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BRANCH-AND-CUT FOR THE MAXIMUM FEASIBLE
SUBSYSTEM PROBLEM

MARC E. PFETSCH

ABSTRACT. This paper presents a branch-and-cut algorithm for the NP-
hard maximum feasible subsystem problem: For a given infeasible linear
inequality system, determine a feasible subsystem containing as many
inequalities as possible. The complementary problem, where one has
to remove as few inequalities as possible in order to make the system
feasible, can be formulated as a set covering problem. The rows of this
formulation correspond to irreducible infeasible subsystems, which can
be exponentially many. It turns out that the main issue of a branch-
and-cut algorithm for the maximum feasible subsystem problem is to
efficiently find such infeasible subsystems. We present three heuristics
for the corresponding NP-hard separation problem and discuss cutting
planes from the literature, such as set covering cuts of Balas and Ng,
Gomory cuts, and {0, %}—cuts. Furthermore, we compare a heuristic
of Chinneck and a simple greedy algorithm. The main contribution of
this paper is an extensive computational study on a variety of instances
arising in a number of applications.

1. INTRODUCTION

In the mazimum feasible subsystem problem (MAX FS), we are given an
infeasible linear inequality system X : {Ax < b}, with A € R™*" b € R™,
and have to find a feasible subsystem containing as many inequalities as
possible. This NP-hard combinatorial optimization problem has a number
of interesting applications in a wide range of fields, for instance, in lin-
ear programming [29, 31, 36|, statistical discriminant analysis and machine
learning [4, 19, 43], telecommunications [54], and computational biology [61].
Additional applications and a survey can be found in [4] and [5], respectively.

The complementary problem of MaAX FS amounts to removing as few
inequalities of ¥ as possible so that the resulting system is feasible. To
achieve feasibility, one has to remove at least one inequality from each ir-
reducible infeasible subsystem (IIS), i.e., an infeasible subsystem of ¥ for
which every proper subsystem is feasible. Introducing a binary variable y;
for each inequality of X, the complementary problem can be formulated as
a set covering problem and is therefore called MIN IIS COVER:

min > " y;
st. D eryi=>1 forallIISs I (1)
y {0, 1}™.
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Since the number of IISs can be exponential in the size of the system X (see
Chakravarti [28] and Pfetsch [53]), IISs have to be generated dynamically
in order to solve this formulation of MIN IIS COVER efficiently.

Clearly, the set of all inequalities not contained in a solution of MAX F'S
form a solution of MIN IIS COVER and vice versa. Hence, these two prob-
lems are equivalent when solving to optimality and are both strongly NP-
hard, see Johnson and Preparata [39], Sankaran [58], and Chakravarti [28].
In terms of approximability, however, they differ: MAX FS does not admit
a polynomial-time approximation scheme, unless P = NP, but there exists
a 2-approximation, see Amaldi and Kann [9]. MiN IIS COVER is harder
to approximate: Unless P = NP, it cannot be approximated in polynomial
time within any constant factor, see Amaldi and Kann [10].

In this paper, we present a branch-and-cut approach for MAaX FS via
formulation (1) for MIN IIS COVER. A key issue of this approach is to
find violated IIS-inequalities, i.e., the inequalities arising from IISs in (1).
The corresponding separation problem is NP-hard, and we present three
heuristics for it (see Section 3.2). Two of these methods generate either a
feasible solution for MIN IIS COVER or a (hopefully violated) IIS-inequality.
As long as no feasible solution has been generated, the process is iterated,
which often produces many useful IIS-inequalities. The additional benefit
is reasonably good primal solutions, which can be improved by a simple
greedy algorithm. This combination leads to an effective primal heuristic.
Additionally, we examine the application of inequalities of Balas and Ng [18§]
for set covering problems, {0, %}—Cuts, and Gomory cuts.

The emphasis of this paper is on an extensive computational study of the
branch-and-cut implementation. Our aim is to show the potential and the
limits of such an approach by performing tests on three problem sets: ran-
dom infeasible inequality systems (Section 4.2), problems arising in digital
video broadcasting (Section 4.3), and classification problems (Section 4.4).

The theoretical foundation for our approach appears in Amaldi, Pfetsch,
and Trotter [12], where algorithmic and geometric questions concerning IISs
are studied and the feasible subsystem polytope is investigated. (The poly-
hedral results carry over to the polytope for MIN IIS COVER by a simple
affine transformation.) The work presented here is an improved version of
part of the author’s Ph.D. thesis [53].

In the literature to date, only two exact approaches towards MiIN IIS
COVER have appeared. Parker and Ryan [52] discuss an iterative approach
that generates IISs in each step and then solves an integer program. This
approach turns out to be impractical for harder instances. Codato and
Fischetti [33] present a branch-and-cut algorithm for MiN IIS COVER in a
more general context. We discuss these approaches in more detail in the
next section. Our algorithm improves upon both methods and is currently
the best available exact approach (see Section 4).

The outline of this paper is as follows. In Section 2 we review solution ap-
proaches for MAX F'S. In Section 3 we describe the main ingredients of our
branch-and-cut implementation. We discuss a way to check the feasibility
of solutions for MIN IIS COVER, three methods to separate IIS-inequalities,
primal heuristics, preprocessing, branching, inequalities by Balas and Ng,
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and other used cutting planes. In Section 4 we extensively test the im-
plementation on the abovementioned problem sets. We close with some
conclusions in Section 5.

We use the following notation. We define [n] := {1,...,n} for n € N and
typeset vectors in bold font. For a set S C [n] and a vector € R", define

x(S) = le

€S
The support of a vector & € R™ is supp(x) :={i € [n] : x; # 0}. By 1 we
denote a vector of all 1’s of appropriate dimension.

2. ALTERNATIVE SOLUTION APPROACHES

In this section we give a short overview of solution approaches for MAX FS
and MIN IIS COVER.

In the context of linear programming, attention was first devoted to the
problem of identifying IISs with a small and possibly minimum number of in-
equalities (see Greenberg and Murphy [36], Chinneck [30], and Chinneck and
Dravnieks [32]). The goal is to help the modeler resolve infeasibility of large
linear programs. Since minimum cardinality covers of IISs reveal essential
information about infeasibility of the model and are often smaller than IISs,
emphasis has shifted towards their identification. Chinneck [29, 31] devel-
oped heuristics for MAx FS/MIN IIS COVER and provided computational
results, see Section 4.4. These heuristics are extended greedy algorithms.

For the application of MIN IIS COVER to classification problems (see
Section 4.4), several heuristics were proposed, based on nonlinear program-
ming formulations of MAX FS (Bennett and Bredensteiner [19], Bennett
and Mangasarian [20], and Mangasarian [43]).

An exact integer programming approach for MIN IIS COVER appeared
in Parker [51] and Parker and Ryan [52]. Their idea is to consider the
formulation in (1) with a partial list of IISs. If there exist IISs that are not
covered by a solution to this formulation, they are added and the process
is iterated. Otherwise, an optimal solution to MIN IIS COVER is found.
Parker and Ryan discuss several methods of generating IISs at each step
and consider heuristics for solving the set covering problem (only the last
instance has to be solved exactly).

We reimplemented a basic version of their algorithm, where the set cover-
ing problems are solved to optimality. This implementation turned out to be
inferior to our branch-and-cut implementation: It could not solve within one
hour instances solved by our branch-and-cut approach within a few minutes.
We therefore refrained from performing further experiments.

There is a straightforward mixed integer programming formulation for
MIN IIS COVER containing a binary variable with a “big-M” for each of
the inequalities of ¥, so that an inequality is relaxed when the corresponding
binary variable is 1. This formulation has the typical numerical problems of
big-M formulations and is in general inefficient for MAX F'S, see Parker [51].
If there are fixed bounds on the variables, however, one can obtain a tight
formulation. This leads to a quite efficient approach, see Rossi, Sassano, and
Smriglio [54] and Codato and Fischetti [33]. In fact, Codato and Fischetti
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propose a general way of removing the “big-M” from this type of formulation
and apply it to classification instances. In this context, it leads to the for-
mulation (1), and their solution method is, in fact, a branch-and-cut method
for MIN IIS COVER, independent from our approach. Computational re-
sults show that their approach is faster compared to the big-M formulation.
In Section 4.4 we compare our implementation with their approach.

Versions of the classical relazation method of Agmon [3] and Motzkin and
Schoenberg [47] for solving linear inequality systems can be applied to min-
imize the sum of violations in infeasible linear inequality systems. Random-
ized variants of this method were proposed by Amaldi [4] to solve MaX FS.
Amaldi and Hauser [8] and Amaldi, Belotti, and Hauser [6] establish prob-
abilistic convergence guarantees to an optimal solution of MAX FS under
appropriate conditions. Computational results for digital video broadcast-
ing data, classification instances, and huge systems arising in computational
biology are given in [6].

Amaldi, Bruglieri, and Casale [7] propose a two-step heuristic in which
first a linearization of an exact bilinear formulation of MAX FS is used to
derive a feasible subsystem. In the second step, a reduced problem is solved
to optimality in order to identify inequalities that can be added to the first
system while preserving feasibility. This turns out to be competitive with
respect to the method of Codato and Fischetti and an integer programming
solver applied to the “big-M” formulation for the whole system.

3. INGREDIENTS FOR BRANCH-AND-CUT

In the following we assume that the reader is familiar with the branch-and-
cut approach. More information can be found in Nemhauser and Wolsey [48],
Padberg and Rinaldi [50], Thienel [60], and Caprara and Fischetti [26]. A
description and computational study of Gomory cuts is given in Balas, Ceria,
Cornuéjols, and Natraj [17].

Recall that we are given the infeasible system ¥ : {Ax < b}, where
A € R™"™ b € R™. Depending on the application, mandatory variable
bounds can be present, i.e., these bounds may not be removed for obtaining
a feasible system (see Sections 4.3 and 4.4). This can easily be dealt with in
the branch-and-cut approach. Furthermore, weighted versions of MiIN IIS
COVER are easy to handle, too.

Without loss of generality we can restrict attention to inequality systems
in the form of 3: Clearly, bounds on variables and “greater or equal” in-
equalities can be transformed to this format. Equations can be replaced
by a pair of opposing inequalities. Since any point satisfies at least one in-
equality out of each pair, an optimal solution to the new instance contains
m* 4+ mg inequalities if and only if an optimal solution to the original in-
stance with m* linear relations exists; here mpg is the number of equations.
Thus, from a computational point of view, it suffices to handle systems in
the form of ¥. Polyhedral results for the two cases, however, may differ,
see [12, 53] for more information.

To simplify notation, we identify an inequality of ¥ with its index. Then
S(X) := [m)] is the set of constraints of ¥.. With this notation, I C S(X) is
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an IIS of ¥ if and only if all proper subsets of I are feasible. We call a set
C C S(X) an IIS-cover if it intersects every IIS of X.

In the rest of this section we give a more detailed account of the main
aspects of our implementation: the recognition problem for IIS-covers, the
separation problem of IIS-inequalities, pool handling, primal heuristics, pre-
processing, branching, and other cutting planes.

3.1. Recognition Problem for IIS-Covers. We consider the following
fundamental problem: Given a subset C' C S(X), check whether it is an
IIS-cover and if this is not the case generate a witness, i.e., an IIS which is
not covered. Our approach is based on the following theorem.

Theorem 1 (Gleeson and Ryan [35]). Let ¥ : {Ax < b} be an infeasible sys-
tem. Then the IISs of X2 are in one-to-one correspondence with the supports
of the vertices of the polyhedron

PX):={yeR™:y"A=0 y'b=—-1,y>0}.

Note that the vertices of P(X) are uniquely defined by their supports. This
theorem is strongly related to the Farkas lemma, which states that P(X) # @
if and only if ¥ is infeasible, see, e.g., Schrijver [59]. The polyhedron P(X)
is called the alternative polyhedron of 3.

To apply Theorem 1, we define for S C S(X) the polyhedron

Ps(X):={yePX) :y,=0,i€ S},
which might be empty. We need the following fact.

Lemma 2 (Parker and Ryan [52]). The set C C S(X) is an IIS-cover if and
only if Po(¥) = @.

Proof. The system defining P(X), in which all variables indexed by C are
removed, has no solution if and only if Po(X) = &. By the Farkas lemma,
the former is the case if and only if ¥ with inequalities indexed by C' removed
is feasible, i.e., C' is an IIS-cover. O

Recognizing whether C' C S(X) is an IIS-cover is now easy: If Po(X) = &,
by Lemma 2, C'is an IIS-cover. Otherwise, let v be a vertex of Po(X). Then
supp(v) N C = &, which shows that supp(v) is an IIS that is uncovered (by
Theorem 1). This provides a polynomial-time algorithm for the problem,
since finding a vertex of a polyhedron can be done in polynomial time, see
Grotschel, Lovész, and Schrijver [37]. Note that by Theorem 1 and Lemma 2,
Po(X) always has a vertex if it is nonempty.

This recognition test, in fact, suffices for a rudimentary branch-and-cut
algorithm, since we can now test feasibility of a vector y € {0,1}" for (1)
by testing whether supp(y) is an IIS-cover.

3.2. Separation of IIS-Inequalities. IIS-inequalities play a prominent
role in the formulation (1) for MIN IIS COVER. In fact, it can be shown
that the inequality arising from the IIS I defines a facet of the polytope

Prisc = conv{y € {0,1}" : y(S) > 1 for all IISs S },

as long as |I| > 1, see Amaldi, Pfetsch, and Trotter [12]. Therefore, the
following separation problem for IIS-inequalities is of crucial importance:
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Given a vector y* € [0, 1]™, check whether there exists an IIS I so that its
corresponding inequality is violated by y*, i.e., y*(I) < 1. The recognition
problem for IIS-covers is a special case, where y* is the incidence vector of
the set to be tested. In the general case, however, we have the following.

Proposition 3 (Amaldi, Pfetsch, and Trotter [12]). The separation problem
for IIS-inequalities is NP-hard.

In this section, we therefore present three heuristics for the separation
problem. All of these heuristics may fail to produce a violated I1S-inequality.

The heuristics build on the following reformulation of the separation prob-
lem: Compute

A:=min{ y*(S) : S =supp(v), v vertex of P(X) }. (2)

If A < 1, by Theorem 1, supp(v) provides an IIS whose IIS-inequality is
violated; otherwise no such IIS exists (we define A = oo if P(X) = ).

3.2.1. Method 1: “Single”. The first quite intuitive idea for separating an
IIS-inequality, already used by Parker and Ryan [52], is to approximate (2)
by the following linear program (LP):

min{ (y*)'p : p € P(2) }.

A vertex solution provides an IIS, whose corresponding inequality is not
necessarily violated, but in practice it often is.

This method generates only one IIS at a time. We also experimented with
solving the above LP by the simplex algorithm and then testing whether the
support of each vertex on the path to the optimum is an IIS whose inequality
is violated. In our experiments this variant was inefficient and will not be
considered further.

3.2.2. Method 2: “Extend”. We extend Method 1 as follows. Let S be the
support of y*. Applying Lemma 2, we can check whether S is an IIS-cover
by finding a vertex solution of

min{ (y*)'p : p € Ps(¥)}

if one exists. If the LP is feasible, the result gives us a vertex which cor-
responds to an IIS, otherwise we have found an IIS-cover, i.e., a primal
solution for MIN IIS COVER.

This approach can be iterated when S is not an IIS-cover. Let I be the
IIS obtained in this case. We enlarge S greedily by an element of I and
iterate. In our implementation, we choose an element of I that is contained
in the maximal number of IISs we have found so far. At termination this
yields an IIS-cover. This procedure is related to a primal heuristic proposed
by Ryan [57].

The IISs found by this approach have several nice properties. First, the
new IISs are different from all IISs that were known before the run, if the
current solution y* of the LP-relaxation satisfies y*(I) > 1 for each pre-
viously found IIS I. This follows since at least one element of each I is
contained in S, and hence I cannot be generated again. Second, the corre-
sponding inequalities are always violated, since they have empty intersection
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with S D supp(y*), i.e., y*(I) = 0 < 1 for each produced IIS I. Third, by
construction of the set S, the generated IISs are pairwise different.

This method turns out to be quite effective for generating many violated
IIS-inequalities. Furthermore, we obtain a primal solution in each run, which
can be improved to very good solutions, see Section 3.4. When the current
LP-relaxation contains many cuts, however, the support of y* tends to be
large and often is already an IIS-cover or close to one, and the method
cannot produce new IISs; this often happens in the deeper regions of the
branch-and-bound tree. This might even be desirable, since this saves time
for high depths. Nevertheless, this situation can be changed, as indicated
by the next method.

3.2.3. Method 3: “Round”. The idea of Method 2 can be further extended
by using the fact that an arbitrary set S can be used at the start. In the
extension, we choose a € [0,1] and initially let S := {i : y7 > a}. In the
implementation we start with & = 0.1 and then increase a by 0.1 until .S is
not an IIS-cover (in this case the above procedure is started). We terminate
with a failure if o exceeds 0.6.

The fact that S is smaller for larger a has two effects: First, the number of
steps needed to greedily obtain an IIS-cover is larger, and hence the number
of generated IISs is increased. Second, the method also computes IISs in
the deeper regions of the tree.

Again, in each step an IIS is generated, which is not covered by .S, except
in the last step where we obtain an IIS-cover. In contrast to the method “ex-
tend”, the generated IISs are not necessarily new, and their corresponding
inequalities may not be violated by y*.

3.3. Pool for IIS-Inequalities. The above three methods tend to produce
many IISs, which we store in a pool. It turns out that the best performance
of the algorithm is achieved by checking the pool for violated inequalities in
every node of the tree. Of course, the pool should be as small as possible
without losing important inequalities. Therefore, the pool is equipped with
an aging mechanism which removes IISs whose inequality has not been active
for some time.

The computational results presented in Section 4 indicate that only a
small fraction of the total number of IISs needs to be generated by our
branch-and-cut implementation; indeed, for larger problems there are far
too many IISs to be enumerated completely, cf. Table 2 in Section 4.2.
Hence, the size of the pool can be relatively small.

3.4. Primal Heuristics. Chinneck [31] proposed a greedy heuristic for
MiN IIS COVER, which we use as an initial primal heuristic. The basic
tool is a so-called elastic LP in which the inequalities ¥ : {Ax < b} are
relaxed by adding slack variables and the sum of violations is minimized:
min 17s

Ax —s<b

s> 0.
Starting with S = &, in each iteration S C S(X) is enlarged by an inequal-
ity that yields the largest drop in the elastic LP objective if its objective
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coefficient is set to 0. The method stops once the objective is 0, i.e., S is a
MiN IIS Cover. To speed up the solution, in each iteration only inequali-
ties from a candidate set are checked. Chinneck proposes a measure based
on the violation and dual variables to generate the candidate set. We refer
to [31] for details.

For a heuristic running in the tree, we use a primal heuristic that greedily
decreases the size of a given IIS-cover until a minimal one is obtained. We
start this heuristic from IIS-covers produced by the separation methods
in Section 3.2, if available (otherwise we use a simple rounding heuristic).
We start with C being an IIS-cover to be improved. We consider each
element from C' in the order of increasing fractional value of the current
LP-solution y*. We remove an element if the remaining set is an IIS-cover
(which is checked by the method in Section 3.1).

3.5. Preprocessing. In a preprocessing step we search for small IISs. Such
small IISs are of interest since their corresponding IIS-inequalities provide
“strong” cuts and are hard to find by other methods.

We first check for IISs of cardinality one, e.g., 0z < —1. Then we check
for IISs that involve one inequality and bounds on the variables (if present).
Such IISs often occur when variable bounds are mandatory, see e.g. Sec-
tion 4.4. In this case, a single inequality might be infeasible with the bounds
and counts as an IIS. Furthermore, we look for IISs of cardinality two, which
are easy to find by comparing their normal vectors and right-hand sides.
Identifying other types of 1ISs would require higher computational effort.

3.6. Branching. As a branching rule, we apply reliability branching, intro-
duced by Achterberg, Koch, and Martin [2]. It performs strong branching
on a subset of the variables, which are chosen based on their so-called pseu-
docosts during branching. If in strong branching one of the child nodes
turns out to be infeasible, the corresponding variable is fixed to the com-
plementary value; if both children are infeasible, the current node can be
pruned.

We also experimented with constraint branching rules. For instance, we
used the well-known rule of Ryan and Foster [56]. This rule was superior
to a simple variable branching, but inferior to reliability branching both in
terms of computation time and the number of branch-and-bound nodes. We
therefore selected reliability branching for all tests.

3.7. Inequalities for Set Covering. Many facet-defining inequalities for
the set covering polytope have been investigated, see Ceria, Nobili, and Sas-
sano [27] and Borndorfer [22]. However, few (problem-specific) polynomial-
time separable inequalities for set covering are known. For many classes of
inequalities the complexity status is unknown, but is likely to be NP-hard.

We experimented with the aggregated cycle cuts of Borndorfer and Weis-
mantel [23, 24]. Unfortunately, on our test problems their separation heuris-
tic almost never found a violated inequality. Furthermore, it remains an
interesting open problem to identify problem-specific inequalities for MIN
IIS COVER.

A class of inequalities for set covering that we use in our implementation
were proposed by Balas and Ng [18]. To describe these inequalities, consider
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the set covering polytope Pgc(D) = conv{y € {0,1}"" : Dy > 1}, where
D = (d;;) € {0,1}**™. Assume aly > 3, with @ € Z™ and 3 € 7, defines
a facet of Pgo(D). It is well known that if 5 > 0, then @ > 0, and if § =1,
then a is a row of D (see, e.g., [18]).

Balas and Ng showed that for every facet defining inequality a'y > 2
with a@ € Z", there exists a set S C [k] such that @ = a®, where

0 ifdjj=0foralliel,
a; =<2 ifdj;=1foralliecs, forj=1,...,m.
1 otherwise

These inequalities can also be obtained by a Chvatal-Gomory rounding
procedure. Furthermore, Balas and Ng discuss conditions under which
(a®)Ty > 2 defines a facet of Pgo(D).

The separation problem for these inequalities is NP-hard, see Amaldi and
Pfetsch [11]. However, when the size of S is fixed, the separation problem
can be solved in polynomial time by enumeration. In our implementation
we enumerate sets S of cardinality three and check whether the inequalities
(a®)Ty > 2 are violated by the current LP-solution. Note that sets S of
cardinality two are uninteresting, since in this case (a®)Ty > 2 is the sum
of two IIS-inequalities and hence is never violated if the IIS-inequalities are
satisfied.

Additionally, we try to strengthen these cuts: If an inequality is violated,
we greedily enlarge the set S as long as the violation of the resulting in-
equality increases. See Section 4 for computational results.

3.8. General Purpose Inequalities. In our computational experiments
we used Gomory cuts as implemented in SCIP (see Section 4); see the books
of Nemhauser and Wolsey [48] or Schrijver [59] for a description.

We furthermore used {0, %}-cuts introduced by Caprara and Fischetti [25].
Codato and Fischetti [33] identified these cuts as important for solving MIN
IIS CovER. We implemented these cuts along the lines of Hansen, Labbé,
and Schindl [38]. See also Andreello, Caprara, and Fischetti [13] for a com-
putational study of {0, 5 }-cuts. Note that in our implementation {0, 1 }-cuts
are produced only for set covering and nonnegativity inequalities; in partic-
ular, they do not depend on {0, %}—cuts produced earlier.

We also experimented with mixed integer rounding cuts (CMIR) (see
Marchand and Wolsey [44]) and strengthened Chvatal-Gomory cuts (see
Letchford and Lodi [42]) as they are implemented in SCIP. The results were,
however, discouraging, and we therefore do not present them.

4. COMPUTATIONAL RESULTS

In this section we discuss computational results of our branch-and-cut im-
plementation for MIN IIS CoOVER. The algorithm was implemented in C++
and uses version 0.90 of the framework SCIP (Solving Constraint Integer
Programs) by Achterberg [1]. CPLEX 10.11 is used as the basic LP solver.
The computations were performed on a 3.4 GHz Pentium 4 machine with
3 GB of main memory and 1 MB cache running Linux. All instances used
in the following can be obtained from the web page [45].
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We use best-first search as a node selection scheme and the branching rule
explained in Section 3.6. All separation routines are called only every tenth
level of the tree, except that the pool of IIS-inequalities is checked in every
node of the tree. In nodes in which cuts are separated, we proceed until
no more violated cuts can be found. SCIP chooses among the generated
cuts according to an orthogonality measure, see, for instance, Andreello,
Caprara, and Fischetti [13]. We perform reduced cost fixing at every node
of the tree.

Before presenting computational results, we want to discuss the influence
of the limited precision used for solving LPs. The basic question that has to
be repeatedly answered in our context is whether a given system is infeasible
or not. Today’s LP solvers are tuned towards quickly finding an optimal
solution of a feasible LP. Sometimes their bases are not really optimal, but
this has only a negligible effect on the objective function value, see Koch [41].
When checking infeasibility, however, small errors can lead to completely
wrong decisions. The answer depends on the particular instance, the solution
method of the LP solver, its parameters, e.g., the precision (usually around
1079), and often also the preprocessing and starting basis. Being aware
of the possibility that we might produce wrong results, as a safeguard, we
confirmed that the final solution is really an IIS-cover for the original system.

Currently, using exact LP solvers, like the ones included in 1rs [15] or
cdd [34] is computationally too expensive. In the future, codes that use
dynamically adjusted precision might help, see Applegate, Cook, Dash, and
Espinoza [14].

4.1. The Netlib Problems. The Netlib library [49] contains a well-known
set of 29 infeasible linear inequality systems. We do not report results on
these data since these instances all can be solved within seconds, except
for numerical difficulties with the problem gran. They were also solved to
optimality by Parker [51] and Parker and Ryan [52]; for more computational
results on these problems see Chinneck [31] and Pfetsch [53].

4.2. Random Problems. We consider random inequality systems to com-
pare different cut strategies in the branch-and-cut implementation. We used
difficult random instances that nevertheless can be solved within approxi-
mately one hour of computation time. In contrast, the instances discussed
in the following sections vary highly in size and complexity: Most are either
solved within seconds or cannot be solved to optimality in reasonable time.

The infeasible random inequality systems are generated as follows: Each
coefficient and the right-hand side was chosen to be a random integer in the
range —100 to 100. We generated five instances for each of the combinations
(5,100), (10,80), (15,80), (20,90), (25,90), where the first component is the
dimension n of the space and the second one is the number m of inequalities.
Each system turned out to be infeasible (this almost always happens as soon
as m > 2 -n, see Motzkin [46]) and is almost completely dense. Note that
all the instances in the following sections are dense as well.

In Theorem 1, the alternative polyhedra of these random systems are
nondegenerate with high probability. It is currently unknown whether Max
FS and MIN IIS COVER restricted to such systems are NP-hard.
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Table 1: Results of the branch-and-cut algorithm on random inequality systems for
different IIS separation strategies. The numbers are averages over five instances of each
size. The last line gives the averages over each column.

single extend round
n o m nodes time 1ISs nodes time 11ISs nodes time 1ISs

5 100 70473.0 1050.64 8781.0 120371.4 1808.71 5281.4 16913.8 564.44 11034.8
10 80 167970.8 1226.45 10298.4  174302.6 1689.26 8450.4 79086.6 996.51 14491.8
15 80  214004.0 1509.72 53419.8  255933.0 1984.60 44825.8 106119.0 1465.16 62151.0
20 90 50029.0 276.05 22354.8 59117.8 337.11 15869.0 28699.0 317.22 23418.0
25 90 169868.2 1185.81 99728.6  243568.6 1534.17 80400.4 77147.0 1235.41 155331.4

@ 134469.0 1049.73 38916.5  170658.7 1470.77 30965.4 61593.1 915.75 53285.4

Table 2: The number of IISs found by method “round” for random problems and the
total number of IISs.

n m found total
5 30 11 1986
5 40 101 44816
5 50 520 204833
5 60 526 614853
5 70 453 1818718

We first compare the three different strategies to separate I1S-inequalities
of Section 3.2. Table 1 provides a comparison of methods “single” (Sec-
tion 3.2.1), “extend” (Section 3.2.2), and “round” (Section 3.2.3). Columns
labeled “nodes” give the average number of nodes in the branch-and-bound
tree, those labeled “time” are the average CPU times in seconds, and those
labeled “IISs” give the average number of IISs found during the optimiza-
tion; here averages are taken over the five instances of each size. To eliminate
the influence of primal heuristics we initialized all runs with the optimal so-
lution.

Among the three [1S-inequality separation versions, method “round” out-
performs methods “single” and “extend” in the number of nodes and in the
total computation time, although method “single” is sometimes a bit faster.
Method “round” also generates the highest number of IISs. Based on this
result, we decided to use method “round” in the following experiments.

Table 2 shows the total number of IISs and the number of IISs found by
method “round” for small random instances generated in the same manner
as above. By Theorem 1, the IISs correspond to vertices of the alternative
polyhedron. We enumerated the vertices with 1rs [15]. Since the alternative
polyhedra are nondegenerate, the IISs can be generated in time polynomial
in the input and output size, see Avis and Fukuda [16]. Note that for general
polyhedra this is not possible unless P = NP, see Khachiyan et al. [40].

We could not enumerate or count the IISs for larger instances. From
Table 2, however, it can be expected that the total number of IISs for the
instances used in Table 1 is much higher. We conclude that the branch-
and-cut implementation needs only a small part of the total set of IISs (the
number of IISs for instance (5,70) is two orders of magnitudes larger than
the average number of IISs found by any of the variants in Table 1).
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Table 3: Results of the branch-and-cut algorithm on random inequality systems for
different cut generation strategies; all variants use method “round” as a basis. Given are
the average values over all 25 instances.

type nodes time root # BaNg # Gom. #{0,1}
round 61593.1 915.75 6.54 0.0 0.0 0.0
BaNg 58796.4 1054.39 6.80 6134.0 0.0 0.0
Gom. 58434.7 1164.56 7.00 0.0 10440.6 0.0
{0, 1} 61479.1  957.37  6.54 0.0 0.0 43.0
BaNg & Gom. 57911.9 1298.49 7.22 6955.3 10234.8 0.0
BaNg & {0, %} 60197.0 1080.89 6.78 5738.6 0.0 31.0
Gom. and {0, %} 58852.8 1158.42 7.01 0.0 10441.2 56.8
all 60092.7 1365.63 7.19 6699.5 10335.6 46.2

Table 4: Results of method “round” for random instances with m = 80 inequalities.
Column “Opt” gives the average optimal solution values. All entries are averages over five
instances.

n nodes time IISs root opt

5 2029.4 32.26 3527.8 12.23 21.8
10 79086.6 996.51 14491.8 6.88 15.8
15 106119.0 1465.16 62151.0 4.56 11.8
20 7408.0 56.18 5743.4 2.69 5.8
25 16472.6 132.79 20884.0 2.43 6.8
a: 42223.1 536.58 21359.6 5.76 124

Table 3 lists computational results for all combinations of method “round”
with Balas/Ng cuts (BaNg), Gomory cuts (Gom.), and {0, 3 }-cuts. The
values are averages over all 25 instances. Column “root” gives the dual
bound after the root node. The last three columns list the number of cuts
found for the respective methods. Again, we initialize the algorithms with
the optimal solution. All cuts are separated every ten levels of the tree.

The studied combinations on average reduce the number of nodes with re-
spect to the method “round” alone; the best combination in this respect are
Balas/Ng and Gomory cuts. Furthermore, all combinations, except {0, %}—
cuts, improve the root dual bound with respect to the basic version. The
studied methods, however, increase the CPU time needed. The main slow-
down comes from the fact that the intermediate LPs become harder to
solve. The corresponding separation times are acceptable, however: The
average separation times for the version that uses all three methods are:
1.8% (BaNg), 17.0% (Gomory), 1.0% ({0, 1}). We conclude that the basic
version “round” alone is fastest on random systems.

Table 4 shows average results for method “round” on random instances
with m = 80 inequalities. It can be observed that the optimal values of
the random problems tend to decrease when increasing the dimension. This
often makes the problems more tractable. But of course, the solution of the
intermediate LPs over the alternative polyhedron is more time consuming.

4.3. Digital Video Broadcasting Problems. In this section we present
results for problems arising in an application of MAX FS in telecommunica-
tions, which is described by Rossi, Sassano, and Smriglio [54]. Here, to plan
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Table 5: Results for the DVB instances in Section 4.3 with method “round”. The column
labeled “[6]” lists the names of the instances as used in Amaldi, Belotti, and Hauser [6].

name [6] m  nodes time IISs root dual best gap
dvbl dvb2 1044 503 103.6 3064 166.4 1740 174 0.0
mfs UHF_P4.1 dvbl 642 1 2.3 86 104.0 104.0 104 0.0
mfs UHF_P4.3 dvb3 1717 539 599.72 5414 1742 183.0 183 0.0
mfs_ UHF_P4 4 - 1174 68049 196514.41 1002912 90.3 1152 124 7.6

the digital video broadcasting (DVB) network of Italy, transmitters have to
be placed and their emission frequency and power have to be chosen as to
maximize the area coverage, subject to quality constraints. A subproblem
of this can be modeled as a linear inequality system. Interference of the
signals leads to areas where the digital signal cannot be received, resulting
in an infeasible system. Maximizing the total weight of satisfied inequalities
then amounts to maximizing the area coverage.

Linearizing the model leads to numerically challenging problems. The
coefficients take values between 10~!! and 10!, and the resulting LPs are
very instable. We tackled the problems by scaling the original instances
before starting the branch-and-cut algorithm. This helps but nevertheless
leaves hard problems. Without scaling, however, the algorithm terminated
early with a completely wrong solution.

We could compute optimal solutions for the smallest instances used in
Amaldi, Belotti, and Hauser [6] and Amaldi, Bruglieri, and Casale [7], see
Table 5. Here, column “dual” gives the final lower bound, “best” denotes
the value of the best primal solution obtained (i.e., the primal bound), and
“gap” is the gap between the dual bound and primal bound in percent,
i.e., (best — dual)/dual - 100.0. The dimension of these instances is always
487, and the variable bounds (0 < & < 1) are mandatory. We separate
{0, 3}-cuts every 10th level of the tree. Our primal heuristic of Section 3.4
is run every 40th level. Note that these instances can be solved faster using
the “big-M” formulation (resulting in the same optimal solution values),
see [6, 7].

4.4. Classification Problems. One of the historically first applications of
MiN IIS COVER is the design of linear classifiers, see Amaldi [4], Mangasar-
ian [43], Bennett and Bredensteiner [19], and Rubin [55].

In this application, one is given m points py, ..., p,, in R", each belonging
to one of two possible classes P; and P, i.e., P and P» partition the set
{py,.-.,D,,}.- Eachof the N components of the points stores a measurement

of an attribute (or feature) relevant for the concrete application. The goal
is to strictly separate these points in RY by an oriented hyperplane defined
by aTz < 8, with @ € RY and 8 € R. The points in P; should satisfy the
inequality aTa < 3, and the points in P, should satisfy a’x > 3. Hence,
we are looking for (a,) € R", with n := N + 1, so that the number of
misclassified points

{peP:a'p>p}+{peh:a'p<pl
is minimized. This minimization is performed in order to maximize the
chance that a new point can be correctly classified. Note that with this
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formulation points in {x : aTx = 3} are counted twice (the models can be

modified to eliminate this).

In the following we will discuss two equivalent ways to model this problem
via MIN IIS COVER and present computational results for different data
sets. In the first model no bounds on the variables are present, while in the
second all variables are bounded except one.

For the first model we use variables (a,3) € R"™ and the following in-
equalities:

T <0 ifpe P,
a— for each p € e .
pa—§ {>0 it pc P, pe{p,-- pn}

Since (a, 3) are unbounded we can scale them to obtain

< -1 iprPl
pTa—ﬁ{

for each p € sy .
~1 itpep pe{p,---.Pn}

Of course, any other positive value instead of 1 can be taken in order to
obtain a numerically more stable system.

The second model is due to Rubin [55]. It uses variables @ € RY and 3,
~v € R in the following system:

pla—f++v<0 ifpe P
pla—B-7>0 ifpeP,
-1<a<l
~ > 0.001.

Hence, the coefficients of the normal vector a are bounded to lie within the
interval [—1, 1], while £ is unbounded. Of course, the lower bound 0.001
for v can be replaced by any suitably small positive number. For instances
arising from this model the variable bounds are mandatory.

Note that in both models it might happen that the systems are feasible,
i.e., the points are completely separable (in which case we need only solve
one linear program).

In our first test we use the first model and classification data from the
UCI Repository of Machine Learning Databases (Blake and Merz [21]). The
problem characteristics are given in Table 6. For some instances we had
to remove incomplete data sets. A complete description of the instances is
available at the UCI Repository. Most of these twelve instances are also used
by Chinneck [31] for testing his heuristic for MAXx FS/MIN IIS COVER.

Table 7 lists the results of the branch-and-cut implementation on these
instances with method “round” of Section 3.2.3. The computation time was
limited to five hours (18000 sec.). The columns have the same meaning as
in Sections 4.2 and 4.3.

Column “Chi” gives results obtained by the heuristic of Chinneck, see
Section 3.4; its running times are negligible and therefore not listed. Our
implementation found the same solutions as Chinneck [31], except for the
instances glass and wpbc, for which Chinneck obtained solutions of size 39
and 10, respectively. Our primal heuristic described in Section 3.4 is run
every tenth level. It could improve the initial solutions for models glass,
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Table 6: Characteristics of the classification instances. Column “N” lists the number of
attributes. The column labeled “m*” gives the number of original data sets and column
“m” gives the number of data sets remaining after removing incomplete ones. The right-
most column gives additional notes, e.g., the name of the instance in the UCI database.

name N m m* notes

breast-cancer 9 683 699 breast-cancer-wisconsin
bupa 6 345 345 liver-disorders

echo 8 61 132 echocardiogram

glass 9 214 214 type 2 vs. others

heart 13 297 303 heart-disease (Cleveland)
ionosphere 34 351 351

iris.1 4 150 150 Versicolor vs. others
iris.2 4 150 150 Virginica vs. others
new-thyroid 5 215 215 normal vs. others

pima 8 768 768 Pima-indians-diabetes
tic-tac-toe 9 958 958

wpbc 32 194 198 Wisconsin breast-cancer database

Table 7: Results of the branch-and-cut algorithm for the classification instances.

name nodes time IISs root dual best gap Chi
breast-cancer 313 2.88 359 7.2 11.0 11 0.0 11
bupa 9669 18000.11 179562 43.2 59.6 83 39.3 83
echo 2 0.05 89 6.0 6.0 6 0.0 6
glass 36859 18000.00 99833 18.5 32.7 36 10.0 41
heart 51274 18000.02 122000 12.8 23.5 29 23.6 30
ionosphere 2465 38.59 3967 2.4 6.0 6 0.0 6
iris.1 845 12.45 623 19.1 25.0 25 0.0 25
iris.2 1 0.01 2 0.0 1.0 1 0.0 1
new-thyroid 2 0.09 147 11.0 11.0 11 0.0 11
pima 1522 18000.18 64166 68.2 75.6 148 95.7 148
tic-tac-toe 50691 5167.03 19850 60.9 86.0 86 0.0 93
wpbc 56657 18000.00 739494 3.5 8.7 13 48.7 13

heart, and tic-tac-toe. We conclude that the heuristic of Chinneck gen-
erates very good starting solutions, while our primal heuristic sometimes
helps to find better solutions.

The results of Table 7 show that most instances are quite hard to solve
and about half of them could not be solved within the time bound of five
hours. Because of their size, only few nodes could be processed.

We also conducted experiments with the same data but using the second
model instead of the first. Intuitively this should result in better numerical
properties of the LPs that have to be solved during the algorithm. The
results are, however, comparable to the ones shown in Table 7, and we
therefore do not present them here.

Table 8 compares the gaps of the different cut strategies. The table dis-
plays only instances for which the optimal solutions could not be found
within five hours. It turns out that all variants find the same final primal
solutions, although at different times during the computation. Note that this
actually compares the interplay of cutting strategies and our primal heuris-
tic. On the average, the smallest gaps are produced by taking Gomory cuts,
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Table 8: Classification problems: Comparison of the gaps of different variants of cutting
planes. Only instances for which a positive gap remains after five hours are shown. The
notation is as in Table 3. The last line contains the averages over each column.

BaNg BaNg Gom.

name round BaNg Gom. {0,%} Gom. {0,%} {0,3} all
bupa 39.3 46.7 40.0 41.9 44.0 45.0 41.5 45.5
glass 10.0 12.7 10.0 10.6 12.2 12.7 9.8 12.4
heart 23.6 23.8 22.6 24.2 25.4 25.2 27.8 26.0
pima 95.7 101.8 95.0 98.6 103.2 101.4 94.1 105.4
wpbc 48.7 47.8 44.6 49.8 49.0 49.0 45.6 50.5
g 43.5 46.6 42.4 45.0 46.7 46.7 43.8 48.0

then method “round”, Gomory and {0, 3 }-cuts, {0, 2 }-cuts alone, Balas/Ng
cuts, Balas/Ng cuts and Gomory cuts, Balas/Ng cuts and {0, %}—cuts, and
finally all cuts together. The main reason why all cuts together produce
the worst results (on average) is that this combination could explore the
fewest number of nodes. We conclude that the additional cutting planes do
not yield a big improvement over method “round” alone. Although Gomory
cuts produce the smallest gaps, the studied cutting planes do not seem to
be crucial for solving these instances.

Our second test set consists of data from Codato and Fischetti [33] and
uses the second model. The data again originate from the UCI Repository
of Machine Learning Databases, but are preprocessed in a way we could
not reconstruct. Hence, the results for these instances and the instances
of Table 6 may not be comparable (there are three instances which seem
to arise from the same original data: breast-cancer < breast-cancer-2,
iris.1 < iris-150, wpbc <> WPBC194). Instances Breast-Cancer-2 and
Breast-Cancer-400 seem to be different from those used in Codato and
Fischetti [33].

Table 9 shows the results of method “round” on these instances. The no-
tation is as in Table 3. Note that here the dimension is n = N + 2, because
we use the second model. Most of the instances could be solved within a
few seconds. This is the first time that the complete set could be solved
to optimality: no optimal solution to the harder instances (Flags-169,
Horse-colic-185, Horse-colic-253, and Solar-flare-1066) was previ-
ously available. Our implementation solves all instances except these four in
under a minute. Although we worked on a faster computer, it nevertheless
seems fair to say that our code considerably improves upon the results of
Codato and Fischetti [33].

5. CONCLUSIONS

In this paper we described a branch-and-cut implementation for the Max
FS/MiN IIS COVER problem, which is the best exact method currently
available. The findings of the extensive computational results can be roughly
summarized as follows: With respect to the implementation, the best cutting
plane strategy is to find as many (violated) IIS-inequalities as possible. Ad-
ditionally applying Balas/Ng, Gomory, or {0, 4 }-cuts does not significantly
help to improve the performance: On random instances they do not improve



BRANCH-AND-CUT FOR THE MAXIMUM FEASIBLE SUBSYSTEM PROBLEM 17

Table 9: Classification problems: Results of the branch-and-cut algorithm for the prob-
lems of Codato and Fischetti with method “round”.

name n m nodes time IISs root opt
Balloons-76 7 76 1 0.02 59 10.0 10
BCW-367 12 367 110 0.97 252 5.5 8
BCW-683 12 683 71 1.70 235 6.8 10
Breast-Cancer-2 11 683 352 2.21 322 7.0 11
Breast-Cancer-400 20 400 2 0.08 116 24.0 24
Bridges-132 14 132 299 3.44 1563 20.2 23
BusVan-437 20 437 237 1.72 353 3.0 6
BusVan-445 20 445 605 5.53 750 3.3 8
BusVan-447 20 447 2334 37.65 4187 4.4 10
BV-05-282 20 282 214 1.39 338 3.0 6
BV-08-376 20 376 969 12.03 1361 4.2 9
Chorales-107 8 107 951 9.57 1187 21.4 27
Chorales-116 8 116 1022 19.85 1981 17.2 24
Chorales-134 8 134 1198 50.99 4008 20.8 30
Credit-300 17 300 13 0.93 222 5.9 8
Flag-169 31 169 7621 209.63 17276 3.5 9
Glass-163 12 163 15 0.64 158 10.9 13
Horse-Colic-151 28 151 231 2.25 540 2.2 5
Horse-Colic-185 28 183 69155 886.10 61414 3.6 10
Horse-Colic-253 28 253 273389 7938.84 308862 4.8 13
House-Votes84-435 18 435 56 0.68 200 4.0 6
Iris-150 7 150 1017 6.58 1011 11.7 18
Lymphography-142 20 142 21 0.24 131 2.9 5
Mech-analysis-107 10 107 1 0.04 83 7.0 7
Mech-analysis-137 9 137 757 5.83 890 11.6 18
Mech-analysis-152 10 152 900 32.05 3042 13.0 21
Monks-tr-115 8 115 917 16.24 1570 20.9 27
Monks-tr-122 8 122 4 0.45 267 11.2 13
Monks-tr-124 8 124 489 5.91 1187 18.1 24
Opel-Saab-76 20 76 1111 9.28 1756 2.9 7
Opel-Saab-80 20 80 241 2.01 512 3.0 6
Opel-Saab-83 20 83 2113 25.05 3904 3.2 8
Opel-Saab-84 20 84 572 7.06 1318 3.3 7
Pb-gr-txt-198 12 198 147 1.09 267 7.7 11
Pb-hl-pict-277 12 277 178 1.61 314 6.7 10
Pb-pict-txt-444 12 444 2 0.12 79 7.0 7
Postoperative-88 10 88 1 0.12 209 16.0 16
Solar-flare-323 14 323 3 0.71 478 37.2 38
Solar-flare-1066 14 1066 2292 787.64 14960 227.3 243
Water-treat-206 40 206 41 1.43 204 1.7 4
Water-treat-213 40 213 288 8.04 845 2.2 5
WPBC-194 36 194 172 3.21 468 2.2 5

the running time, but usually help to reduce the number of nodes. Gomory
cuts only slightly help to reduce the gaps for classification instances, and
the other cuts do not improve the gap.

With respect to the problem data, the considered instances vary greatly
in their properties and difficulty. Depending on the particular data, quite
large instances can be solved to optimality, but there are also relatively small
instances which turn out to be extremely hard to solve. As shown by the
DVB problems, one has to be careful with numerically instable instances.
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An interesting open issue is the existence of problem-specific cutting
planes and whether they can be efficiently separated. Another question
is whether other valid inequalities for the set covering problem could help
to improve the performance of the implementation.
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