
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF BORNDÖRFER1 UWE SCHELTEN2

THOMAS SCHLECHTE1 STEFFENWEIDER1

A Column Generation Approach to
Airline Crew Scheduling

1Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, 14195 Berlin, Ger-

many; Email:{borndoerfer, schlechte, weider}@zib.de
2Lufthansa Systems Berlin, Fritschestraße. 27-28, 10585 Berlin, Germany;

Email: uwe.schelten@lhsystems.com

Supported by Lufthansa Systems Berlin

ZIB-Report 05-37 (August 2005)



A Column Generation Approach to Airline Crew

Scheduling ‡

Ralf Borndörfer Uwe Schelten Thomas Schlechte

Steffen Weider

Abstract

The airline crew scheduling problem deals with the construction of
crew rotations in order to cover the flights of a given schedule at min-
imum cost. The problem involves complex rules for the legality and
costs of individual pairings and base constraints for the availability of
crews at home bases. A typical instance considers a planning horizon
of one month and several thousand flights. We propose a column gen-
eration approach for solving airline crew scheduling problems that is
based on a set partitioning model. We discuss algorithmic aspects such
as the use of bundle techniques for the fast, approximate solution of
linear programs, a pairing generator that combines Lagrangean short-
est path and callback techniques, and a novel “rapid branching” IP
heuristic. Computational results for a number of industrial instances
are reported. Our approach has been implemented within the com-
mercial crew scheduling system NetLine/Crew of Lufthansa Systems
Berlin GmbH.

1 The Airline Crew Scheduling Problem

The Airline Crew Scheduling Problem (CSP) plays a prominent role in the
operations research literature not only because of its economic significance,
but also because of its influence on the development of important math-
ematical techniques, among them branch-and-cut [7], branch-and-price [1],
shortest path algorithms [4], stabilization [5], aggregation [10], and heuristics
[11], see also the book of Yu [12] for a general overview.

The CSP can be described in terms of a pairing digraph N = (V,A).
Its nodes V are called tasks. They can be subdivided into legs L ⊆ V that
model flights and have to be assigned to crews, supplementary tasks that
model crew activities such as check-in and check-out, deadheading (flying as
a passenger), and ground transports, and artificial tasks, among them two
tasks s and t that model the beginning and the end of a pairing. The arcs

‡Supported by Lufthansa Systems Berlin.

1



A are called links. They connect tasks that can be performed consecutively
by a single crew. A digraph as just described is known as a leg-on-node
network; we assume that it is acyclic.

Associated with N is a set R of pairing resources (flight duty time, land-
ings, etc.), a set K of pairing types, and a set B of base resources (no of
crews, production days, etc.). The links are labeled with costs c ∈ QA,
and pairing and base resource consumptions w ∈ QA×R and d ∈ QA×B,
respectively (node costs and resource consumptions can be adding to adja-
cent arcs). There are pairing resource limits uk ∈ QR for each pairing type
k ∈ K, and base resource limits ℓ ∈ QB .

A path p in N has cost cp :=
∑

a∈p ca and consumes pairing and base
resources wp :=

∑
a∈p wa and dp :=

∑
a∈p da, respectively. A path p is a

pairing of pairing type k if wp ≤ uk. We assume w.l.o.g. (by introducing
pairing type resources) that each pairing is of exactly one type. A cover is
a set of pairings that contains each leg exactly once; a cover C is a schedule

if d(C) :=
∑

p∈C dp ≤ ℓ, its cost is c(C) :=
∑

p∈C cp. The CSP is to find a
schedule of minimum cost.

Denoting by P the set of all pairings and introducing decision variables xp

for each pairing, and slack variables sb and costs cb for each base resource,
the CSP can be stated as

(CSP) min
∑

p∈P

cpxp +
∑

b∈B

cbsb

∑

p∋v

xp = 1 ∀ v ∈ L (1a)

∑

p∈P

dbpxp − sb ≤ ℓb ∀ b ∈ B (1b)

0 ≤ xp ≤ 1 ∀ p ∈ P (1c)

xp ∈ {0, 1} ∀ p ∈ P. (1d)

Here, the partitioning constraints (1a) guarantee that every leg is covered
exactly once; to ensure feasibility, we assume that there is a “slack” pairing
type with single-leg pairings of high cost. Let S ⊆ P be the set of these
pairings, one for each leg. Similarly, the slack variables ensure feasibility of
the base constraints (1b), which control base resource consumption; strict
compliance can be forced by choosing sufficiently high costs cb. Using the
leg-pairing incidence matrix A := (avp), i.e., avp = 1 if v ∈ p and 0 otherwise,
and collecting costs and base resource consumptions in vectors cP := (cp),
cB := (cb), c := (cP , cB), and a matrix D = (dbp), (CSP) reads

(CSP) min cT(x, s) Ax = 1, Dx ≤ ℓ, 0 ≤ x ≤ 1, x ∈ {0, 1}P .

2



2 A Column Generation Algorithm

We use a column generation algorithm to solve (CSP). Denote by S ⊆ P ′ ⊆
P some subset of pairings, by A′ := A·P ′ the submatrix of A restricted to the
pairings in P ′, and similarly c′, x′, and B′, by Ap := A·{p} and Dp := D·{p},
and by

(MLP) min cT(x, s), Ax = 1, Dx ≤ ℓ, 0 ≤ x ≤ 1
(RMLP) min c′T(x′, s), A′x′ = 1, D′x′ ≤ ℓ, 0 ≤ x′ ≤ 1

the LP-relaxation associated with (CSP), the master LP, and the restricted

master LP, respectively. Denoting for a given dual solution (π, µ) to (RMLP)
(where π is associated with the partitioning and µ with the base constraints)
by cp := cp − πTAp + µTDp the reduced cost of pairing p and by

(PRICE) minp∈P cp

the pricing problem associated with (RMLP), our method can be outlined
as follows. It tries to solve the master LP in a first phase. In a second
phase, a plunging heuristic is started that fixes and generates pairings to
(hopefully) produce a feasible solution. Such a method is known as a branch-
and-generate algorithm [9]. We will sketch in this section three important
components.

2.1 LP Solution

The proximal bundle method [8, 6] is a fast subgradient-type method for con-
vex programming that can be used to solve Lagrangean relaxations of linear
programs. It computes Lagrangean multipliers of the relaxed constraints, an
approximate primal solution, and a bound on the optimum objective value
of the original LP. We consider the Lagrange function arising from (CSP)
by relaxing the partitioning and base constraints

L(π, µ) := πT1 − µTℓ + min
0≤x≤1

(cP
T − πTA + µTD)x + min

s≥0
(cB − µ)Ts

Applying the bundle method to compute maxπ free,µ≥0 L(π, µ), the main
work turns out to be the computation of the expressions λTA and µTB in
the function L(π, µ). We use an active set method to speed up this step.

It restricts the evaluation of L to a subset I ⊂ P of pairings. This
set I, the active set, gives rise to a function LI by replacing A, D, and
cP by submatrices A·I , D·I , and cI . We have LI(π, µ) ≥ L(π, µ) for all π

and for all µ ≥ 0, and it is easy to see that LI(π, µ) = L(π, µ) holds if
cp = cp − πTAp + µTDp ≥ 0 for all pairings p. We use this observation to
restrict I to pairings p with reduced cost cp ≤ ǫ for some threshold ǫ > 0.
We update the active set I only if the so-called stability center of the bundle
method changes. This can lead to situations where the active set does not

3



contain all columns with cp < 0, which can result in a model of LI that
overestimates the real value of L at some points. If we notice that, we
repair the model of LI .

2.2 Column Generation

As all pairings end in the non-leg task t, we can define the reduced cost of an

arc ij ∈ A as cij := cij −
∑

v=i πv +
∑

b∈B µbdij,b and the pricing problem to
construct a pairing of type k of negative reduced cost becomes a constrained
shortest path problem in the acyclic digraph N :

(PRICE) min
∑

a∈A

caxa

∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa = δst(v) ∀ v ∈ V (2a)

∑

a∈A

warxa ≤ ukr ∀ r ∈ R (2b)

0 ≤ xa ≤ 1 ∀ a ∈ A (2c)

xa ∈ {0, 1} ∀ a ∈ A. (2d)

Here, δst(v) = 1 if v = s, δst(v) = −1 if v = t and δst(v) = 0 else.
We solve this problem using a branch-and-bound algorithm similar to [2],
using lower bounds derived from a Lagrangean relaxation of the resource
constraints (2b), see [3] for more details. Using configurable classes of linear
resource constraints and multilabel methods, we can handle most pairing
construction rules directly. Some rules, however, are so complex, that these
techniques would become unwieldy or require too much customization. For
such cases, we use a callback mechanism, that is, we ignore the rule in our
pricing model, construct a pairing, and send it to a general rule verification

oracle that either accepts or rejects the pairing.

2.3 IP Heuristic

The idea of our “rapid branching” heuristic is to produce a solution quickly
by iteratively solving the (RMLP) using the bundle method and fixing large
numbers of pairing variables to one. The fixed variables are selected accord-
ing to their x-value, i.e., the closer xp is to 1, the higher the probability that
xp is fixed to 1. In order to have a large number of variables with values close
to 1 available, the heuristic perturbs in each iteration the objective function
according to the formula cp := cp(1−αx2

p) (α is a control parameter), which
favors such pairings; we call this method “perturbation branching”, see also
[11] for a similar idea. Between fixes, pairings are generated to complement
the fixes; backtracks, i.e., unfixings of pairings, are also performed some-
times. The frequency and intensity of column generation and backtracks is

4



Table 1: Test Scenarios.

Name Scenario 1 Scenario 2

#Days 14 31
#Home Bases 3 2
#Pairing Types 4 2
#Legs 4104 2154
#Tasks 32832 14373
#Links 1438659 168352

controlled by targets, i.e., estimates on the increase of the objective function
under fixings, see also [9]. If the objective develops as expected, no pairings
are generated; if it increases more than expected, we try to correct the prob-
lem by generating new pairings, if this does not work, we backtrack, and if
we are out of time, we output the best solution found.

3 Computational Results

We now present computational results on industrial data provided by Luft-
hansa Systems Berlin, see Table 1. Scenario 1 is a 14-days problem with
linear pairing rules; the main objective was to minimize the number of pro-
duction days, secondary objectives were to minimize flight transports and
rest periods. We consider two variants, an unconstrained scenario and one
with 56 base constraints on the distribution of crews at home bases and
of pairing types for each day. Scenario 2 is a 31-day instance with more
complex rules, some of which had to be handled with callbacks. All com-
putations were made single threaded on a Dell Precision 650 PC with 2GB
of main memory and a dual Intel Xeon 3.2 GHz CPU running SUSE Linux
9.3.

Comparing the bundle method to an exact LP solver within a column
generation algorithm is not straightforward. Bundle solves an individual
LP clearly faster, but it produces approximate solutions, which may lead to

Table 2: Solving the Reduced Master LP.

Scenario 1 Un- Un- Base Base
constrained constrained Constraints Constraints

with Bundle with CPLEX with Bundle with CPLEX

LP-Value 833 836 859 860
IP-Value 835 836 862 864
#Production days 1055 1057 1089 1091

5



Table 3: Constructing Pairings with Lagrangean Pricing and Callbacks.

Scenario 2 with Deadheads without Deadheads

LP-Value 2977 3757
IP-Value 2981 3762
#Production days 1668 1660
Time 8h 38 min.
Callbacks failed/overall 174130/270378 0/58648
in % 64.40 0.00

more pairing generation iterations. Table 2 reports the results of running
our optimizer on scenario 1, solving RMLPs with our bundle code and
with the barrier implementation of CPLEX 9.0; the overall time limit was 2
days. It can be seen that there is no loss of solution quality using the bundle
method, and that the rapid branching heuristic constructs a solution with
an objective value that almost equals that of the master LP.

Table 3 gives some details on pairing construction for scenario 2. This
scenario involves a non-linear rule on the reduction of resources in the pres-
ence of deadheads, which was modeled using callbacks. It can be seen that
the percentage of rejected pairings is relatively high, because the pairing
generator tends to produce infeasible pairings repeatedly. The scenario can,
however, be handled successfully.

It is not only possible to model this particular rule in a linear way. We
are currently working on more general classes of linear and multilabel rules
in order to cover all important rules directly in the pairing generator. We are
confident that we can improve the performance of our optimizer significantly
in this way in the future.

References

[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P.

Savelsbergh, and P. H. Vance, Branch-and-price: Column gen-

eration for solving huge integer programs, Operations Res., 46 (1998),
pp. 316–329.

[2] J. E. Beasley and N. Christofides, An algorithm for the resource

constrained shortest path problem, Networks, 19 (1989), pp. 379–394.

[3] R. Borndörfer, M. Grötschel, and A. Löbel, Duty scheduling

in public transit, in Mathematics – Key Technology for the Future,
W. Jäger and H.-J. Krebs, eds., Springer, 2003, pp. 653–674.

6



[4] M. Desrochers, A new algorithm for the shortest path problem with

resource constraints, Tech. Rep. 421A, Centre de Recherche sur les
Transports, Univ. Montréal, 1986.

[5] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen,
Stabilized column generation, Discrete Math., 194 (1999), pp. 229–237.

[6] C. Helmberg and K. C. Kiwiel, A spectral bundle method with

bounds, Math. Prog., 2 (2002), pp. 173–194.

[7] K. Hoffman and M. W. Padberg, Solving airline crew scheduling

problems by branch-and-cut, Management Sci., 39 (1993), pp. 657–682.

[8] K. C. Kiwiel, Proximal bundle methods, Math. Prog., 46 (1990),
pp. 105–122.

[9] R. Marsten, Crew planning at delta airlines. Talk at the 15th Int.
Symp. Math. Prog., 1994.

[10] D. Villeneuve, J. Desrosiers, M. E. Lübbecke, and F. Soumis,
On compact formulations for integer programs solved by column gener-

ation, Tech. Rep. No. 2003/25, TU Berlin, 2003.

[11] D. Wedelin, An algorithm for a large scale 0-1 integer programming

with application to airline crew scheduling, Ann. Oper. Res., 57 (1995),
pp. 283–301.

[12] G. Yu, Operations Research in the Airline Industry, Kluwer, 1997.

7


