idea
that the Romanization process is driven by complex mechanisms of cultural influence and assumes symmetric

IHere we do not distinguish which Roman status a city has.



contact patterns V[;T + WT Using the definition of G, we can write a more detailed description of our model:
ds, (1) L (Wi Wam W

= mlat) 3 (T + P52 ) in®) = slt) o) "2 ), Q

im(t) = P — sm(2). (4)

This model was build considering the following types of interactions:

Ngr
1. The first term in equation (3), namely s, (¢) a(t) > (W;;”” + W;"") in(t), accounts for the change
n=1,n#m " "
in the number of romanized cities in m caused by interactions with other regions.

2. The second term in equation (4), i.e. s, (t) a(t) WF’;,;”' im (t) models self-infections, i.e. influence that cities

within the same region have on each other. Note that often the rate of self-infections are not considered [28].
Here, like in [12], we assume that infections inside regions can have different dynamics and therefore we
account for W, ,, as well.

3. Finally, the second equation of our model (4) stands for the so-called conservation of population numbers
in every region m, such that it holds s,,(t) + i (t) = Prn.

Since analytical solutions of the model given in (3) are not known, we solve the ODE numerically with the first
order Runge-Kutta scheme [29]. We parametrize the model (3) by the tuple containing the contact network and
the spreading rate function, ¢ := (G, ). One can interpret the tuple (G, a) as a time-evolving network «(t) G,
that can be even time-continuous or time-discrete.

We fix our initial value to be i(0) = (i,,(0))% . Using these, here on in, we denote the approximate solution
to (3) for the given parameter set o and initial value ¢(0) at time ¢ by,

¢ d m
6(t],1(0)) = (Pm A dT> . 6
Gy Fm =1 m=1,....Nr

The function ¢(e|o,4(0)) describes a spreading curve through time determined by the parameter set 0. With
this we can formulate the inverse problem, where given a set of observations we need to infer the possible
parameters ¢ which most likely produced the data.

Inferring Model Parameters from Data

Our main goal is to infer o, i.e. the weights of the underlying contact network GG and the spreading rate function
a(t) given observations of the spreading in the discrete time points of the interval [0, T]. For a particular choice
of o, we can generate the corresponding spreading curves by solving the equation (1). Comparing these results
to the given data via a distance measure, we obtain an error between the two results. Naturally, the parameter
set which induces the smallest error to the data, is considered a viable candidate for a good fit. This idea is at
the core of the so-called General Inverse Infection Model [30], which in this way translates the inference problem
to an optimization problem of finding the parameter set that minimizes the error between the corresponding
spreading curves and the available data. We follow this methodology and adapt it to using an error function
that takes the variance of data into account. This step is needed to due the nature of our data and model, as
the number of cities in different regions varies strongly. Otherwise the method would tend to fit regions with
larger populations more, than regions with smaller populations.

More formally, we formulate our parameter inference problem as follows: Let Ny € N be the total number
of time points at which observation were made. We denote t;, for i € [0,..., N7, to be the i'" time point and
the vector (W, )NE, € Zf’* to be the observed number of romanized cities in the m'”* region during the i
time interval. in the N regions at this time, respectively. Then we calculate the likelihood of w,, +, by

1 1 (Wit — O(ti|o, we 0))2)
SRS S G Ci 07 6
NeZIomm ( 2 Crnt, ©

where Cy, ¢, := max{wm,t,, STD(wp,e)} is the maximum between the data and the standard deviation for region
m observed in time. Considering all the data points, we can derive that the negative log-likelihood for observing
the data is given by

L(Wm,ti

0, We,0) =

Nt Ng
TES (Wm.t, _2(tit|07 we0))?. (7)
i=1 m=1 moti



This is the core of our minimisation problem, which we use to find candidate contact networks and spreading
functions. We do not have prior distributions for the parameters to be inferred, but we do know bounds on the
values they can have. By assuming constant prior distribution over accepted values, we obtain the following
constrained minimisation problem

in ¢ 8
,nin (o), (8)

subject to:
Vm#n, 0<Gp, <2, and 0 < Gy <1
Vt>0,0<at) <o

In the particular example considered in this paper, we have four regions of interest, i.e. N = 4. We fit eight
observations from 0 AD and 350 AD, with equidistant sampling of 50 years. Given we do not have a resolution
below the 50 year period, we choose our spreading rate function to be a piece-wise constant function, with seven
equidistant left clopen intervals between [0, 350]. We assume the spreading rate function has a range between
[0,0.1]. We only infer G, as only these terms are needed to solve for the spreading (1). Given G is symmetric
and the spreading rate function is piecewise constant function, in total, we have 17 unknown parameters which
we minimize over in (8). In the context of this work we refer to problem (8) as a minimization problem or a
parameter inference problem interchangeably.

4 Methods

The parameter inference problem (8) is inherently ill-posed, that is, we have multiple parameter candidates
which minimize the negative log-likelihood of observing the data. Hence, we used the fast minimisation method
prescaled Metropolis-adjusted Langevin algorithm (PMALA) with thousands random starts and collected the
local minima. The inferred parameter tuple (G, ) characterises a time evolving network and the spreading
on top of it, which we find eludes to give a simple visual interpretation. Therefore, to visualise what the
landscape around the minima looks like, we projected the data using t-SNE method, with the distance function
which discriminated parameters based on the spreading curves (sol. to (5)) they generated. This then gave an
embedding where proximity between embedded parameter points produced similar trajectories in time. We give
details of these steps below.

Finding Local Minima with PMALA

The minimization problem (8) has multiple local minima. Common optimization methods, like, the stochastic
gradient descent [31], follow the gradient of the landscape. This makes the methods fast, but they tend to get
stuck in a local minima. To avoid this issue, it is recommended to run the algorithm from different starting
points or to change the learning rate during the iterations [32]. Alternatively one can use Bayesian methods,
which are appealing in their ability to capture uncertainty in parameters and avoid overfitting [33]. In a Bayesian
method we define the probability of parameters conditioned on the data, the so-called posterior distribution,
and then sample from this distribution, to find the most likely parameters. This can be done efficiently with a
controlled random walker exploring the parameter space, like the Metropolis-Hastings algorithm. The class of
Metropolis-Hastings algorithms [34], are based on Markov chain properties. A Markov chain is constructed by
defining a conditional density and having a property to converge to the desired distribution. The choice of the
conditional density, that determines the rules of the walker, is crucial for the performance of the algorithm.

The Metropolis-adjusted Langevin algorithm (MALA) replaces the random walker with a walker following
the Langevin diffusion, to make him more efficient [35]. Especially in high-dimensional spaces, the appropriate
step-size can vary a lot in different dimensions. This makes an appropriate choice of the step-size difficult.

The prescaled Metropolis-adjusted Langevin algorithm (PMALA) [36] is a method that was developed for
parameter estimation with parameters rising in different orders of magnitude. The usual step size At in MALA
is replaced by a diagonal matrix, which is computed beforehand. This matrix depends on the average length
of the gradient and the average length of a step in each of the parameter directions 7, which has to be chosen
carefully.

Hence, the PMALA method has two free parameters which need to be tuned: the average length of a step
in each parameter-direction 7 and the number of iterations nparara. We chose the parameter values to be
7 = 0.03 and npprara = 2000. Given there are multiple minina, we chose 5000 random starts in the valid
parameter space and ran the minimisation for 2000 steps.



Projecting into Low Dimensional Space

Each PMALA run gives a parameter, o, which consist of a contact network G and the spreading rate function
«, which together form a time evolving network. Given any two parameters, o1 and o3, it is difficult to measure
the similarity between o1 and o5 using a simple distance functions which captures similartiy in both the contact
networks and the spreading rate function. Hence, we opted to use the distance between the predicted spreading
curves of the parameters as the distance function, that is,

d(o1,02) = / (6(r|01,9) — B(r | 0, #))? dr, (9)

The remaining task is to project the solutions onto the two dimensional-space with respect to the distance
in (5), such that solutions having a similar spreading curve, are also close in the two-dimensional space. For this
purpose, we choose t-Distributed Stochastic Neighbor Embedding (t-SNE) [37,38]. T-SNE preserves the local
structure, by minimizing the Kullback-Leibler divergence between the joint probabilities of the low-dimensional
embedding and the high-dimensional data. It is the projection algorithm with minimal structural information
loss [37]. An important parameter for the projection is the so called perplexity, which describes how to balance
the attention between local and global features of the data. Perplexity needs to be choosen depending on the
structure of the data-points and their amount. If the perplexity is too small, then little variations of the data
dominate the projection. For example, if we project points that are building a circle with a too low perplexity,
then the circle looks twisted. On the other side if the perplexity is too large, then the points look randomly
distributed. In this work, we were interested in the proximity of the best 20 inferred parameters, hence, we
choose a perplexity of 30, to study them.

5 Results

We recall that, based on expert knowledge, we divided the roman cities from our dataset into four regions
(Section 2), such that each represents a geographical region in Northern Tunisia, see Figure 1. Available data
spans the time period from 146 BC until 350 AD. We use the temporal information before 0 AD for initial
conditions (0) and the rest we divide into seven time-frames with equal lengths of 50 years. We assume within
each time-frame, a constant spreading rate, ergo the spreading rate function, «(t), to be piece-wise constant.
Hence, we numerically solved the parameter inference problem (8), for the 17 parameters, which were needed
to fit our adapted Romanization SI model (5), to our data (Figure 1 (c)). To avoid extensive numerical
computations when solving the ODE, we scale the time period from [0, 350] to [0, 3.5]. This scaling only effects
the range of the spreading function «(t).

To find the parameters o = (G, ) which best fit the data in our parameter inference problem we used the
PMALA numerical scheme (4). We ran the algorithm from 5000 different starting parameter configurations, to
explore the parameter space and avoid local minima wells. We iterated the sampler over 2000 steps; we found
this amount to be sufficient, as the average difference between the last two steps of the samplers were of the
order 1073, and did not decrease with increased number of steps. We first investigated the distribution of the
negative log-likelihood of the 5000 parameter candidates given by PMALA, and found that the distribution
had a long tail. We found that approximately 1000 starting points had a negative log-likelihood strictly above
0.08. The remaining 4000 parameters, which yielded a negative log-likelihood below 0.08, had the shape of a
Log-normal distribution (see Figure 2 a). We did not observe multiple modalities in the distribution of the
negative log-likelihood, suggesting the landscape does not have multiple steep wells where the PMALA samplers
would visit for a long period of time.

We wanted to investigate if the parameters found through PMALA came from a flat region or from a single
well, hence, we studied if the parameters produced similar spreading curves. For this, we took the 500 best
parameters with respect to the negative log-likelihood and embedded them using the tSNE projection with
the spreading based distance measure (9) (see Fig.2 b-c). We observed very little visual correlation between a
point’s negative log-likelihood and that of its neighbouring points. This suggests, that the parameters may not
belong to a single minima well. Furthermore, when we overlayed the best 20 parameters, that is, the parameters
yielding the smallest negative log-likelihoods, we observed them to be scattered over the tSNE embedding (see
Figure 2 ¢ green star). Given that the tSNE projection strongly preserves local distances and that we used
a spreading based distance measure, implies that the 20 best parameters mostly induced distinctly different
spreading curves.

By manual inspection of the 20 solutions, see supplementary Figure A, we observe that, according to their
network structure and the shape of their spreading rate functions, the solutions can be divided into 3 main
groups. From these groups we pick one representative solution each and analyze further properties of their
contact networks A, B and C together with their corresponding spreading rate functions. We plot these in the
top two plots of Figure 3. Network edges are colored according to their weights in G, where light colors indicate



small weights and dark red colors high weight. We observe that network patterns and shapes of spreading rate
functions differ greatly between the three solutions. Solution A is characterized by high spreading rates and
low, similarly distributed edge weights in Network A. This means that no specific interregional patterns govern
the spreading and that the dynamics is driven by the high spreading rate. On the contrary, in solutions B and
C, network structure has a bigger effect on the spreading and the changes in alpha become prominent only
in the last time-frame accounting for the abrupt increase of romanized cities in region 1 and 4. Thus, we see
that networks of different structure and distinct spreading rate functions lead to similar solutions wrt. spreading
dynamics. We study this effect in more details by looking at the actual spreading curves. Namely, using the three
networks A, B,C and the corresponding a(t) values, their spreading curves were obtained by solving equation
(1), see the bottom plot of Figure 3. We observe a good fit between the spreading curves and the available data,
as the three solutions were chosen from the best 20 solutions and have the error bounded by 0.058. Furthermore,
we see again that spreading curves with very different shapes, i.e. coming from distinct dynamics, can produce
a good fit to available data.

Each solution (G,a) can be interpreted as a time-evolving network («(0)G,a(50)G,...,«(350)G). This
network contains information on the interregional connectivity and the spreading rate, but not the information
on the romanization flux between regions that is governed by the number of romanized cities. To this end, we
introduce a time-evolving, directed network

Hmm (t) = O‘(t) Sn (t) Gm,n im(t)a (10)

that we will call the Romanization dynamics network. Temporal evolution of the effective current between
regions m and n stands for the amount of romanization influence and can be expressed by

Hy, () == max(Hy n(t) — Hpn(t),0).

In Figure 4 we plot the temporal evolution of H*(¢) for the three selected networks A, B and C. Network
edges are colored according to the value of the effective current H*(¢) and the arrows point in the direction
of positive current. Resulting effective currents differ for networks A, B and C, due to the varieties in their
structural properties and «. But, the main patterns are common in all three networks. Namely, we observe that
in the beginning for all networks there is a high current from Region 1 to Region 3. Additionally, for networks
A and C we see high H* from Region 1 to Region 4. Both observations agree with historical narratives about
the political and economical importance of Region 1. Namely, a city Carthage that belonged to Region 1 was
one of the largest cities of the Roman Empire, that certainly had a major influence on the cities close by. Also,
Carthage was the leading trade center and one of the major breadbaskets of the Empire. As such, it had a strong
influence on other regions of Ancient Tunisia. From 150 AD, the effective current from Region 1 to Region 3
started strongly decaying. Furthermore, as most of the cities in Region 3 got romanized by 200 AD, the current
from Region 3 to both Region 1 and Region 4 increases significantly, reaching its highest values before 350 AD.
The early romanizaion of most cities in Region 2 determines the directionality of the current towards other
regions. Additionally, it has an effect to other regions, e.g. a high current from Region 2 to Region 4 in network
B. Commonalities from the three solutions discussed above, result in several dominant interregional connections
that we will compare to archaeological traces as a method of validation, see Section 6.

6 Validation

One of the major inventions of the Roman Empire were Roman roads. As a crucial part of the Empire infra-
structure, Roman roads were excessively used for the movement of armies and civilians, but also for trading
goods and communications between Roman cities. In particular, Roman roads were important connectors of
Colonias, many of which were influential regional hubs of trade, politics and culture. Even now, Roman roads
are being intensively studied as they are closely connected to modern-day infrastructures and economies [39].
Thus, Roman roads can be considered to be carriers of cultural, political and economical influence.

We will use information about the Roman road network in ancient Tunisia to validate our results. The
most reliable archaeological traces about the temporal evolution of the Roman road network that we found
are collected in the data-set of milestones [26]. Milestones are stone markers placed along Roman roads. Their
inscriptions often indicated the distance to cities or other places, time reference to the road construction (or
repair work) or commemoration to the ruling emperor. The data-set we use consists of 29 milestones for which
we have information about their geographical position and time when they were (most likely) placed, for more
details see [24]. We consider these milestones to be indicators for existence of important roads at a particular
point in time. Specifically, as a mean of validation, we will compare the resemblance of milestones’ position in
space and time with the interregional connections with the highest values of the effective current H*.

In Figure 5, we plot the Roman road network, milestones and romanized cities aggregated in three time-frames
0 — 150 AD, 150 — 250 AD and 250 — 350 AD. Milestones are marked as black squares and cities are colored



according to the region they belong to, as described in Section 2, where large circles indicate Colonias and
small circles stand for cities of other roman status. Additionally, we plot dominant interregional connections as
directed edges with the highest values of H*. We distinguish between interregional connections that all three
networks have in common (marked with full arrows) and the ones that appear only some networks (marked
with dashed arrows).

In the early period from 0 — 150 AD we observe a strong connection from region 1 in the east to a less
romanized region 3 in the south. As discussed above, already at this time region 1 had many colonias many of
which were important regional hubs. Similarly strong connections occur from region 1 to the central region 4,
that we see in solution A. Another region with many colonias is the region 2 in the west for which our model infers
a high effective current to the central region 4 for network B. Several milestones in the north-west part could
explain the connection between the two regions. Whether the central region 4 was influenced in the beginning
more from the east (region 1) or the west (region 2), should be further studied by archaeologist. In the next
period from 150 — 250 AD, we observe strong romanization of the region 3, expressed by the appearance of many
Colonias and the first milestones in this region. This could explain the high effective current we obtain from
region 3 to region 1. In the central region 4 we find many new milestones. However, the main source of influence
on region 4 in this period cannot be clearly identified, as it could be any of the other three regions. Finally,
in the last step, our results show strong connections from region 3 to regions 1 and 4. Possible explanation is
that by that time region 3 consisted of many important colonias, whereas in regions 1 and 4 from 250 AD we
see many newly romanized cities and many milestones, indicating increased romanization of that area. More
detailed evaluation of obtained results is needed to derive conclusions in archaeological context, which exceeds
the focus of this work.

7 Discussion

In this paper we inferred time-evolving networks from historical data. A problem when working with historical
data is that, the data is scarce and has high uncertainty. Nevertheless, historical processes range over long
time-scales and are governed by complex mechanisms, requiring a model that is able to capture such spatial
and temporal attributes of the process.

To study the Romanization process in northern Tunisia, we introduced a mesoscale SI model with an
underlying contact network and a temporal spreading rate. Then, using our expert curated Romanization data,
we were able to infer several contact networks and the Romanization spreading rates during the period of 0-350
AD. In particular, we used the PMALA algorithm to solve the parameter inference problem, that is to find
contact networks and spreading rate functions which reproduce the data. When we studied the best 20 solutions,
we observed that the solutions could be divided into three main groups according to their network structure and
the shape of their spreading rate functions. From these groups we picked one representative solution each and
observed that optimal solutions consist of very different network structures and spreading rate functions, and
furthermore, that these diverse solutions produce very similar spreading patterns. Despite the limited amount of
historical data, we were able to obtain partial information on the possible important interregional connections.
We cross-validated these connections with the available archaeological traces. Our insights can now be further
investigated and guide historical studies on the processes of cultural change during the ancient times.

Ideally, more data would lead to stronger inference and insights, however, typical information in historical
research is hard to obtain and arduous. Hence, our approach is suitable and appropriate for the context of histo-
rical data, due to the fact, that despite the data being scarce, we still obtained plausible historical interregional
connections. We believe that this way of approaching the study of historical questions can be easily generalized
and applied to different historical examples.

One bottleneck of our approach is that the best found parameters had to be compared manually. Naturally,
this is only feasible for small number of best parameters, like 20 in our case. To analyse larger solution sets,
we would need a meaningful similarity measure which would take into account differences in both the contact
network and the spreading parameters. With the right distance measure, we could cluster the parameter set to
study only the distinct parameter configurations. This will be the focus of future research.
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Visualization of available data and division of cities into regions. (a) Map of Roman
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* denote cities with at least this status. (Map was made by Fleur Schweigart) (b) Geographical
position of Roman cities and their division into four regions. Color of a city indicates a region in
belongs to. (c) Observed number of romanized cities in the period 0 — 350 AD for each region
corresponding to the division from Fig. (b). Sources: Natural Earth [40]; Ancient World Mapping
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Distribution of the inferred parameters. (a) Histogram of the inferred parameters with
respect to the negative log-likelihood. Shaded green shows the best 20 inferred parameters. (b)
Zoomed axes of the histogram showing only the density of the best 20 inferred parameters.
(¢) tSNE embedding of the top 500 inferred parameters, with the negative log-likelihood colour
overlay. The best 20 inferred parameters are marked with green stars. . . . .. .. ... .. ...
Representative solutions of the inference problem. Top plot: the contact networks A, B
and C. Middle plot: corresponding spreading rate functions. Bottom plot: the resulting spreading
curves w.r.t. the available data-points. Network edges are colored according to their weights,
s.t. light colors indicate small weights and dark red colors stand for high edge weights. Sources:
Ancient World Mapping Center (AWMC) [41]; iDAIgeoserver [26]. Licensed under CC BY-NC
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Temporal change of the effective current H*(t). Network edges are colored according to
the value of the effective current H*(¢) and the arrows point in the direction of positive current.
Nodes are colored according to the original region color distribution. Sources: Ancient World
Mapping Center (AWMC) [41]; iDAILgeoserver [26]. Licensed under CC BY-NC 3.0. and Open
Data Licence. . . . . . . . . L e
Validation data and dominant connections of H*. Milestones are marked with black squares
and cities with circles (large circles stand for colonias, small circles for municipia and civitates).
Cities are colored according to the region they belongs to, were transparent colors indicate that
a city has not yet been romanized at that time. Full arrows show the dominant connections of
effective current H* that all three solutions have in common. Dashed arrows indicate dominant
connections that only some of the solutions A, B, C have.mSources: Ancient World Mapping

Center (AWMC) [41]; iDAT.geoserver [26]. Licensed under CC BY-NC 3.0. and Open Data Licence. 17
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