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Abstract

The complexity of molecular kinetics can be reduced significantly by a
restriction to metastable conformations which are almost invariant sets of
molecular dynamical systems. With the Robust Perron Cluster Analysis
PCCA+, developed by Weber and Deuflhard [6], we have a tool avail-
able which can be used to identify these conformations from a transition
probability matrix. This method can also be applied to the corresponding
transition rate matrix which provides important information concerning
transition pathways of single molecules. In the present paper, we explain
the relationship between these two concepts and the extraction of confor-
mation kinetics from transition rates. Moreover, we show how transition
rates can be approximated and conclude with an example.

1 Introduction

The understanding of transition pathways between different conformations of a
molecule is an important issue in structural biology. Although the restriction of
degrees of freedom to a few dihedral angles significantly reduces the complexity
of the problem, this is still very difficult. Often, scientists are interested in
single pathways, for example those over lowest energy barriers [2]. On the other
hand, it is well known that molecular kinetics is not purely deterministic. All
kinds of trajectories could appear, some with higher probability than others.
Therefore it seems natural to consider population densities. Starting with a
given probability density in position space, we are interested in the evolution of
the density to figure out intermediate states.

A description of molecular dynamics based on single positions in phase space
is unfeasible for large molecules. Therefore we work with a set concept based
on metastable conformations as introduced in [15]. First, we reduce the posi-
tion space to a number of N states represented by basis functions [18] or boxes
[16]. Then we construct a transition probability matrix P € RV*¥ or a tran-
sition rate matrix Q € RV*N and cluster states into metastable conformations
by applying PCCA+. In contrast to transition probabilities, the transition rate
matrix () is sparse because there are only transitions between neighboring states.
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Therefore, at the same discretization level, it is more efficient to apply numer-
ical routines to rate matrices instead of probability matrices. Furthermore,
transition rates provide important chemical information concerning transition
pathways of single molecules. Given an initial weighting x4 of the states, one
can compute the corresponding weights and the spatial configuration density at
a next time step. This is the desired dynamic in configuration space, which is
not based upon single molecules but upon ensembles. The entry g;;,¢ # j, can
be considered as the reaction rate of the monomolecular reaction

Z; — Z;

where z; stands representatively for the weight or “concentration” of state 7.

The rate matrix ) can be obtained directly from the transition probabil-
ity matrix P, but it also offers an alternative approach to identify metastable
conformations if the transition probability matrix is not available or difficult to
compute. Furthermore, we are able to reduce our model not only to a set of
basis functions whose number can be very large, but also to the few metastable
sets which contain all important information about the system.

2 From Transition Probabilities to Transition
Rates

2.1 Markov Jump Processes

Throughout the paper, we consider an homogenous Markov process {X (¢) : t >
0} on a finite state space S = {0,1,2,... N} with transition probability function

p(t,i,j) = P[X(t) = j|X(0) = d], i,j€S5.

Such processes are also called continuous-time homogenous finite Markov chains.
The Markov process is assumed to satisfy the following regularity conditions:

p(0,i,7) = 045, (1)
t£%1+p(t7z,j) = 0j; Vi, jeS. (2)

This guarantees that the realizations are right continuous functions. Due to the
fact that the state space is discrete, they are step functions. Therefore such
processes are called Markov jump processes.

2.2 Infinitesimal Generator

Under the above conditions, with P(t) = (p(t,4, j))i jes, the limit

P(t)—Id



exists and defines the infinitesimal generator @ = (¢(4,7))i jes with —oo <
q(i,1) < 0 < q(i,5) < oo [12][3].
Markov chains on a finite state space meet

—q(i,7) < 00 (stability)

and
—q(i,i) = Z q(i,7) (conservation).
jAiEes
Definition 2.1 The random variable
T;(t) =inf(s > 0: X(t+s) #4, X(t) =1)
1s called holding time in state 1.

If X(0) = 4, X(T;) represents the state the Markov chain visits just after leaving
state 4. It can be shown [12] that T; decays exponentially in ¢, i.e.

P[T; > s] = exp(—A(4)s), Vs> 0.

A(%) is called the jump rate associated with the state i € S. The average life
time of the state i is given by

Proposition 2.2 [12] For a finite Markov chain X (t) in continuous time with
infinitesimal generator Q, the following equations are satisfied:

1.

q(i,g) _ . PIX(E) = j|X(0) = ] , :
- =1 =P[X(T;) = j]X(0) =14,
ai,) B PX() £ X (0) =4 ¢ X =IO =1
2.
q(i, 1) = —A(9).
In words: —2%9) ig the conditional probability of a transition from state i to

q(i,1)
state j given that the process starts in 4, and the diagonal of @) contains the
negative rates.

Proof: From (3) we obtain

L. . t,i,1) — 1
q(,9) = lim AR e t)
P[T,>t]—1
= lim ————
t—0+ t
—  lm exp(—A(i)t) — 1
t—0+ t
— Lexp(-aap)
T n Xp 2)U)|t=0
= =A(9).



Furthermore,

q(i,i) = lim

t—0+ t
o PIX(s 40 #£iX(s) =]
t—0+ t
and
(i)
q(i,5) = [lim ——
o PIX(s 0= lX(s) =]
t—0+ t
Consequently
ai) _ o PIX(s+0) = jIX(s) = 1]
- = 11 - -
q(i,1) t—0+ P[X (s +t) # i| X (s) = i]
. PIX() =jIX(0) =i
t—0+ P[X(t) # | X (0) = 1]
because of the homogeneity. Moreover,
_aij) = lim P[X(s+1t)=4|X(s) =14, X(s+t) #i]

q(i,17) 0+
= PX(T3) = j[X(0) = ]

O

P(t) and @ are related by the forward and backward Kolmogorov equation

dP(t
O _ gpny = PuQ.
Together with the initial condition P(0) = Id, this gives the formal solution
Q)"

n!

P(t) = exp(tQ) = > . t>0. (4)
n=0
2.3 Stationary Distribution and Almost Invariant Sets

One can also deduce the evolution equation for an arbitrary initial distribution
(10(7))ies of the Markov jump process,

p'(t) = pg P(t),

with u(t) = (ui(t))ies = {P[X(¢t) = i]}. Multiplying Kolmogorov’s equation
with pg, we obtain




Consequently, the infinitesimal generator @), together with the initial distribu-
tion pg, completely characterize the Markov jump process.
A stationary distribution is any probability distribution 7 with

nl =x"P(t), Vt>O0.

Under certain conditions (irreducibility, positive recurrence and regularity of
the Markov jump process), the following statements are equivalent [12],[3]:

e There exists a stationary distribution 7 of P.
e mmeets 7' Q = 0.

This is especially true for an homogenous Markov process on a finite state space
[3]. A Markov process which possesses such a stationary distribution 7 is called
ergodic.

Besides the stationary distribution, we are interested in almost invariant
sets, i.e. unions of subsets for which the probability to stay within is close to
one. The characteristic functions of such invariant sets are closely connected to
the structure of eigenvectors x; of P corresponding to eigenvalues \; ~ 1 [5]

Pt)r =Xz, A=1.

The Perron Cluster Algorithm [6] constructs the almost characteristic functions
as linear combination of these eigenvectors. It can also be applied to @) because
the eigenvectors of P and @ are the same [9]. Suppose that the infinitesimal
generator () is diagonalizable by some nonsingular matrix X.

Q= XO6X!' = Xdiag(6;,...,0,) X 1.
Then
P(t) = exp(t Q) = X exp(t ©) X~ = Xdiag(exp(76;),...,exp(r6,)) X "

Since exp(0) = 1, an eigenvalue cluster of P(t) at 1 corresponds to an eigenvalue
cluster of @ at 0.

2.4 Reversibility

Let {X(¢)} be an ergodic Markov jump process with state space S, transition
probability matrix P and stationary distribution m. The Markov process is said
to be reversible in time, if the transition rate out of an arbitrary state j equals
the transition rate into state j, i.e.

> mipltyi§) =Y mp(t4,i), Vi€S.
i i
Obviously, a sufficient condition is given by

mip(t,i,5) = mip(t, i), Vi,j €S (5)



which is known as detailed balance condition.
Reversibility of the Markov process implies the existence of a stationary
distribution and vice versa,

ml=alPt) o m=> mp(tig) o m > pltji) =Y mp(ti,j).

The following propositions indicate a relationship between reversibility of the
transition probability matrix P and reversibility of the infinitesimal generator

Q.

Proposition 2.3 [3] If Q satisfies the detailed balance condition, the finite
Markov jump process { X ()} with transition probability matriz P(t) is reversible.

Proof: Let D be the diagonal matrix whose elements are the stationary prob-
abilities m;, ¢ € S. In matrix form, (5) reads

DP=P'D.

Hence, DP is symmetric. For a finite state space, pre- and post-multiplication
with D~1/2 preserves symmetry. Consequently, a finite Markov chain is re-
versible, if D'/2PD~1/2 is symmetric.
From (4) it follows that
o0
D1/2P(t)D_1/2 — Z ﬁ (DI/QQD_1/2>n .
n'

n=0

Since the right hand side is symmetric (@ meets detailed balance), the left hand
side is symmetric, too. Hence, reversibility of () implies reversibility of P. [

Proposition 2.4 The infinitesimal generator Q of a finite Markov jump pro-
cess satisfies the balance condition iff the stationary distribution 7 satisfies the
stationary equation T'Q=0.

Proof:

(r'Q); = Zﬂ'i%‘j + T = quvzg‘ -7 Z%’i

i#] i#] i#]

= Zﬂ-iqij - Zﬁj%‘i =0.
i i



3 Conformation Kinetics

Each vector x € RN can be considered as a vector of coefficients which occur
in the representation of a function defined on €2 as a linear combination of
certain basis functions {¢;}X | which form a partition of unity. For example, if
Q is divided into non-overlapping subsets {4;}, the basis functions could be the
characteristic functions of these sets and the vector x contains the values of the
piecewise constant function on these sets.

The application of PCCA+ [6] delivers membership functions x; = Z;V:1 Cji i
in terms of vectors {cz}fV:C1 with 0 < ¢;; < 1 where N¢ corresponds to the
number of clusters. These vectors are obtained by a linear transformation
of eigenvectors {xz}f\;‘i of @ according to eigenvalues close to zero. Set C' =
(C17~ .. ,CNC).

C=XA, QX=AX, A=diag\, ..., \n.), X\ =~0.

As an important property, the rows of C' sum to 1. By this transformation, each
basis function ¢; is assigned to a cluster j € {1,..., N¢} with the weight ¢;;.
In the following, we consider the discrete equation

x=Q"x. (6)

Densities with respect to the basis functions {;}¥, are given as vectors x/ €
RN with > q:lf = 1. In the following they are called full densities. As a reduced
density, we consider a vector x” € IRN¢, > ;2 = 1. These densities represent
the weights of the clusters. They are obtained by a projection of a full density

onto the clusters, i.e.
x"=C"x/. (7)

Indeed, multiplication with C'T preserves the sum of the vector elements,

S S Tt = S ] = S
i i i J

J

Equation (6) is not very interesting because the kinetics simply converges
towards the equilibrium distribution 7. If one is interested in a simulation
of a transition from metastable conformation A to a metastable conformation
B and the corresponding transition behavior, then (6) has to be solved as an
initial value problem with initial distribution x4 and an absorbing end state
given by the distribution xg. Chemically, one would permanently eliminate
conformation B out of the ensemble in order to push the reaction into the
direction of this product. Mathematically this can be done by projection of x
onto the orthogonal complement of the desired end point xp before applying
Q. Thus, the absorbing kinetics equation is:

(x,Xp)
(xp,xp)

x(t) = QT (x — xp), x(0)=x4. (8)



So far, the construction of the initial state and the end state is is not yet clear.
In the reduced setting, both distributions are given by x4 = e; and xp = e;
in IRNe. In general, a reduced density does not contain any information about
the full density within a certain cluster. However, we know the stationary
distribution in equilibrium. It is the eigenvector of Q) according to the eigenvalue
A = 0. We assume that the initial state and the end state are characterized by
this distribution restricted to the corresponding cluster, i.e.

x; = DC(:, 1) D71 (i,1),
or, in general R
x/ = DCD'x", (9)

where D is the matrix with 7 on its diagonal which is obtained from 7/ by (7).
To make this transformation feasible, note that 7" is transformed to 77,

(DCb_lﬂr)i = wac” —7r = 7] ZCU = 7r

Furthermore, the transformation (9) preserves the sum of the vector elements.
However, the transformations (7) and (9) do not match uniquely because in
general x # CTDCD 'x and x # DCD~'C"x.

Nevertheless we can construct a reduced kinetics equation which operates
on reduced densities. It is obtained by the following transformation:

¥ =Q"x - 0T =CcTQ X!

%" =CTQTDCD X

(10)

Since No < N, we can save a considerably amount of work by using the re-
duced model. A similar approach was previously investigated by the group of
I.L. Hofacker at the University of Vienna [20]. However, they set up the reduced
rate matrix in advance. They identify macro states as basins of attraction of
local minima of the energy function (see next section) by extensive search strate-
gies. In contrast, in our method the macro states are identified automatically
by clustering the full matrix. The number of macro states in our algorithm will
be smaller than the number of local minima because we also take into account
entropic effects.

Remark 3.1 We also considered transformations alternative to (7) and (9).

e Suppose the transformations are given by
x" =7Zx! and x/ =Z*x" with Z=0CT,
where ZT denotes the pseudo inverse of Z. Then the reduced model reads

x"=2ZQ"Zrx".



However, the row sum is not conserved. This can be circumvented by a
rescaling of the result or by constructing a matriz Z+ which preserves this
property. The kinetics simulation turned out to be a little bit slower than
(10), but the general behavior was reflected in a sufficient way.

e Suppose the transformations are given by
x" =27 and xf =2Zx" with Z=DCD™.
The reduced model becomes
x"=27tQ" Zx".

It turned out that there appear negative entries in the resulting distribution
vectors. Therefore, we did not further investigate this example.

4 Approximation of Transition Rates

There are several possibilities to obtain the transition rate matrix ). For ex-
ample, it can be calculated directly from the transition probability matrix P.
On the other hand, an approximation of () can be used to identify clusters if
the transition probability matrix is not available or difficult to compute. This
can either be done by an extensive sampling or by a careful examination of the
potential energy surface.

4.1 The Potential Energy Surface

Our goal is to construct a transition rate matrix @ which meets the detailed
balance condition (5). With R;; = 22, the reversibility constraint becomes

Gij = Rijqy.

Assume, @ is scaled such that the off-diagonal entries satisfy 0 < @ < 1. Then
@ must satisfy
0 S qij S mln(l,le)

According to [1], ¢;; may be chosen arbitrarily for some fixed orientation of pairs
and then g;; is forced to meet the reversibility constraint.

Let the domain of interest, €2, be partitioned into disjoint subsets A; C Q.
In molecular dynamics, the equilibrium weights of the subsets are given by

= %/A exp(—0V (x))dz,

where V(x) is the potential energy given by the underlying force field, 8 =
1/(kgT) is the inverse temperature depending on the Boltzmann constant kg,
and Z = [, exp(—0V (x))dx is the scaling factor such that }_, m; = 1. In gen-

eral, Z is unknown but it disappears in the fraction Z-. This fact is taken into
J



account in the following examples. The components m; of m could be approxi-
mated by some quadrature rule,

k
T =~ Z exp(—0V (x;))w,.
eA,

4.1.1 Examples

Every expression ¢;; = %S (4,4) with a function S which is symmetric w.r.t. 4

and j meets the detailed balance condition.

Metropolis Dynamics The classic Metropolis choice is

i 1
¢i; = min(1, R;;) = min(1, 7L]) = — min(m;, 7;).
’ v v

Barker Dynamics Chemists often use Barker’s dynamic where g;; is given
by
R 1 j 1 1

IR T4l m4m omLit L

TG 5

qij

The second factor can be interpreted as the total resistance of two parallel
resistors or the harmonic average, respectively.

Geometric Average () may also be chosen as

T
_ J
qij =

1
= —TT;.
s

Ur

Here, the transition rate depends on the geometric average.

4.2 Sampling Approach

As we have explained earlier, —% is the probability that the Markov chain

visits state j just after leaving state i. Furthermore, —g;; = A\(7) is the inverse
of the average life time of state i. The following algorithm determines the entries
in line 7 of @ by a simulation of transition frequencies to the neighbors n(i).

t_1i=0; /*total time of all trajectories*/
notr_i=0;  /#number of trajectories*/
stop=0;
for s=1:n
for j=1:m
choose starting position x_s(0) and momentum p_j(0);
k=1;
while stop==

10



{x_s (k) ,p_i(k)}=MDstep(x_s(0),p_j(0),dt);

if {x_s(k),p_j(k)} belongs to neighbour n(i)
Q(i,n(1))=Q(@i,n(i))+1;
stop=1;
notr_i=notr_i+1;
t_i=t_i+kxdt;

end

if {x_s(k),p_j(k)} not in any neighbour &

{x_s(k),p_j&k)} not in A_i

stop=1; /*reject trajectory*/

end
k=k+1;
end
end
end
Q(i,:)=Q(i,:)/notr_i;
Q(i,i)=-1;

Q(i,:)=Q(i,:)*t_i/notr_i;

The time step At of the molecular dynamics step must be chosen carefully.
If it is too small, the MD-steps are too expensive. If it is too large, many tra-
jectories will be rejected. Furthermore, one must assure that the starting points
represent the correct Boltzmann distribution within the set A;. Therefore, this
approach is time-consuming, especially for larger systems.

4.3 Direct Computation

Assume there already exists a transition probability matrix, for example from
a dynamics simulation with hybrid Monte Carlo methods [7]. By applying the
inverse operation to (4), the rate matrix can be calculated as

Q= %log P(r).

For numerical details in computing the matrix logarithm, see [4].

5 Numerical Illustrations

We present the application to the n-pentane molecule C H3(C Hy)3C Hs which
was modelled with Merck Molecular Force Field [10][11] at a temperature of
300K. The rate matrix @ was calculated directly from the transition probabil-
ity matrix P(t). P(t) itself resulted from a conformation dynamics simulation
with ZIBgridfree, a program package based on meshfree methods which was
developed at Zuse-Institute Berlin [19],[13].

We found 9 eigenvalues of ) close to 0,

A = {-33¢—17,-33¢—4,—48¢—4,-5.7e —4,—7.8¢ —4,-9.9¢ — 4,
—1.2¢ — 3,—4.6¢ — 3, —5.1e — 3},

11
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time(20ps)

Figure 1: Matlab [8] plot of a conformation kinetics simulation. The 9 lines correpond
to the weights of the 9 clusters. Left: From (g+/t)-conformation of pentane to the
(t/g+)-conformation with the full process. Plot of the vector C'"x’ every 0.01ps.
Right: From (g+/t)-conformation of pentane to the (t/g+)-conformation with the
reduced model. Plot of the vector x" every 0.01ps.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time (100ps)

Figure 2: 2- norm of the error vector e = x” — C' " x? every 0.01ps.

Figure 3: Volume rendering of the (g+/t)-conformations of pentane (left), the
(t/g+)-conformation (right), and the corresponding transition macrostate (middle)
in amira/amiraMol [17],[14].
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followed by a gap to the 10th eigenvalue A\;g = —1.5e — 2. This corresponds
to 9 metastable conformations which can be distinguished according to the
orientation of one of the two dihedral angles (+g and t denote the + gauche
and trans orientations):

conformations = {—g/t,t/4+g,—g/—g,t/t,t/—g,+g/t,+9/+9,—9/+9,+9/—g}

The results for a (g +/t) — (t/g+) transition of pentane are shown in figure
1. We performed the reduced kinetics according to (10) with Q@ € IR?*Y as
well as the full kinetics (6) with @ € IR®?*50 where we projected the results to
the reduced space by (7). As one can see, the reduced model provides nearly
the same results. Figure 2 shows that the error is of order 10~2 and that it
converges to a fixed value if the system reaches the equilibrium. This is due
to the fact that the final reduced state with full kinetics, CT DCD 'xp, is
not equal to the predefined reduced end state xp. Figure 1 can be interpreted
as follows. The conformational change from (g+/t)-pentane to (t/g+) crosses
the (t/t)-conformation which can be seen as transition state. The transition is
visualised in Figure 3. The left picture shows the start conformation (g+/t),
the right one the end conformation (t/g+). At each step of the 20ps kinetics
simulation, a similar density plot can be computed. The picture in the middle
shows the transition state at 3.5ps simulation length. It can be considered as
the intermediate distribution of states at this particular time.

6 Conclusion

We have shown that the clustering method PCCA+, originally developed for
transition probability matrices, can also be applied to the corresponding tran-
sition rates because the eigenvectors, which form the basis of the membership
functions, remain the same. Furthermore, we have developed suitable density
transformations between the unreduced space and the space spanned by the
clusters. This allows us to operate on low-dimensional spaces, for example to
perform kinetics simulations, such that the macro state approximations are in
good agreement with the full process.
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