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Abstract: In this paper, two classes of second order accurate high resolution 

schemes are presented on regular triangular meshes for initial value problem of two 

dimensional conservation laws. The first class are called Runge-Kutta-FVM MmB 

(locally Maximum- minimum Bounds preserving) schemes, which are first discretized 

by (FVM) finite volume method in space direction and modifying numerical fluxes, 

and then by Runge-Kutta methods in time direction; The second class, constructed 

by Taylor expansion in time, and then by FVM methods and making modifications 

to fluxes, are called Taylor- FVM MmB schemes. MmB properties of both schemes 

are proved for 2-D scalar conservation law. Numerical results are given for Riemann 

problems of 2-D scalar conservation law and 2-D gas dynamics systems and some 

comparisons are made between the two classes of the schemes. 
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1. In t roduc t ion 

It is well known that many efficient difference schemes have been produced to 

solve one dimensional conservation laws, especially, TVD schemes [1][2][3][4][5][6] [7], 

which are first presented by Harten [1]; MUSCL schemes by van Leer [8][9], ENO 

schemes [10][11]. For 2-D conservation laws, splitting schemes by 1-D TVD schemes 

have been used to solve practical problems [12][13][14]. Unfortunately, from [15], 

we know that any 2-D conservative TVD scheme is at most first order accurate, 

although numerical results have shown that the splitting methods using second order 

accurate 1-D TVD schemes seem to work quite well for practical problems in fluid 

dynamics systems. Henece it is neccesery to present a new concept beyond TVD in 

two dimensions. 

In [16] [17], nonsplitting upwind difference schemes were presented for two dimen

sional Euler equations. In [18] [19], a class of second order accurate high resolution 

and nonoscillatory schemes, which were called local Maximum and minimum Bounds 

preserving (MmB) schemes, were derived for 1-D and 2-D. From the schemes we can 

see that MmB and TVD schemes of the form [18][19] are almost identical in 1-D, 

but there are second order accurate high resolution 2-D MmB schemes for 2-D scalar 

conservation law. Numerical results were obtained by using unsplitting second order 

accurate MmB schemes for Riemann problems of 2-D scalar conservation law [20], 

2 x 2 nonlinear hyperbolic systems in conservation laws [21] and 2-D gas dynamics 

systems [22] [23]. 

All the papers mentioned above for 2-D conservation laws were considered on 

rectangular meshes. For triangular meshes, finite volume methods on general tri

angular meshes were presented by Jameson in [24] [25]. In his papers, the schemes 

were modified by using pressure for 2-D Euler equations from the experiences of 

numerical computations, and several first order accurate upwind schemes called Go-

dunov schemes were listed on triangular meshes [26] [27]. A class of second order 

accurate MmB schemes were presented on regular triangular meshes for 2-D scalar 
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conservation law in [28]. 

In the paper, using the experiences of constructing MmB schemes on rectangular 

meshes [18][19], we present two classes of second order accurate high resolution 

schemes on regular triangular meshes for 2-D scalar conservation law in section 2 

and 3, respectively. The first class of the schemes called Runge-Kutta -FVM MmB 

schemes are derived, and the second class of the schemes which are called Taylor-

FVM MmB schemes. In section 4 we generalize the two classes of the schemes to 

2-D sysy terns in conservation laws; In the last section numerical results are given for 

Riemann problems in three pieces of 2-D scalar conservation law and gas dynamics 

systems and in four pieces for gas dynamics systems. 

Before the detail discriptions to the methods, it is necessary to recall the prop

erties of initial value problem for 2-D scalar conservation law from [18]. 

Consider the initial value problem for 2-D scalar conservation law, 

!t+H+!=° (u) 
{u{x,y,t)\t=o = uo(x,y) 

where u0(x,y) is a piecewise smooth function. 

From [18], let w(p) be the neiborhood of point p in the plane t = t0. By the 

characteristic relation of (1.1), consider the values of the solution u in w(p) depend 

on the values of the interval I(w(p)), then the following inequalities are satisfied 

infu(Q) < u{Q') < supu{Q) 

Qel(w(P)) Q'ew(P') Qel(w(P)) 

where p ' is a point in the plane t = t\. (1.2) are basic properties of (1.1). 

2. Runge-Kutta-FVM MmB schemes for 2-D scalar conservation law 
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(2.1) 

Consider the initial value problem for 2-D scalar conservation law, 

J ut + f(u)x + g(u)y = 0, 

\u(x,y,t)\t=Q = u0(x,y) 

where u0(x, y) is a piecewise smooth function. 

First, according to Jameson [24], we divid R2 into regular triangular meshes as 

follows, 

Fig. 2.1 

We choosö a set of local meshes for neighborhood of point (x;, y,), 

Fig. 2.2 
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Definition 2.1, A semidiscrete scheme, 

is called a semidiscrete MmB scheme if 

a < 0 , Ci:>0,, j = l,...,6 

and 

3 = 1 

From the theory of ordinary differential systems, if 

% - « 

where A is a M-matrix[33], then the systems are contractive. Definition 2.1 gives us 

a rule how to construct a semidiscrete scheme for 2-D conservation law so that we 

can get full discrete MmB schemes in this way. 

Definition 2.2, A scheme 

„,n+l T „,n 

is called a MmB scheme if 

min(ui,uh, ...,ut-6) < u"+1 < max{ui,uh, ...,uie) (2.4) 

Condition (2.4) is equivalent to the form 

u^1 = Ciu
n

i^YJCi}uij, d>0, Ci} > 0 (2.5) 

and 

Ci + E C W (2.6) 



2.1 semidiscrete MmB schemes 

Integrate (2.1) on C,-, due to Green's formula, we have, 

J J utds + J{fv* + gvy)dl = Q (2.7) 

where / = g^gi^gjjgi^, v = (i/x, vv) is a unit out normal vector. 

Fig. 2.3 

From (2.7), a semidiscrete scheme is derived, 

du- 6 

MCi)-j^ + E(/K)l^^+ 1 K + sK)l<Mv+1 K] = o (2.8) 

where \gijgij+1\ is the distance of points </,-, and <7tJ+1, and 

Choose• /(«/,-) to rj(/(uj) + / (u t j ) ) and rewrite the formula. A second order 

accurate semidiscrete scheme becomes 

Ar(Ci)lJr + 5SK/K) - / K * K + (*K) -«K+.JKJIfti^+il = ° (2-9) 
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When scheme (2.9) is exphcitly discretized in time direction, the scheme obtained 

is simple but not stable in L2 and produces oscillation near discontinuities. In order 

to get stable and nonoscillatory scheme, here we modify scheme (2.9) so that the 

modified scheme is MmB. 

Using the experiences of constructing MmB schemes on rectangular meshes 

[18][19], we give the following modified semidiscrete schemes, 

du; 
^ = -5 , - E [atJ+t{ui - ui]+3) + iatQtfa - «.-) - l

2
atM^u< ~ u w ) 

+a:.{Uij - Ui) - | a -g^ . (u i . - m) + \aJ-.+3Q-+3{ui - uty+3)] 

(2.10) 

where 

Si = \9ij9iH1 |/Ar(C<), Iflt^ii+i I = K Vj, ;' = 1,..., 6 

a± = \{a± |a|], Q% = Q(rJ) , Q ^ = g ( r £ w ) 

*' a^K-««) ,J a^K-u») 

_ j [(4 - /<K + K - PO^JI/K- - «*)> % 7̂  «i 

[( /«•- 4 + 3 ) ̂ + 3 + (9i ~ 9i3+3 ) ̂ + 3 ] / («i ~ «i i + 3 ) > %+3 # «.' 

Rewrite scheme (2.10), we have, 

& = -*£ [(l + ̂ /rJ-lQ^)«^^-^) 
J = 1 (2.11) 

+(1 - 1 ^ + iQ.V'v.K+.K- - «*)] 
By the definition to semidiscrete MmB scheme, we know that: if 

f(i + ^ / ^ - | ^ + 3 K + 3 > o 5 
\ ( l - ! Q 7 + i Q r + 3 / r r + 3 ) a - < 0 

S+3 = 



scheme (2.10) is MmB. 

Theorem 2.1, Let Q(r) > 0 and Q(r) = 0,r < 0, then scheme (2.10) is a 

semidiscrete MmB scheme, if 

Q(r) < 2 

The proof of Theorem 2.1 is almost the same as the proof of the following The

orem 2.2. 

2.2 Euler forward MmB schemes 

For the sake of simplicity, here we mention that the condition (2.4) is also equiv

alent to the following form 

< + 1 = < - E ^ « - ^ . ) , C, i>0, £ c i , - < l (2.12) 
3=1 3=1 

Here we use the Euler forward method to discretize equations (2.10), 

tt?+1=ti?- A)-E[oJ+3(u,--u,v+3) + ar(U t V-u {) 
3=1 

+ I 4 Q J K - «••) - Wi+tQti+t(»i - «*+.) (2-13) 

Theorem 2.2, Let Q(r) = 0, if r < 0 and Q(r) > 0, then if 

Q(r)/r<2., Q(r)<2 

under the condition max |a,-|At- < -m, scheme (2.13) is a full discrete MmB scheme. 

Proof: Rewrite (2.13) in the following form, 

«T1 = u,- - A.- £ [(1 + \QtJrf.- iQt^afJm - ui]+3) 
3=1 

+(1 - \QJ. + iQTiJr-^a-^ - m) 
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By condition (2.12), we let 

A.-(l + |Q;/rJ-iO;+,)aJ+3>0 
- A , ( l - i g r + i Q - + 3 / r r + 3 ) a - > 0 

and 

A*D(i + \QtM - ^ + 3 K + 3 - (i - ^ + \073Jr-^ < i 

then by signals of af and aj., we have 

i + \QtMs ~ W» > o 

and 
1 + \Qf/rf - \Qf+3 < ^ -

' *i+3 

1 - i<£~ + i&W'Vn ^ 6Ä^i 

Under the assumption Q(r) > 0, Q(r)= 0, when r < 0 and max lajJA,- < TW, scheme 

(2.13) is MmB if the inequalities are satisfied, 

< $ / r + < 2 , Q ^ + , / r ^ < 2 

and 

<3£+3 < 2 g - < 2 

2.3 Runge-Kutta MmB schemes 

We know that schemes (2.13) obtained by Euler forward method are first order 

accurate in time direction. To get high order accurate schemes in time, we use 

Runge-Kutta methods to discretize (2.10). Write (2.10) in the following form. 

It = R{u)i 
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then Runge-Kutta MmB schemes are constructed 

i40) = u? 

uV = ui0) - a.AtRP 

„(•»-!) = u(0) _ am_lAtBim-2) 

un+l _ u(m) 

(2.14) 

where 
i 

r= l r= l 

From the structure of scheme (2.14), the MmB properties can be proved stage by 

stage. 

3. Taylor -FVM M m B schemes for 2-D scalar conservation law. 

In this section, first using Taylor expansion, we discretize (2.1) in time direction; 

and then derive full discrete schemes by FVM. 

By Taylor expansion, we get the approximate equation which is second order 

accurate in time direction, 

un+i = un + Atu? + ±At2ul 
* 2 (3.1) 

= un - At(fx + gy) + \At2[{fu{fx + gy))x + (gu(fx + gy))y] 

Integrate (3.1) oil C,- (in section 2.1), we have 

J J un+1ds = J j unds - At j{fv* + gv")dl + l-At2 Ji,fuu
x + g«v»)U* + 9y)dl 

(3.2) 

In (3.2), take Ui as the integral average u on C,-, that is 

Ui=Äkr)JLuds (3-3) 
To discretize f{(fuv

x + 9uVy)(fx +gy)dl, now make transformation of the coordi

nates, 
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Fig. 3.1 

then 

and 

where 

x' = vxx + vyy 

y' = uxy — vyx 

(3.2) becomes 

u?+1 = uf-

\gy = gx>vy +gv,u
x 

fx + gy = f'x> + g'y> 

f' = fvx + gvy, g' = gvx-fvy 

•j^^fi^+ai^lg^gi^l 

According to (3.3), let 

An = {fu^+gu^l)i, 

(/««fj + SW,)k , 

(/JO* = i c ^ - //) 
if u^ = ut-

(3.4) 
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then we get a second order accurate scheme which is like Lax-Wendroif scheme . 

By constructing MmB schemes on rectangular meshes [19], modified schemes of 

(3.5) are derived in the following form, 

3 

«?+ 1 = u? S i E-[4j+3(ui ~ «.-,-+3) + %(ui, ~ ui)l 
j—i 

-fa E [oJ(l - a+AJQ+fo. - 1*) - « J ( l - at.»)Qti+a(ui - «i>+s) 

- a " ( l + a trA)g-(u t i - «,•) + ar+3{l + %+3^)Qij+3{ui - ui]+3)} 
(3.6) 

where Si, Qf. and Qf+3 are chosen as in section 2, and A =. n p . 

Theorem 3.1, Let Q(r) > 0, Q(r) = 0 (r < 0), if 

and 

under the condition maxA|a,-.| < TW, scheme (3.6) is a MmB scheme. 

Proof: Rewrite (3.6) in the form, 

< + 1 = u? - 5,- £ [(1 + | ( 1 - 4 A ) £ + / r J - 1(1 - a++3\)QfJaf+3(Ui - uij+3) 
j=i 

+(1 - 1(1 + a-X)Q- + i ( l + a-+3X)Q-Jr-+3)ar+3(ui3 - «,-)] 
(3.7) 

From (2.12), scheme (3.7) is MmB if 

(1 + 1(1 - af\)Qt,lrt3 - | ( 1 - 4 + 3 A ) Q j + 3 ) 4 + 3 > 0 

(1 - 1(1 + aj.\)Q- + | (1 + a-+3X)Q~+3/r-Ja-+3 < 0 

and 
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Si £ [(1 + 1(1 - a+XWprt - | ( 1 - af+3X)Q++3)ai+3 
3=1 

- ( 1 - 1(1 + a-X)Q~ + | (1 + «-+ 3A)Q-+ 3 / r r+ 3 )a-+J < 1 . 

then due to the signals of a++3 and a^.,.we have 

1 + 1(1 - < A ) Q t / r + - 1(1 - a++3A)Q++3 > 0 

1 - | ( 1 + a~X)Q- + | ( 1 + a-+3X)Q-Jrr+3 > 0 

and 
1 + 1(1 - afX)Qf/rf - 1(1 - 4i+3X)Qt}+3 < ^ T " 

1 - 1(1 + ar\)Q- + 1(1 + a- + 3 A)g- + 3 / r - + 3 < ^ -

Under the assumption Q(r) > 0, Q(r) = 0, when r < 0 and max |a,- |A < T^, 

scheme (3.6) is MmB sufficiently, 

Qtjrf < 2/(1-af\), Q73Jrr+3<2/(l + a-+z\) 

and 

g r < 2/(1 + «r A), g t + 3 < 2/(1 - at+3A) 

4. Generalizations of the two classes of the schemes to systems 

Consider the initial value problem for 2-D systems in conservation laws, 

(Ut + F(U)x + G(U)y = 0 

[U(x,y,t)\i=0 = UQ(x,y) 

where Uo(x,y) is a piecewise smooth vector function and U = (ui, ...,un)
T ,F(U) = 

(fi(U),...,fn(U))T and G(U) = (9l(U), ..,gn(U)f. 

Here the genarahzed schemes of (2.10), (2.13) and (3.6) to (2.14) are in the 

following forms, 
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(i) semidiscrete schemes 

lk = Si E [ 4 + 3 ( ^ - ^ + 3 ) + i i ? t ; (A tg t -Arg - ) j R - i ( ^ U{) 
J-1 (4.2) 

(ii) full discrete schemes 

url = Ui- Si ZiAfJUi - UiHa) + R ( A £ g + - ATQ^Rr^Ut, - Ut) 
3=1 

(4.3) 

and 

Ur1 = UT - Si E [A+JUi - Uu+3) + Aj.(Ui3 - Ui) 

+iRij{Ati{I ~ AJA)C?+ - A-(/ + A-\)Q-)Rj(Ui} - Ui) 

- R + 3 ( A U 7 - %M+3 - ^J1 + ^„WjR&W - ui]+3)} 

(4-4) 

where 

Q± = diag(Qi*,...,Q"±), Qjf = <P(r,f), OJ£=<J(r£;) 

r. 

r, 

( i f e 1 ^ - </,))* r* (RJiUij-Ui))" 

k = l,..,n 

A± = i?A±i?-1, A± = |(A±|A|) 

A;- = RijAijRij Aij+3 = it,j+3A,J+3i?ji+3 

and as Roe[29], we let 

(f (ui,) - f W ) K + (G(^) - G(Ui))v?. = A t.(^. - Ui) 

and 

(F(Ui) - F(Ui]+3))uf]+3 + (G(Ui) - G(Uij+3))v?]+3 = Ai]+3(Ui - Uij+3) 
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5. Numerica l Expe r imen t s 

In this section, we give numerical solutions of lliernann problems in three pieces 

for scalar conservation law and in three and four pieces 2-D gas dynamics systems 

and choose the limiter in the both of the schemes as Roe's Superbee[3]: 

Q(r) = max(0 ,min(2, r) ,min(\ ,2r)) 

5.1 Riemann problem in three pieces for 2-D scalar conservation law. 

Consider the Riemann problem in three pieces for the following conservation law, 

9u , du2 i duz _ n 

u{x,y,t)\t=Q= i 
(5.1) 

Ml, X > 0 , y > — y/3x 

u2, x < 0,2/ > \/3x 

tf3, elsewhere 

The theoretical solutions of (5.1) have been studied in [30], here we give the numer

ical solutions for four cases by the two classes of MmB schemes. 

In the following results of this subsection, we show the contour lines of the 

numerical solutions if no special additional words in the following figures. 

(1) three shock waves — non rarefaction wave. 

15 

10 

- 3 

10 12 14 16 18 

Fig. 5.1-a Runge Kutta-FVM MmB Scheme 

mesh points 201 x 201, A = 0.2, time steps n=350 
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0 2 4 6 8 10 12 14 16 18 

Fig. 5.1-b Taylor-FVM MmB Scheme 

mesh points 201 x 201, A = 0.2, time steps n=350 

0 . 6 | i i l l - l 1 1 1 1  

0.5 -
4 

0 .4 -

0 . 3 -

0 .2 -

0 . 1 -
o 

0 I 1 1 1 1 1 ' 1 ' —' 
0 2 4 6 8 10 12 14 16 18 20 

Fig. 5.1-c Runge Kutta-FVM MmB scheme, Curve at y=16 

mesh points 201 x 201, A = 0.2, time steps n=350 
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Fig. 5.1-d Taylor-FVM MmB Schemes, Curve at y=16 

mesh points 201 x 201, A = 0.2, time steps n=350 

In this case, the initial data are ul=0.05, u2=0.32 and u3=0.58, From Fig. 5.1-c 

and 5.1-d, we may know that both of the schemes are nonoscillatory and have two 

points in the shock region. 

(2) two shock waves and one rarefaction wave 

2 4 6 i 10 12 14 16 18 

Fig. 5.2-a Runge Kutta-FVM MmB Scheme 

mesh points 201 x 201, A = 0.2, time steps n=350 
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12 14 16 18 

Fig. 5.2-b Taylor-FVM MmB Scheme 

mesh points 201 x 201, A = 0.2, time steps n=350 

Choose ul=0.32, u2=0.58, u3=0.05, 

(3) one shock wave and two rarefaction waves 

10 

0 2 4 6 8 10 12 14 16 18 

Fig. 5.3-a Runge Kutta-FVM MmB Scheme 

mesh points 201 x 201, A = 0.2, time steps n=350 
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Fig. 5.3-b Taylor-FVM MmB Scheme 

meah points 201 x 201, A = 0.2, time steps n=350 

ul=0.32, u2=0.05, u3=0.58. 

(4) three rarefaction waves— non shock wave. 

10 

5 

2 4 6 8 10 12 14 16 18 

Fig. 5.4 Taylor-FVM MmB Scheme 

mesh points 201 x 201, A = 0.2, time steps n=350 
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Here ul=0.58, u2=0.05, u3=0.32. 

From Fig. 5.2 and 5.3, for slope shock, Runge Kutta-FVM MmB scheme is 

sharper than Taylor-FVM MmB scheme and for rarefaction wave Taylor-FVM MmB 

scheme is better than Runge kutta-FVM MmB scheme. 

5.2 iliemann problems in three pieces for 2-D gas dynamics systems. 

Consider the system of adiabatic flow 

' Pt + {pu)x + (pv)y = 0 

(pu)t + (pu2 + p)x + (puv)y = 0 

(pv)t + {puv)x + (pv2 + p)y = 0 

( (p(e + a i ^ ) ) f + (pu(h + £^-))x + (pv(h + ^ ^ ) ) y = 0 

(5.2) 

P r . P 
e = - —-, h = e + -

( 7 - i k P 

where p, (u,v) and p denote density, velocity and pressure, respectively. In [31], 

Solutions of Riemann problems in four pieces have studied by using characteristic 

method. From the paper, we know that the characteristics in direction (p,, v) called 

0 direction are written to the form, 

Ao = u$, flow characteristic 

A± = ug ± c, wave characteristics 

where Ug = p,u + vv is a velocity in 0 direction and c is sound speed, c = y^p/p-

The Riemann data in three pieces are discribed as follows: 

(p,p,u,v)\t=:o = STi, i = 1,2,3 (5.3) 

where ST} (i=l,2,3) are constant states. See Fig. 5.5 
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Fig. 5.5 Distribution of Riemann Initial Data 

From [31], by Rankine-Hugoniot condition and under the assumption that each 

jump in initial data outside of the origin projects exactly one planar wave of süp 

planes, so the condition of contact discontinuity (J) along direction (/x, v) is, 

•"ji.l T uß,1 

Ui/,1 = UUi2 

Pi ^ P2 

Pi =P2 

see Fig. 5.6 

Fig. 5.6 
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Due to the signals of Curl(u,v) = vx — uy, we divid contact discontinuity into 

two classes, which are defined by Zhang [23]. 

J + , if Curl(u,v) = +00; J~, if Curl(u, v) — — 00 

Known the structure of wave from initial data, we show the following two confi-

grations by numerical results. 

(a) Curl(u,v)=-oo 

Initial data: 

Px = 0.5, px = 2.0, Ui = \ /3/2 , vx = -1 .0 

/?2 = 1.0, p2 = 2.0, u2 = \ /3/2 , ua = 1.0 

^3 = 1.5, • p3 = 2.0, u3 = - V 3 / 2 , u3 = 0.0 

15 

10 

10 12 14 16 

Fig.5.7-a Runge Kutta - FVM MmB Schemes Density Contour Lines 

mesh points 101 x 101, A = 0.1, time steps n=150 
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0 2 4 6 8 10 12 14 16 IS 

Fig.5.7-b Taylor - FVM MmB Schemes Density Contour Lines 

mesh points 101 x 101, A = 0.1, time steps n=150 

and 

8 10 12 14 16 18 

Fig.5.7-c Runge Kutta - FVM MmB Schemes Pressure Contour Lines 

mesh points 101 x 101, A = 0.1, time steps n=150 
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I I 1 I I I 1 1 1 —J 0 

0 2 4 6 8 10 12 14 16 18 

Fig.5.7-d Taylor - FVM MmB Schemes Pressure Contour Lines 

mesh points 101 x 101, A = 0.1, time steps n=150 

I I I I I I I I I L. 

0 2 4 6 i 10 12 14 16 12 

Fig. 5.7-a' Runge Kutta-FVM MmB Scheme Density contour lines 

mesh points 201 x 201, A = 0.1, time steps n=250 
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15 

10 12 14 16 18 

Fig. 5.7-b' Taylor-FVM MmB Scheme Density contour lines 

mesh points 201 x 201, A = 0.1, time steps n=250 

j i i i_ j i_ 

15 

10 12 14 16 18 

Fig. 5.7-c' Runge Kutta-FVM MmB Scheme Pressure contour lines 

mesh points 201 x 201, A = 0.1, time steps n=250 
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15 

10 12 M 16 18 

Fig. 5.7-d' Taylor-FVM MmB Scheme Pressure contour lines 

mesh points 201 x 201, A = 0.1, time steps n=250 

• - 1 1 

1.4 • • -

1.2 -

1 0 -

O.S • -

o.s 

I 1 

4 

" 

I 1 f i l l 1 

10 12 14 16 18 20 

Fig. 5.7-e Runge Kutta-FVM MmB Scheme Curve Density at y=16 

mesh points 201 x 201, A = 0.1, time steps n=250 
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Fig. 5.7-f Taylor-FVM MmB Scheme Curve Density at y=16 

mesh points 201 x 201, A = 0.1, time steps n=250 

In Fig. 5.7-e and 5.7-f, we can see that there are three or four points and 

nonoscillations in the region of contact discontinuity; In Fig. 5.7^a and 5.7-b, there 

is a spiral in the psuado-subsonic region defined in [31] and from the figures of 

contour lines, the numerical solution by Taylor-FVM MmB scheme is better than 

the solution by ltunge Kutta-FVM MmB scheme. 

(b) Curl(u,v)=+oo 

Initial data, 

Pi = 0.5, Pv=2.0, 

p2 = 1.0, p2 = 2.0, 

p3 = 1.5, p3 = 2.0, 

ux = —v/3/2, vi = 1.0 

u-i = - \ / 3 / 2 , v2 = -1 .0 

u3 = \ /3/2, v3 = 0.0 
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Fig. 5.8-a Taylor-FVM MmB Scheme Density contour lines 

mesh points 201 x 201, A = 0.1 and time steps n=250 

0 2 4 6 8 10 12 14 16 18 

Fig. 5.8-b Taylor-FVM MmB Scheme Pressure contour lines 

mesh points 201 x 201, X = 0.1 and time steps n=250 
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From the above figures in this subsection, we can see that the direction of the 

rotation of the spiral depends on the signal of Curl(u,v). Also see [23]. 

5.3 Riemann problems in four pieces for 2-D gas dynamics systems. 

Here two cases of the numerical lliemann solutions in four pieces for only con

taining contact discontinuities for (5.2) are listed by Taylor-FVM MmB scheme. 

The distribution of initial data is discribcd as, 

® 0> 

© ® 

Fig. 5.9 Distribution of initial data 

(i) counter-clockwise 

Initial data, 

Pi = 2.5, 

Pi = 1.5, 

P3 = 0.5, 

pA = 1.5, 

Pi = 2.0, 

Pi = 2.0, 

Pa = 2.0, 

p4 = 2.0, 

ux = 1.0, 

u2 = 1.0, 

u3 = -1 .0 , 

U4 = —1.0, 

ui = -1 .0 

v2 = 1.0 

v3 = 1.0 

Vi = -1 .0 
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•i 3 

Fig. 5.10-a Density contour lines 

mesh points 201 x 201, A = 0.1 and time steps n=250 

8 10 12 14 IS 18 

H 15 

H 5 

Fig. 5.10-b Pressure contour lines 

mesh points 201 x 201, A = 0.1 and time steps n=250 
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(ii) clockwise 

Initial data, 

px = 2.5, 

Pi = 1.5, 

p3 = 0.5, 

PA = 1-5, 

Pi = 1.0, 

p2 = 1.0, 

P3 = 1.0, 

p4 = 1.0, 

ti! = - 1 . 0 , 

u2 = -1 .0 , 

w3 = 1.0, 

U4 = 1.0, 

U! = - 1 . 0 

v2 = 1.0 

u3 = 1.0 

u4 = -1 .0 

10 

- 5 

6 10 12 14 16 IB 

Fig. 5.11-a Density contour lines 

mesh points 201 x 201, A = 0.1 and time steps n=200 
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0 2 4 6 8 10 12 14 16 18 

Fig. 5.11-b Pressure contour lines 

mesh points 201 x 201, A = 0.1 and time steps n=200 

In the paper, we give two classes of explicit MmB schemes on regular triangular 

meshes for 2-D conservation laws, Numerical results show the high resolution and 

nonoscillation. In [32] we will present implicit second order accurate MmB schemes 

on general triangular meshes. 
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