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Abstract

Our theoretical study concerns an urea-urease-based pH oscillator confined to giant
lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion
across the unilamellar vesicle membrane periodically resets the pH clock that switches
the system from acid to basic, resulting in self-sustained oscillations. We analyse the
structure of the limit cycle, which controls the dynamics for giant vesicles and dominates
the strongly stochastic oscillations in small vesicles of submicrometer size. To this end,
we derive reduced models, amenable to analytic treatments, and show that the accuracy
of predictions, including the period of oscillations, is highly sensitive to the choice of
the reduction scheme. In particular, we suggest an accurate two-variable model and
show its equivalence to a three-variable model that admits an interpretation in terms of
a chemical reaction network. The accurate description of a single pH oscillator appears
crucial for rationalizing experiments and understanding communication of vesicles and

synchronization of rhythms.

Graphical TOC Entry

o5 ==




Introduction

Recent years have seen a growing surge of interest in design and development of chemical
oscillators for applications.'™ Both in natural intracellular environments and under engi-
neered in wvitro conditions, the enzyme-assisted reaction kinetics is typically confined to
small vesicles, i.e., permeable membrane-based micro- to nano-sized compartments.* The
concentration of the hydrogen ion, H", or, equivalently, the level of pH is an important
factor that controls the speed of enzymatic reactions.® Systems in which the hydrogen ion
plays the central role and causes self-sustained oscillatory behavior belong to the class of pH
oscillators.? Many examples of pH oscillations result from an interplay of chemical reactions
that involve positive and negative feedback and occur in closed reactors. In contrast to the
conventional systems, we discuss here a different mechanism of pH oscillations that relies on
an open reactor.

Motivated by experimental implementations®” and direct relevance for applications,®°
we consider an urea-urease-based pH oscillator confined to a lipid vesicle as an open reactor.
Ureases are a group of enzymes for the hydrolysis of urea,!! which occur widely in the
cytoplasm of bacteria, invertebrates, fungi, and plants, but also in soils. The activity of
urease is highly sensitive to the pH level and is maximal in a pH-neutral environment. ! 14
This renders the urea—urease reaction a typical pH clock that switches the system from acid
to basic. %! The clock can be “reset” if one allows for the exchange of acid and urea with an
external reservoir such that the initial concentrations are recovered, thereby completing the
elementary cycle of the oscillator. One potential realization of such a pH oscillator makes use
of differential transport of hydrogen ion and urea across lipid vesicle membranes: % placing
the vesicles in a suitable urea and pH buffer leads to a recovery of the internal concentrations
and thus periodic rhythms.

We have recently studied the impact of intrinsic noise on pH oscillations, }” which becomes
progressively important upon decreasing the vesicle size. It was found that the discrete

nature of molecules induces a significant statistical variation of the oscillation period in small,
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Figure 1: Schematic of the full four-variable and reduced three-variable reaction networks.
(a) The enzyme (urease) assists conversion of the substrate S (urea) into product P (am-
monia) in a lipid vesicle affected by varying acidity (hydrogen ion, H"). The substrate S
and acid H" exchange with the exterior of the vesicle, whereas the products P and PH"
(ammonium) are subjected to outflow from the vesicle (a,d); the ion form of product PH*
(reaction shown in gray) belongs only to the full reaction network. Volume reactions of
the full, Eq. (1), (b) and reduced, Eq. (10), (e) networks occurring in the vesicle. (c¢) The
reaction speed v = keat ([S], [HT]) [S] of the catalytic step (1a) for urease, Eq. (2), shows a
bell-shape dependence on pH = — log,([H"]/1 M) with the maximum in a neutral medium

(pH =~ 7). (f): pH oscillations obtained from the four- and three-variable models appear
similar.

nano-sized vesicles; however, the limit cycle of the deterministic rate equations does not only
control the dynamics for giant vesicles (of several micrometers in size), but dominates also
the strongly stochastic oscillations in small vesicles. The goal of this work is the analysis of
the structure of the phase flow and the limit cycle. To this end, we derive reduced models,
amenable to analytic treatments, and show that the quality of predictions is highly sensitive
to the choice of the reduction scheme. In particular, we suggest an accurate two-variable
model and show its equivalence to a three-variable model that admits an interpretation in

terms of a chemical reaction network.



Reaction scheme and four-variable model

We start with the four-variable model of pH oscillations in the urea-urease reaction confined
to lipid vesicle applied in our earlier study!” (Fig. 1a). The core of the reaction scheme are

two reactions that occur within the reaction compartment:

S _—N 2P . (1a)
P+ H* :: PH* . (1b)
27

Reaction (la) describes the enzyme-assisted hydrolysis of urea, CO(NH,),, into ammonia,
NHj, in the following denoted as substrate S and product P, respectively. Reaction (1b) ac-
counts for the acidity of the medium and involves reversible conversion between the product P
and its ion form PH" (ammonium) with the corresponding rates®1%1® ky = 4.3 x 109 Mg
and ko, = 24571, The effective speed v([S], [HT]) = keat([S], [H])[S] of reaction (1a) depends
on the concentrations [S| and [H"]| of substrate and protons, respectively; or equivalently, on

the level of pH = —log;,([H"]/1 M) and is modeled by the effective rate5:13:16

Fear ([S], [H*]) = Kot (18]) fur([H7]). (2)

The first factor describes the dependence on the substrate as captured by the Michaelis—

Menten kinetics,

() = - (3)

with the Michaelis—Menten constant®16 Ky = 3 x 1073 M. This implies that the reaction
speed v grows linearly with [S] at small [S] < Ky and monotonically saturates at its max-

imum value v, that would be attained in the absence of pH effects. The second factor



implements the bell-shaped dependence of the reaction speed on the acidity (Fig. 1c):

1
1+ [H]/Kp1 + Ko/ [H']

fu(HT]) = (4)

with the constants®!110 Ky =5 x 1075 M and Kgs = 2 x 1072 M. It implies that the speed
of reaction is maximum at the normal value of pH = 7, but is strongly suppressed when
shifted from this optimal value to the regions of lower (acidic) or higher (base) pH.

The core reactions (la) and (1b) are accompanied by the exchange with a reservoir and

the decay of products (Fig. 1d); the reservoir acts as a buffer of substrate and pH, originally

ku
+
:H

oxt- By assuming a sufficiently large

k
expressed by the reactions S — Sext and HT

+

ext

reservoir such that the amounts of S.y; and H_, are changed only marginally, we consider

the reservoir concentrations as fixed values [Sqy| and [HZ,]. The exchange reactions are then

ext

effectively replaced by

ks kn

£ )] and Hf ——
ks [Sext] ku[HL ]

S . (5)

The formulation of the reaction scheme is completed by specifying the decay of products or

their outflow out of the reaction compartment by the reactions

Pty and PH' L5 o, (6)

The set of reaction rate equations that corresponds to reactions (1), (5) and (6) reads:

=% = —kea([S], [HD)IS] + ks ([Sext] = [3). (7a)
d[dit*] — by, [PHY] — ko[P][H*] + hyg((HE] — [HY]). (7b)
% = kear([S], [HF])[S] + o [PHY] — ko [P][H] — K[P], (7c)



which we will refer to as four-variable model in the following.

Focusing on the oscillatory regime, we stick to the parameter values used previously.'”
Thus, the rates of urea and proton transport correspond to ks = 1.4 x 1073s7! and ky =
9 x 1073571, respectively; the outflow rates of both products is set to k¥ = kg. For the

1

maximum speed we use the value vpax = 1.85 x 107* M s~!, which corresponds to an urea

concentration of 50 U. The external concentrations are fixed to [Sey] = 3.8 x 107* M and

[He,

F4J = 1.3 x 107" M and the initial concentrations inside the vesicle are [S]p = 5 x 107° M

and [H*]g = 1075 M.

For these parameters, the four-variable model [Egs. (7)] shows oscillatory behavior in the
concentrations [S], [HT], [P] and [PH*] as exemplified in Fig. 2; note the logarithmic scale
in panels (a) and (b). This evolution of the concentrations essentially reproduces that of the
corresponding molecular populations in the large-vesicle limit, reported in Fig. 2 of Ref. 17;
the periodic variation of the pH level, roughly between 3.5 and 8.5, reflects the behavior of
[H"] and is shown in Fig. 1f. The concentrations of H* and P oscillate in anti-phase over four
orders of magnitude and the evolution of [S] and [PH*] shows the same periodic behavior,

but with a much smaller amplitude, Fig. 2b.

Quasi-steady state approximation for PH™"

Aiming at a characterization of the limit cycle of the urea—urease oscillator, we will first
pursue a dimensional reduction of the dynamical system by elimination of inessential vari-
ables. Then, we will identify the actual degrees of freedom of the system and show that the
dynamical system is effectively a two-dimensional one. In our previous work,!” starting from
the four-variable model [Egs. (7)], we applied the quasi-steady-state approximation (QSSA)
simultaneously to the variables [PH*] and [P] in an ad hoc fashion. Here, we follow a more
general and systematic approach, yielding more accurate reduced models and, particularly,

also their regimes of validity. The model reduction occurs in two steps: In the first step, we
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Figure 2: Evolution of concentrations showing oscillations according; numerical solution
of the four-variable model, Eq. (7). (a): Concentrations [H"] (red) and [P]| (turquoise).
(b): Concentrations [S] (orange) and [PH'| (blue). (c): Concentration [PH"| (blue), which
coincides with the combination &'[P][H*] (thin black), see Eq. (8).

eliminate [PH"], which leads to a three-variable model; this step is common to all models
considered below. In the second step, we aim at a further reduction to two variables by

eliminating [P], which can be performed in different ways leading to distinct models.

Reduced 3-variable model

By inspection of Fig. 2, we can draw two important conclusions. First, the concentration of
the ion form of the product is larger than all other concentrations, [PH*] > [S], [H"], [P].
Second, the absolute variation of [PH'] is smaller than those of the other concentrations,
which suggests to approximate [PH"|() & const, which implies d[PH"|/dt ~ 0. Hence from
Eq. (7d), we obtain

ks

[PH)(1) = K [P(5) [H)(1) = const, K = = (8)




This result implies that log([P](¢)) and log([H"](¢)) oscillate similarly, but in antiphase, as is
indeed observed in Fig. 2a. To test the quality of this approximation, we compare [PH™ (¢)]
with the product &'[P](¢)[H*](t) graphically in Fig. 2c. We conclude that, although these
quantities do not remain constant, their temporal behavior coincides at all times with high
accuracy and that there exist well-separated timescales:'*?° the fast species PHT adjusts
quickly to the relatively slowly evolving P and H*, which corresponds to a QSSA for PH™ in
the form d[PH"]/dt ~ 0. Making use of Eq. (8) in Egs. (7b) and (7c), we arrive at a reduced

model that employs only three variables:

d[S]

% = ke ([8), [])[S] + hs([Slews — [S), (%)
d[f;] = kK [P)[HY] + kg ([H s — [HT]), (9b)
U aha (15 (D)) — ok [PI[HC] — KIP]. 0

Note that while simplifying Eq. (9¢), in accord with the above reasoning, we could have
neglected the last term, —k[P]. Indeed, the assumption [PH"] > [P] together with Eq. (8)
leads to the requirement &'[H*] > 1. As independently confirmed by a previous study, 6 this
is a reasonable simplification for modeling pH oscillations. However, to analyze the whole
phase plane and keep the predictions of reduced models as close as possible to those of the
original four-variable model, we retain this term.

The dynamic system in Eq. (9) can be interpreted as the reaction rate equations of the

following effective system of in-volume reactions (Fig. le):

guese,9p,  prHT Mg (10)

cat

amended by the exchange reactions (5) of S and H" with the reservoir and the decay of P, see
the first reaction in Eq. (6) (Fig. 1d). Thus, the product P has two channels to escape from

the vesicle: directly and after protonation with an effective rate. In the original reaction



scheme involving four species, the second channel exists indirectly, via escape of PH™.

We also note that despite relation (8) is fulfilled with high accuracy, the evolutions
described by the three- and four-variable models are not identical (Figs. 1f and 3). Slight
quantitative differences in the predictions of the two models are visible for P and pH (and,
equivalently, for [H']). Interestingly, whereas the deviations are tiny for pH, they are more
pronounced for P, yet eventually less important because we are generally not interested
in the dynamics of the product. What is essential is that the reduced model given by
Egs. (9) preserves not only all qualitative features of the four-variable model, but it remains
quantitatively reliable in predicting the period of the oscillations. Thus, the three-variable

model, Egs. (9), serves as a highly accurate approximation.
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Figure 3: Comparison of predictions of the four- and three-variable models given by Eqs. (7)
and (9), respectively. Evolution of concentrations describing acid [H'] (a), product |P] (b),
and substrate [S] (¢). The comparison of the corresponding pH is shown in Fig. 1f.
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Reduced 2-variable model

The further reduction of Egs. (9) to two species by means of an QSSA for [P] appears
less accurate as the elimination of [PH"]. Instead, we shall put forward a more appeal-
ing solution, which is essentially exact. For clarity, we switch to dimensionless variables
s(t) := [S](t)/[Sext), h(t) := [HT](t)/[HL,], and p(t) = k' [P](t). With this, Eq. (8) yields the
constraint p(t) h(t) = [PHT]/[H.,

ext

] = const, and thus

Mﬂg%?~%@%2h@y:0, (11)

which implies that the dynamics of p(t) and h(t) are tightly coupled. After substitution of
the time derivatives using Eqgs. (9b) and (9c¢), the constraint assumes the form of a quadratic

equation in p = p(s, h),

p* +b(h)p —c(s,h) =0, (12)

with the dimensionless coefficients

b(h) = 1+ K'[H,

ext

Jh+ (1= B kg k (13)

and

2k’ kcat (3, h) [Sext]

c(s,h) = -

s>0. (14)

Equation (12) possesses two roots, p+ = (—b £ v/b?+ 4c¢)/2, and selecting the positive

solution, p(s, h) > 0 for all s,h > 0, we obtain

pi(s,h), ifb(h) >0,
p(s,h) = (15)
p_(s,h), ifb(h) <O0.

11



In particular, the time evolution of the rescaled concentration [P] of products is enslaved to
the evolution of [S] and [H"] and is given by p(t) = p(s(t), h(t)).

This solution for p(t) allows us to eliminate [P] as a variable from the three-variable
model in Egs. (9). In particular, one verifies that Eq. (9¢) is automatically satisfied and
can be dropped. Casting the remaining Eqs. (9a) and (9b) in dimensionless form yields the

two-variable model:

% = F(s,h) == —kear(s,h)s + ks(1 — s), (16a)
% = G(s,h) == —kp(s,h)h + ku(1 —h), (16b)

where p(s,h) is defined by relation (15) with the coefficients b(s, h) and c(s, h) given by
Egs. (13) and (14). We stress that Eq. (15) is an immediate consequence of Eq. (8), without
further approximations. The two-variable model [Egs. (16) with Eq. (15)] is thus an exact
representation of the three-variable model (9). However, differently from the latter, Eqgs. (16)
do not have a meaningful interpretation as rate equations of a system of effective reactions
unless one accepts kp(s,h) as an effective decay rate of H'. Since the introduction of
nonelementary rates as a result of reduction on the deterministic level may lead to significant

21,22 it is favorable to use

quantitative and even qualitative errors in stochastic simulations,
the three-variable alternative as a stochastic model.

Fig. 4 shows the three-dimensional phase plot for the corresponding variables [S], [H],
and [P] using different scales. It highlights two important features of the system. First,
it becomes evident that the representation using the linear scales does not resolve well the
structure of the limit cycle, especially at small concentrations of [H] (high pH). This
suggests to utilize the logarithmic scales, which represents the structure of the limit cycle
uniformly well in the whole range of values. This observation indicates that the behavior of

the system differs from conventional examples of pH oscillators.? Second, the figure stresses

the importance of the constraining manifold, which renders the three-dimensional system

12



effectively a two-dimensional one. Despite the presence of three variables, the behavior of the
system is strictly confined to a two-dimensional manifold of roughly hyperbolic shape in the
representation via linear scales, but it simplifies approximately to a plane in the logarithmic
representation. Furthermore, the fact the constraining manifold deviates strongly from a
plane, e.g., at a constant value of [P], signifies clearly that the naive orthogonal projection
of the phase flow to such a plane for elimination of [P] as a variable would be a poor

approximation of the true dynamics; an issue we will expand on below.

(a) s 40 a4 ™ (b)

1010 =

=3
10| =
| 10,05 &
pP _”0.00

) 080 \\,\\\\’

Figure 4: Phase plot of the limit cycle (red) of the three-variable model, Eq. (9), using
logarithmic (a) and linear (b) scales. The surface is given by Eq. (15), which represents the
constraint, Eq. (11). The black line is the orthogonal projection of the limit cycle to the plane
pP = 4 and [P] = 0, respectively. In panel (a), we use the symbols pX = —log,,([X]/1 M)
for X =S, H*, P; note that small values of, e.g., pS correspond to large concentrations [S].

Limit cycle and structure of the phase flow

Nullclines

General properties of the limit cycle can be understood from the geometrics structure of
the phase flow (F'(s, h), G(s,h)) of a dynamic system. Helpful characteristics specifying the
structure of the phase flow or phase portrait are nullclines. For the two-variable model
(16), the S and H' nullclines are defined by the conditions F(s,h) = 0 and G(s,h) = 0,
respectively. By construction, on a given nullcline the flow is perpendicular to the axis of

the corresponding variable. The intersection of all nullclines defines all fixed points of the

13



phase flow, which represent the steady state solutions of Egs. (16), i.e., the points where all
time derivatives vanish. For the present two-variable model, both nullclines can be obtained
analytically.

The S nullcline is calculated by putting F'(s,h) = 0 in Eq. (16a), which on account of

Eq. (2) leads to a quadratic equation in s:
2+ B(h)s — Ky =0 with B(h) := Ky — 1+ Opax fu(h) (17)

where Umax = Umax/(ks[Slext); Km = Kum/[Slext and fu(h) is given by Eq. (4). Out of the
two roots s (h), only the one describing non-negative substrate concentration is physically

relevant, thus yielding the S nullcline,

s§°(h) = s (h) := —@ + % B(h)2 + 4Ky . (18)

To obtain the H nullcline, we set G(s,h) = 0 in Eq. (16b) and, using the definition of

p(s, h), after some tedious algebra, we arrive at the intermediate relation,
2k kear (8, 1) [Slexts = ku (R~ — 1)(1 + K'[H ]exih) - (19)

More straightforwardly, we can derive this result by making use of Eq. (11), which implies
that dh/dt = 0 is equivalent to dp/dt = 0 for p(t), h(t) > 0: set to zero the time derivative

in Eq. (9¢), solve for
2k,kcat(sa h) [S]eXt s
1 + k,[HJr]exth ,

kp(s,h) = (20)

and substitute it in Eq. (16b). Finally, inserting the definition of k.t (s, k), Eq. (2), into the

intermediate equation for s leads us to the H nullcline,

. - 2l€/Umafo<h) — -
si (h) = Ku k(b= — 1)(1 + K/ [H' ] exh) 1

(21)

14



Phase flow

The origin of the limit cycle is easily understood from the phase portrait of the two-
dimensional dynamical system, Eqgs. (16), and the associated nullclines, Eqgs. (18) and (21).
As mentioned earlier, a remarkable feature of this system is that the structure of the phase
flow is best unveiled on logarithmic scales—in contrast to conventional examples of oscilla-
tors. Therefore, instead of the original variables s and h, we will use pS = —log,(($[S]ext/1 M)
and pH as axes of the phase plane. The phase flow of the two-variable model together with
its nullclines and the limit cycle are shown in Fig. ba. For the parameters considered here,
the nullclines intersect only in a single, repelling fixed point enclosed by the limit cycle. The

limit cycle was obtained from the numerical solution of ds/dt = F(s, h) and dh/dt = G(s, h)

after a sufficiently long initial relaxation time.
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Figure 5: Phase flows and limit cycles in the pS-pH plane. Comparison of two two-variable
models reduced from the three-variable model, Eq. (9), by different elimination of the prod-
uct. The S (blue line) and H' (green line) nullclines are the same for both models and are
given by Egs. (18) and (21), respectively. (a): Model obtained by the exact elimination of
product p, see Eq. (16). (b): Model obtained by imposing QSSA for the variable p, as given

by Eq. (23).

Qualitatively, the shape of the limit cycle is determined by the nullclines and the two-
dimensional flow field (F (s, h), G(s,h)). The S nullcline (Eq. (18), blue line) has a rotated

bell shape and the H" nullcline (Eq. (21), green line) is of a reversed s-like shape. The

15



requirement on the flow field that, at any point of the nullclines, there is no motion along
the corresponding direction means that the flow on the S nullcline can only point along the
pH direction (vertical arrows) and on the H™ nullcline along the pS direction (horizontal
arrows). In the high pH regime, both nullclines run closely together such that the H"
nullcline pushes the flow towards the S nullcline. This causes a channeling of the flow
between the two nullclines towards the apex of the S nullcline, where s8°(h) attains its
maximum value (pS ~ 5.0). There, the flow points downwards, along the pH axis, and is
tightly restricted with respect to pS (i.e., horizontally), concomitantly the pH value drops
rapidly. All phase trajectories, irrespective of their starting point, eventually approach this
apex point arbitrarily closely and follow the S nullcline for a moment, which essentially
defines a piece of the limiting trajectory (limit cycle, red line). After this point, the S
nullcline bends away from the vertical, but the trajectory keeps following the flow field and
revolves around the fixed point until the orbit closes, which forms the limit cycle. Thus, the
limit cycle is determined as the trajectory that starts in the apex of the S nullcline, where

the curve attains its largest pS value.

Failure of QSSA for P

In the literature, it was suggested to apply the quasi-steady state approximation (QSSA) to
the concentration [P] of products.'®!” Here we elaborate on the consequences of this approx-
imation and show that although the nullclines remain the same as in the exact reduction
scheme, it qualitatively changes the phase flow. In hindsight, it is clear that such an ap-
proximation cannot be consistent with the QSSA for PH™, which leads to the three-variable
model, Egs. (10), and constrains the three-dimensional flow to a two-dimensional manifold
as discussed above (Fig. 4).

This elimination scheme follows directly from Egs. (9) by enforcing the QSSA for p.

Setting dp/dt = 0 in Eq. (9¢) and proceeding to dimensionless variables, u(h) = 1+
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(K'[H"]exsh) ™" and 7 = [S]ext/[H ]exs, we find

kp(s, h)h = 2rokeat(s, h)s/u(h) . (22)

Finally, substituting the combination kp(s, h)h in Eq. (9b), we arrive at the model:

d

= = —heaa(s, )3 + ks(1 = 5), (23a)

dt

dh

i —2rckear(s, )su(h) ™t 4+ k(1 — h) . (23b)
In our previous study,!” this model was used with u(h) = 1 to qualitatively obtain the

structure of the phase portrait exhibited by the numerical solution of the four-variable model.
As earlier, the H" nullcline corresponding to Eq. (23b) follows simply by setting dh/dt =
dp/dt = 0 in Egs. (9b) and (9¢) and solving for s(h). Expressing the combination kph from
the equation for h and equating it with that from Eq. (22), we end up with the H" nullcline
identical to Eq. (21). The S nullcline is given by Eq. (18) due to the coincidence of the
equations for s, cf. Eq. (16a) and Eq. (23a).

By comparing the phase plots of the models given by Eq. (16) and Eq. (23), cf. Fig. 5a
and Fig. 5b, we can immediately notice that although the nullclines of both models are the
same, the flow fields in the upper half of the plots (larger pH) are drastically different. In
particular, the behavior of the flow field on the upper branch of the H™ nullcline described
by model Eq. (23) becomes degenerate, Fig. 5b. Indeed, by construction, the arrows have to
be horizontal on the H™ nullcline, meaning the absence of the vertical component of the flow
field. Although this requirement remains fulfilled, the horizontal component of the flow also
turns to zero. Moreover, a close inspection of Fig. 5b reveals that the structure of the limit
cycle becomes qualitatively different. In contrast to the accurate scenario shown in Fig. Ha,
the shape of the limit cycle is now fully set by the upper branch of the H™ nullcline, which
directly affects the period of oscillation predicted by this model.

We note that the model given by Eq. (23), and hence the QSSA for the product P,
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correspond to a special limit of the model given by Eq. (16). It follows from the exact
solution for p, see Eqs. (13)—(15), in the limit b* > 4¢ with b dominated by the contribution
b~ 1+ K[H = Kh[H eu(h) > 0 yielding p = py ~ [=b+ b(1 + 2¢/b?)]/2 = ¢/b =
2rokcat (s, h)s[khu(h)]™Y, cf. Eq. (9¢) for dp/dt = 0. The requirement b > 0 is imposed by
the necessary condition that the concentration p(t) remains always non-negative and implies
that &’h[H" |excu(h) > ku(1 — h™Y)/k. The latter is justified for a part of the time period
only, when h is large enough (low pH). For the rest of the period, when £ is relatively small
(high pH), the more accurate solution for p(t) is governed by the case b < 0 and is defined by
the root p_. Therefore, disregarding this root in favor of p, for all times is the reason that
significantly restricts the validity of the QSSA for P and the whole model given by Eq. (16).
This reasoning explains why the model given by Eq. (23) causes the degeneracy and becomes
unreliable in the domain of high pH.

Finally, as can be seen from Fig. 5a and Fig. 5b, the S and H™ nullclines exhibit a single
intersection, with the neighboring flow field indicating existence of an unstable fixed point.
Note that in the vicinity of the fixed point models given by Eq. (16) and Eq. (23) display very
similar flow fields, see Fig. 6. This is not unexpected because the exact model Eq. (16) admits
formal reduction to the approximate model Eq. (23) in the domain of relatively small pH.
For the given parameters, the fixed point is found to take place at (pS,, pH,) ~ (4.31,4.57),
which is fully consistent with the earlier finding.!” By linearizing the system around this
fixed point, we find that the unsteady equilibrium corresponds to an unstable focus, which
serves as a repeller. On account of the discussed properties of the nullclines and phase flow,
we conclude that the phase trajectory is forced to form a closed orbit around the repeller,

which constitutes the limit cycle and completes our analysis.
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Figure 6: Close-up of the phase portrait in Fig. 5 in the vicinity of the fixed point. The
red line shows a part of the limit cycle, and gray arrows indicate the phase flow. The fixed
point is given as the intersection of the S nullcline (blue line, Eq. (18)) and the H' nullcline
(green line, Eq. (21)). Note that in the shown regime of relatively small pH, the behavior of
the two models Eq. (16) and Eq. (23) is similar.

Summary and conclusions

We have theoretically studied an urea-urease-based pH oscillator confined to a giant lipid
vesicle, which is capable of differential transport of urea and hydrogen ion across the unil-
amellar membrane and serves as an open reactor. In contrast to conventional pH oscillators
in closed chambers, the exchange with the vesicle exterior periodically resets the pH clock
that switches the system from acid to basic. Here, we have focused on large vesicles of sizes
of several micrometers, which justifies a deterministic treatment of the dynamics. Quite
importantly, as shown recently by a stochastic simulation study,'” the structure of the limit
cycle of the deterministic rate equations controls not only the behavior for giant vesicles,
but also dominates the pronouncedly stochastic oscillations in vesicles of submicrometer size.
This justifies our deterministic approach and prompts the analysis of the structure of the
phase flow and the limit cycle.

Starting from a reaction scheme involving four species, namely urea as the substrate S,

hydrogen ion H', ammonia as product P, and ammonium as its ion form PH", we have
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obtained accurate reduced models by eliminating the product species. We have first reduced
the system of rate equations to three variables by excluding PH" via a quasi-steady state
assumption (QSSA). Next, we have eliminated P to arrive at a model for two variables S and
H" that is an ezact representation of the three variable model. In particular, we have shown
that the QSSA for PH" in the first step introduces a constraint that couples the dynamics
of H" and P, implying that the three-variable model is effectively a two dimensional one.
The constraint manifests itself as a nontrivial manifold that restricts the phase flow and the
limit cycle to live in. The structure of the phase flow and the properties of the limit cycle
are best uncovered using a logarithmic representation—in contrast to conventional examples
of oscillators.

By analyzing the phase flow and mutual positioning of nullclines, we have shown that
the limit cycle is set by the S nullcline. Noteworthy, this outcome is in contrast to our
expectations based on the QSSA for P from an earlier study,!” which suggested that the limit
cycle is set by the H™ nullcline. However, already a quick inspection of a three-dimensional
phase plot (Fig. 4), where the concentration of P varies by four orders of magnitude and
the constraining manifold is drastically different from a plane, indicated that this reduction
scheme does not appear as a good idea. We have further demonstrated that the QSSA for
P approximates the full model only in the acid regime (low pH) and leads to degenerate
behavior of the flow field near the high-pH branch of the H" nullcline. Even though the
nullclines remain identical for both two-dimensional models, the structure of the phase flow
is different, in particular, in the basic regime. Moreover, the QSSA for P is mathematically
unjustified and leads to inconsistencies in the regime of high pH. Thus, the quality of the
model and the accuracy of its predictions, including the oscillation period, are highly sensitive
to the choice of the reduction scheme.

An important advantage of our findings is that whereas the two-variable model is more
amendable to analytic treatments, its three-dimensional counterpart admits a reliable in-

terpretation as a reaction scheme and is favorable for stochastic simulations. These models
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can be used for accurate descriptions of pH oscillations in giant, but also small vesicles;
for the latter, correctly reproducing the oscillation periods is vital for the comparison with
experimental conditions and for rationalizing experiments. Furthermore, a faithful model of
a single pH oscillator is a crucial prerequisite for understanding communication of vesicles

and synchronization of rhythms. 0232

Acknowledgement

This research has been supported by Deutsche Forschungsgemeinschaft (DFG) through grant
SFB 1114, project no. 235221301 (sub-project C03) and under Germany’s Excellence Strat-
egy — MATH+ : The Berlin Mathematics Research Center (EXC-2046/1) — project no.
390685689 (subproject AA1-1).

References

(1) Novak, B.; Tyson, J. J. Design Principles of Biochemical Oscillators. Nat. Rev. Mol.
Cell Biol. 2008, 9, 981-991.

(2) Orban, M.; Kurin-Csorgei, K.; Epstein, I. R. pH-Regulated Chemical Oscillators. Acc.

Chem. Res. 2015, 48, 593-601.

(3) Cupic, Z. D.; Taylor, A. F.; Horvath, D.; Orlik, M.; Epstein, I. R. Editorial: Advances

in Oscillating Reactions. Front. Chem. 2021, 9, 690699.

(4) Zhang, Y.; Sun, C.; Wang, C.; Jankovic, K. E.; Dong, Y. Lipids and Lipid Derivatives
for RNA Delivery. Chem. Rev. 2021, 121, 12181 — 12277.

(5) Alberty, R. A.; Massey, V. On the Interpretation of the pH Variation of the Maximum
Initial Velocity of an Enzyme-Catalyzed Reaction. Biochim. Biophys. Acta 1954, 13,

347-353.

21



(6)

(7)

(10)

(11)

(12)

(13)

(14)

(15)

Hu, G.; Pojman, J. A.; Scott, S. K.; Wrobel, M. M.; Taylor, A. F. Base-Catalyzed
Feedback in the Urea-Urease Reaction. J. Phys. Chem. B 2010, 114, 14059-14063.

Muzika, F.; Ruzicka, M.; Schreiberové, L.; Schreiber, I. Oscillations of pH in the
Urea—Urease System in a Membrane Reactor. Phys. Chem. Chem. Phys. 2019, 21,

8619-8622.

Miele, Y.; Bansagi, T.; Taylor, A. F.; Stano, P.; Rossi, F. Engineering Enzyme-Driven
Dynamic Behaviour in Lipid Vesicles. Advances in Artificial Life, Evolutionary Com-

putation and Systems Chemistry. Cham, 2016; pp 197-208.

Miele, Y.; Bansagi, T.; Taylor, A. F.; Rossi, F. Modelling Approach to Enzymatic pH
Oscillators in Giant Lipid Vesicles. Adv. Bionanomater.: Lecture Notes in Bioengineer-

ing. Cham, 2018; pp 63-74.

Miele, Y.; Jones, S. J.; Rossi, F.; Beales, P. A.; Taylor, A. F. Collective Behavior of
Urease pH Clocks in Nano- and Microvesicles Controlled by Fast Ammonia Transport.

The Journal of Physical Chemistry Letters 2022, 13, 1979-1984.

Krajewska, B. Ureases I. Functional, Catalytic and Kinetic Properties: A Review. J.

Mol. Catal. B: Enzym. 2009, 59, 9-21.

Qin, Y.; Cabral, J. M. S. Kinetic Studies of the Urease-Catalyzed Hydrolysis of Urea

in a Buffer-Free System. Appl. Biochem. Biotechnol. 1994, 49, 217-240.

Fidaleo, M.; Lavecchia, R. Kinetic Study of Enzymatic Urea Hydrolysis in the pH
Range 4-9. Chem. Biochem. Eng. (). 2003, 17, 311-318.

Krajewska, B.; Ciurli, S. Jack Bean (Canavalia Ensiformis) Urease. Probing Acid-Base

Groups of the Active Site by pH Variation. Plant Physiol. Biochem. 2005, 43, 651-658.

Bubanja, I. N.; Bansagi, T.; Taylor, A. F. Kinetics of the Urea-Urease Clock Reaction

22



(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

With Urease Immobilized in Hydrogel Beads. React. Kinet. Mech. Catal. 2018, 123,
177-185.

Béansagi, T.; Taylor, A. F. Role of Differential Transport in an Oscillatory Enzyme
Reaction. J. Phys. Chem. B 2014, 118, 6092-6097.

Straube, A. V.; Winkelmann, S.; Schiitte, C.; Hofling, F. Stochastic pH Oscillations in
a Model of the Urea—Urease Reaction Confined to Lipid Vesicles. J. Phys. Chem. Lett.
2021, 12, 9888-9893.

Eigen, M. Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I:

Elementary Processes. Angew. Chem. Int. Ed. Engl. 1964, 3, 1-19.

Segel, L. A.; Slemrod, M. The Quasi-Steady-State Assumption: A Case Study in Per-
turbation. STAM Rev. 1989, 31, 446-477.

Wechselberger, M. Geometric singular perturbation theory beyond the standard form;

Frontiers in Applied Dynamical Systems: Reviews and Tutorials; Springer: Cham,

2020; Vol. 6; p 137.

Thomas, P.; Straube, A. V.; Grima, R. Stochastic Theory of Large-Scale Enzyme-
Reaction Networks: Finite Copy Number Corrections to Rate Equation Models. J.
Chem. Phys. 2010, 133, 195101.

Thomas, P.; Straube, A. V.; Grima, R. The Slow-Scale Linear Noise Approximation: An
Accurate, Reduced Stochastic Description of Biochemical Networks Under Timescale

Separation Conditions. BMC Syst. Biol. 2012, 6, 39.

Pikovsky, A.; Rosenblum, M.; Jiirgen, K. Synchronization a Universal Concept in Non-

linear Sciences; Cambridge University Press: Cambridge, UK, 2001.

Budroni, M. A.; Torbensen, K.; Ristori, S.; Abou-Hassan, A.; Rossi, F. Membrane

23



Structure Drives Synchronization Patterns in Arrays of Diffusively Coupled Self-

Oscillating Droplets. J. Phys. Chem. Lett. 2020, 11, 2014-2020.

(25) Budroni, M. A.; Pagano, G.; Conte, D.; Paternoster, B.; D’ambrosio, R.; Ristori, S.;
Abou-Hassan, A.; Rossi, F. Synchronization Scenarios Induced by Delayed Communi-
cation in Arrays of Diffusively Coupled Autonomous Chemical Oscillators. Phys. Chem.
Chem. Phys. 2021, 23, 17606-17615.

24



	zibtitlepage
	ZIB-Report

