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—— Abstract
The Flight Planning Problem is to find a minimum fuel trajectory between two airports in a 3D
airway network under consideration of the wind. We show that this problem is NP-hard, even in
its most basic version. We then present a novel A* heuristic, whose potential function is derived
from an idealized vertical profile over the remaining flight distance. This potential is, under rather
general assumptions, both admissible and consistent and it can be computed efficiently. The method
outperforms the state-of-the-art heuristic on real-life instances.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Mathematics
of computing — Paths and connectivity problems; Mathematics of computing — Combinatorial
optimization; Mathematics of computing — Discrete optimization

Keywords and phrases shortest path problem, a-star algorithm, flight trajectory optimization, flight
planning, heuristics

Digital Object Identifier 10.4230/0ASIcs. ATMOS.2022.1

1 Introduction

The Flight Planning Problem (FPP) seeks to compute a flight trajectory between two airports
that minimizes fuel consumption. In this paper we consider a basic version subject to weather
conditions, aircraft performance, and an airway network.

Weather forecasts for flight planning are usually provided on a 4D grid, which specifies a
wind vector for each coordinate, altitude, and time. These data can be interpolated on all
4 dimensions to obtain a single wind vector acting on each flight segment, see [4] for more
details. For the purposes of this paper, it suffices to think of wind as a function that maps
time to an effective air distance that is needed to traverse a given segment.

Aircraft performance specifies how the state of the aircraft changes as a function of the
flight phase and various parameters. Namely, for the current weight, the current altitude, the
target distance, and the local wind condition, the performance function computes the weight
after a cruise, climb, or descent phase along a flight segment. For cruise phases, the influence
of the wind can be subsumed into the distance to the cruise target. The fuel consumption
is then the weight difference, while the cruise time can be easily calculated from the speed
(which we assume here to be constant) and the distance. For climbs and descents, distance,
consumption, and time are more difficult to compute, since they depend on the vertical
angle, which in turn depends on the aircraft weight. In accordance with the literature, see,
e.g., [15], we assume that, ceteris paribus, a higher weight results in a higher consumption,
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Figure 1 Vertical profile on a flight from Amsterdam to Santiago. The blue graph represents the
aircraft’s altitude over time. Image obtained from FlightRadar24.com on the 9th of July 2021.

that cruising is in general more efficient as the altitude increases, until an optimal cruise
altitude is reached, and that a smaller aircraft weight results in a steeper climb/descent angle.
Moreover, a climb between two given altitudes might not be possible if the aircraft weight
exceeds a certain threshold. These properties produce a vertical profile shape that is known
as step-climb. Namely, to fly efficiently, an aircraft climbs from the departure airport to the
highest altitude reachable in a single climb. Then, it cruises on this altitude until it has
burned enough fuel and is light enough to climb further. This is repeated until the optimal
cruise level is reached. Finally, the aircraft needs to start the final descent. See Figure 1 for
a real-life example.

The Airway Network is a directed graph with a three-dimensional embedding covering
the airspace around the Earth. It arises from a set of waypoints (2D coordinates) connected
by airway segments (straight lines) on a set of discrete flight levels (altitudes); airports
are a modeled as a particular type of waypoints. The horizontal profile of a legal flight
trajectory must consist of a contiguous sequence of airway segments connecting the two
airports. Vertically, cruise phases are only allowed on one of the flight levels, while a climb
or descent phase must be started at a waypoint (it cannot be started from the interior of a
segment, but can and usually does end in the interior).P

The literature on the FPP varies greatly in the extent and depth at which the technical
aspects of the problem are treated. [6] is an extensive work that goes into great detail. To
the best of our knowledge, it presented the first dynamic programming algorithm which runs
on a 3D graph. [9] uses a dynamic programming approach to minimize fuel consumption
during the cruise phase for a fixed horizontal route. [18] computes a trajectory on a search
space where the horizontal route is not restricted by waypoints and segments by splitting
the problem into a horizontal and a vertical component, which are solved sequentially using
dynamic programming approaches. [12] gives a realistic and detailed survey of the most
relevant cost components and restrictions, as well as an excellent review of previous work.
The authors sketch some possible ways of solving the problem, such as decomposition into
horizontal and vertical optimization (2D+2D) or 4D search, all on a high level.

The FPP can be seen as a special route planning problem. In this domain, A* algorithms
achieve excellent running times. The main idea of these algorithms is to guide a Dijkstra-like
search towards the potential function which is built in a preprocessing stage. Potential
functions map the nodes of the graph onto estimates that bound the cost of a shortest path

b In practice, the final descent to the destination airport is an exception, since it can be started everywhere.
In this work, we ignore this exception for the sake of simplicity and without a significant impact on the
results.
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to the target node from below. There is extensive literature that focuses on the task of
computing such heuristic functions and thus designing A* algorithms for routing on (time
dependent) road networks [7, 1, 22], routing for electric vehicles [2], or in multiobjective
scenarios [16, 17].

A* algorithms have also been considered for the FPP. A series of papers by a group from
the University of Southern Denmark studies the problem in a very realistic way, presents new
algorithms, and tests them on real-world data: [13] optimizes the vertical profile of a given
2D-route by a simple A* algorithm whose lower bounds are calculated from the minimum
consumption on each arc. It also shows that even though the FIFO property® does not
hold due to the unpredictable nature of weather, the Dijkstra algorithm in practice nearly
always finds an optimal solution. [14] provides an algorithm to solve flight planning under
consideration of traffic restrictions, for the case of a constant flight altitude. It is based on
storing multiple labels per node/altitude pair. [11] discusses the free-route case, where the
flight area is not limited by an Airway Network. The most relevant article for our work is
[15]. Tt considers the same setting as ours plus flight restrictions, which are handled by the
algorithm from [15]. The main contribution of the paper are two variants of an A*-type
algorithm on a three-dimensional graph, called All Descents and Single Descent. The first
one uses very conservative lower bounds on the arc lengths, which are used for a backwards
search that defines the potentials; these are both admissible and consistent under the FIFO
assumption. The Single Descent algorithm calculates the potentials partially before the start
of the search and partially during the expansion of the labels. It is much faster than the
All Descents variant, but the potentials are neither admissible nor consistent. However, the
computational results testify a very small error on real-world instances. We will use the
Single Descent algorithm as a benchmark in our computations.

This paper builds on our previous work [4], which investigates the FPP restricted to a
constant altitude. It presents a method for calculating lower bounds on travel-time on arcs
by using a concept called super-optimal wind. This in turn is used to construct potentials for
an A* algorithm.

While the addition of altitudes requires a much more sophisticated approach, the distance
underestimation techniques of [4] are a critical component of our new algorithm. [3] presents
a heuristic that handles complex overflight costs by reducing them to classical costs on arcs
by solving a Linear Program. This approach can be trivially combined with most others,
including the one we present. Finally, [21] also investigates a horizontal variant of the FPP,
which considers both weather and overflight costs. It introduces efficient pruning techniques
that reduce the graph before the start of the search algorithm. These techniques can also be
easily incorporated in a step preceding an A* search.

The FPP is a time-dependent shortest path problem on the Airway Network subject to
weather conditions and aircraft performance. We show that it is NP hard, a basic fact that,
as far as we know, has hitherto not been noted. As such, the FPP cannot be solved by a
Dijkstra-type label setting algorithm. However, as this approach is efficient and produces
excellent results, it is commonly used in practice and also as our benchmark in this paper.
In this vein, we present an A*-algorithm that improves on Dijkstra’s algorithm. Its potential
function is the cost of an idealized vertical trajectory over a lower bound of the total remaining
flight distance. The construction of this idealized trajectory is based on the above mentioned
assumptions about optimal vertical profiles. We show that it can be calculated efficiently
on-the-fly, during the label expansion, and further sped-up by a pre-calculation of parts of

¢ The FIFO property states that early arrival is always beneficial.
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the climb phase that depends only on the aircraft type, i.e., the aircraft performance function.
This leads to a fast algorithm, which is essential in order to account for the latest weather
forecast and the newest flight restrictions. On a set of real-world instances, our approach is
on average 7-10 times faster than Dijkstra’s algorithm and 30-40% faster than the Single
Descent algorithm of [15].

The paper is structured as follows. In Section 2 we present a mathematical model of the
Flight Planning Problem (FPP) that generalizes the Time-Dependent Shortest-Path-Problem
(TDSPP). We also present the first NP-hardness proof for the FPP; this proof extends to
a large family of TDSPPs. Section 3 presents an A*-algorithm for the FPP. Its potential
function computes the cost of an idealized vertical profile over a lower bound of the total
remaining flight distance. Under certain assumptions on aircraft performance, this potential
is admissible and consistent, and it can be computed efficiently. In Section 4, we compare
our implementations of the new A*-algorithm, Dijkstra’s algorithm, and the Single Descent
algorithm. The results show that the potential calculation pays off by drastically reducing
the number of expanded labels and the runtime. They also show that our consistency
assumptions are satisfied to a reasonable degree.

2 The Flight Planning Problem

We represent the Airway Network by a directed graph G = (V, A). Each waypoint gives rise
to multiple nodes, corresponding to the different flight levels H; denote by h(v) € H the
flight level of node v. We assume that the departure and the arrival airport are located not
on the ground but on the lowest flight level ho?. Likewise, each segment gives rise to multiple
arcs: One cruise arc for each flight level and one climb or descent arc for each combination of
two flight levels. We assume that the highest flight level is the optimal cruise level, since it
does not make sense to fly higher. Both aircraft performance functions and wind are handled
by a propagation function T: W xT x A — (W U{oo}) x T; here, W C R is a set of weights,
oo represents an infeasible state, and T' C R a set of times. Then, the propagation function
maps the state of the aircraft at the tail of an arc to its state after traversing the arc. We
assume the following propagation properties.

» Assumption 1. Let 7 : W x T x A — (WU {o0}) X T be a propagation function. For

wi,wa €W, t €T, ar,as € A, T(wy,t,a) = (wi,t!), and T(wa,t,a) = (w?,t?), it holds:

i) wy >w! and t <t

i) w; < wa,a; = ay = (w; —w') < (wy —w?),

i) wy = wy,a1,as cruise arcs with az on a higher level = (w1 — w') > (wy — w?),

iv) ceteris paribus, a descent burns less fuel than a cruise, which burns less than a climb,
and a direct descent, if possible, is the most economic way to reach the destination.

v) For fired a € A, t € T, the air distance along a at time t (i.e. the effectively traversed
distance, after consideration of wind) is proportional to wy — w'.

i) states that traversing an arc decreases the weight (by burning fuel) and increases time.

ii) means that fuel consumption increases with weight. iii) says that fuel consumption on a

cruise phase decreases with altitude®, iv) is clear. v) states that consumption increases with

air distance, which is very intuitive. With these definitions, the FPP can be stated as follows.

4 Tn our data, this corresponds to an altitude of 300m; the final descent ends on FL hg.
¢ Recall that we assume that the highest flight level is the optimal one.
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» Definition 1. Let G = (V, A) be a an Airway Network and vPEP vPEST ¢ V be the nodes
corresponding to the departure and destination airports, respectively. Let t° € T and w® € W
be the weight and time at departure, and 7 : W xT x A — W X T a propagation function. The
Flight Planning Problem (FPP) seeks to find a path ((vo,v1), (v1,v2),. .., (Un_1,v,)) C A,n €
N, and corresponding sequences of weights (wg, w1, ..., w,) C W and times (tg,t1,...,tn) C
T. It must hold that vo = vPEP | v, = vPEST = w®, tg = 1°, and T(w;, t;, (vi,vi01) =
(Wit1,tiv1)) € W x T for each arc (v;,viy1) in the path. The objective is to minimize

w® —w,.f

While some variants of the FPP investigated in the literature are solvable in polynomial
time [4] under certain assumptions, others are clearly NP-hard ([14], [5]). [13] notes that the
FIFO property does not hold under the presence of wind, but that by itself does not have
any implications on the computational complexity of the problem.

In this section, we show that the version of the FPP considered in this paper is NP-hard,
even without consideration of wind. We first note that the weight parameter in the FPP is
equivalent to the time parameter in the classical Time-Dependent Shortest Path Problem
(TDSPP), such that we can think of fuel propagation functions as traversal-time functions.
It is well known that the FIFO property is a sufficient but not a necessary condition for the
TDSPP to be solvable in polynomial time, while [20] gave the most widely cited proof that
the TDSPP can be NP-hard in non-FIFO networks. They construct travel time functions
on a finite domain that have a constant value except for one point. As our fuel propagation
functions do not have this structure, [20]’s argument cannot be applied. The same holds for
the proof in [23]. To the best of our knowledge, no other published proofs would apply to the
FPP. We therefore give a new simple NP-hardness proof based on a more general argument.

Consider the situation in Figure 2. Essentially, an arc representing a climb can sometimes
only be flown if the aircraft’s weight is small enough, as otherwise the higher level cannot
be reached before the end of the segment represented by the arc. In other words, the
consumption given by 7 on this arc is finite for weights up to a certain value and jumps to
infinity for weights above that value. The phenomenon in Figure 2 is not as contrived as
it may seem. To give the reader an idea of the variability of the climb angle: An Airbus
A340 with a typical weight of 200t needs roughly 150km of horizontal flight to climb from
5000m altitude to 10000m altitude. Around this weight, an increase of 1kg roughly leads to
an increase of 1m in horizontal distance. The FPP is thus a generalization of the TDSPP
that allows at most one jump discontinuity in each travel time function, while the proof in
[20] assumes two.

» Theorem 2. If traversal time functions are allowed to have at most one jump discontinuity,
the TDSPP is NP-Hard.

Proof. Inspired by [10], we do a reduction from the Exact Path Length (EPL) problem, which
is NP-hard according to [19]. Consider a directed graph G = (V, A) with non-negative lengths
on the arcs ¢ : A — [0,00), two nodes s,t, and L > 0. The EPL consists of determining
whether an (s, t)-path of length L exists. For the reduction, we define travel time functions
on G as follows. Let M > 0 be a very large number. Without loss of generality we assume
that the departure time is 0. For each a € A and 7 € [0, 00), and using h(a) to denote the

0

£ or course, since w" is constant, this is equivalent to maximizing wy,.
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vt v3
vi v3

Figure 2 The green profile represents a climb along a segment and between two levels. The climb
is steep enough that the higher level is reached before the end of the segment, and the aircraft can
cruise until reaching node v3. This climb is represented in the graph by the blue arc (vi, v3). The red
profile shows a climb started with a higher weight. This leads to a flatter climb, making it impossible
to reach v2. Thus, when starting with this weight, the blue arc has an infinite consumption.

head of a, we define 8

[ M ifa=(v,t),T <L -c(a)
T(a,7) = { c(a) else.

If the last arc a = (v,t) of any (s, t)-path is entered at time 7 < L — ¢(a), the objective
value will be larger than M. Thus, L is the smallest possible arrival time, and if a path with
this arrival time exists, the TDSPP will find it. Clearly, any path with travel time L also has
length L, and vice-versa. Consequently, feasible solutions of the EPL problem correspond to
optimal solutions for the TDSPP constructed above. This completes the reduction. |

3 An A* Algorithm based on lIdealized Vertical Profiles

3.1 The state of the art

Recall that an A* algorithm is based on a potential function 7 : V' — R U {oo}. 7 is said
to be admissible if w(v) is a lower bound on the costs from v to the target for v € V. It is
consistent if w(u) — 7(v) < c(u,v) for (u,v) € A, where ¢ is the cost function. Given that
m(t) = 0 for the target ¢, which we can and henceforth will assume w.l.0.g., consistency implies
admissibility, and a consistent and admissible potential guarantees that an A* algorithm
finds the same solution as Dijkstra’s algorithm. Tight, consistent potentials lead to a faster
A* algorithm. The Single Descent (SD) algorithm of [15] pursues such an idea for the FPP:
For each segment, a lower bound on the fuel consumption over it is computed as a cruise on
the optimal flight level, with the optimal wind conditions, and the minimum possible aircraft
weight. On a 2D projection, a backwards Dijkstra search from the destination airport is
done w.r.t. these arc costs. The resulting distances are used as initial potentials. In the
forward search during the expansion of each label, a descent from that label to the ground
is calculated and the corresponding consumption is added to the initial potential. Since
the distance traversed by that descent is now covered both by a cruise (initial potential)
and a descent (first correction), a second and final correction step is made: The distance of
that descent is traversed from the label in cruise mode, and this consumption is subtracted
from the preliminary potential, thus defining the final potential.” Despite the resulting
potentials being neither admissible nor consistent, the ensuing, label-setting, SD algorithm

& Note that this step function does not satisfy the FIFO property, despite similar functions in the literature
preserving it, such as [8].

" This is how we interpret the algorithm. Unfortunately, the paper is not very detailed, in particular,
w.r.t. the construction of the lower bounds.
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is very effective in practice and marks the current state-of-the-art. Our motivation for
improvement is that the initial potentials can be very loose for labels that are far away from
the destination, since SD assumes a very low weight and no climbs. This can lead to a
significant underestimation of the consumption. The on-the fly correction in the forward
search mitigates this problem, but does not resolve it completely.

3.2 Basic framework

We propose an A* algorithm based on a simple ideal. In practice, flight routes are constrained
by the airway network and by wind conditions. If neither of these existed, but cruise phases
were still constrained to flight levels, and the routes would always follow the step-climb
pattern, see again Figure 1. Namely, the horizontal route component would be the great-circle
line connecting both airports, while the vertical route component would consist of a series of
climb-cruise-climb sequences up to the optimal flight level. There, the aircraft would cruise

until the final descent is started, which would take it straight to the destination airport.

The consumption arising from this idealized vertical profile (IVP) on a lower bound on the
flight distance is an admissible (and, as it will turn out, also consistent) potential for an
A* algorithm. Calculating the IVP during the search is too costly, as the decrease in the
number of labels would be offset by the effort to compute the potentials. However, it will
turn out that this problem can be overcome by a combination of preprocessing and on-the-fly
calculations. A formal description is as follows.

A crucial element is the distance underestimation. The results in this section are
of a general nature and the specific type of underestimation is not important. In our
implementation, we will obtain using the technique introduced in [4] (“super-optimal” wind
calculations combined with a backwards search).

» Definition 3. Let ¢!V (w, h,d, hr) be the minimum amount of fuel that is needed to fly,
assuming no wind influence, the distance d by doing some combination of climb/cruise/descent
phases, starting at altitude h with weight w, and finishing at altitude hr; if the distance
18 too short to reach the target altitude, it is the amount of fuel that is needed to make an
immediate descent to the target altitude; if the target cannot be reached, it is infinity. In
the first two cases, the vertical profile p'V¥ (w, h,d, hr) of the associated trajectory is called
idealized vertical profile (IVP).

» Assumption 2. FEvery IVP consists of a finite and alternating series of climb and cruise
phases followed by a single descent phase.

» Assumption 3. ¢!V (w, h,dy, hr) < VP (w, h,do, hr) for distances dy < ds.

In other words, Assumption 2 means that the IVP looks like the one in Figure 1. It also
implies that the highest level reached by the IVP is at most the aircraft’s optimal cruise

altitudeJ Assumption 3 means that, ceteris paribus, longer trajectories are more expensive.

» Proposition 4. For an FPP and v € V, consider a (vPFF v)-path in G that reaches v
with weight w at time t. Let h(v) be the flight level at v. Let d be a lower bound on the
distance from v to vPEST obtained by a backwards search from vPEST using lower bounds

f The algorithm is label-setting and necessarily heuristic, as the FPP is NP hard.
) See Section 2 for the definition of the optimal cruise altitude.
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on the (time-dependent) arc distances as costs; recall that hg is the lowest flight level. Then
the function

c:V xW = 0,00], (v,w) — VP (w, h(v),d, ho)
is admissible and consistent. ¥

Proof. Admissibility follows from Assumptions 2 and 3, as well as part v) of Assumption 1.
Indeed, the air distance traversed by the best possible trajectory following any (v, vPF5T)-
path in G is at least d, and its vertical profile is constrained by starting climbs only over
waypoints. Hence, it burns more fuel than the IVP p!VF (v, w, d, hg).

For consistency, consider an arc (u,v) € A, a weight w,, and a time t,. Traversing
the arc with the initial state (ws,t,) leads to the state 7(w.,ty, (u,v)) = (wy,t,), so the
consumption on the arc is w, — w,. We must thus prove c(u, wy) — c(v,w,) < Wy — Wy

Let d,, and d, be the lower bounds used to calculate the potentials c(u, w,) and c(v, w,)
from IVPs p'VP(w,, h(u),d,, ho) and p'VF (w,, h(v),d,, ho) and let d(u,v,w,,t,) be the
actual air distance traversed on (u,v). We now distinguish three cases; Case 1 is the standard
“en route” case, Cases 2 and 3 come up close to the destination, when the lower bound on
the remaining distance becomes small.

Case 1: Neither p'™VF (w,, h(u),d,, ho) nor p(w,, h(v),d,, ho) are immediate descents. Then

s Lo

= CIVP(wuy huadua hO) S CIVP(wu7 hu7 d(u7U’wU7tu> +d’“’ ho)
S Wy — Wy + CIVP(wm hvu%7 ho)
= Wy — Wy =+ C('U,wv),

c(u, wy,)

where the first inequality follows from the triangle inequality d,, < d(u,v,w,,t,) + d, for
distance lower bounds and Assumption 3, and the second from the optimality of the IVP
PVE (i, by, d(u, v, Wy, ty) + d,,, ho), which burns at most the same amount of fuel as the
concatenation of (u,v) and the IVP p'V¥ (w,, h(v),d,, ho).

Case 2: Only p'VF(w,, h(v),d,, ho) is an immediate descent. The same argument as in Case
1 applies, since the total distance traversed on (u,v) and then on the descent from v will
be longer than the distance traversed by the IVP starting at w.

Case 3: p'VP(wy, h(u),d,, ho) is an immediate descent. Now the relative lengths of lower
bounds on the traversed air distances are unclear, because a descent is steeper with a
lower weight, possibly causing the profile via v to end up with a smaller distance bound.
However, we can use Assumption 1 iv) on aircraft performance which implies that a direct
descent burns less fuel than any other combination of flight phases leading to the same

altitude. <

3.3 Calculation of the ldealized Vertical Profile

In the previous section, we proved that the A* potentials calculated using the IVP method
are admissible and consistent under consideration of two assumptions. Now, we sketch how
these potentials can be computed in practice.

Assumption 2 states that an IVP follows a step-climb procedure until reaching the highest
level that allows a direct descent to the ground. Each cruise in this profile is just long enough
to burn enough fuel to reach a weight that allows a further climb. Once the highest level is
reached, the aircraft cruises until the point where it starts the final descent.

X We define admissibility and consistency for a function with domain V' x W in the canonically extended
way. It is easy to see that all known properties still hold.
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To speed-up the first part of the calculation we observe that the weight at the end of
a cruise and at the start of a subsequent climb is constant for a fixed flight level. This is
because, by definition, this is the largest weight that allows starting a climb from that level.
Similarly, the distances of each such phase are constant. This allows us to pre-compute, for
each pair of levels, the total consumption and total distance corresponding to a step climb
between these levels, as well as the weight at the start of this step-climb.

The second phase of the calculation, consisting of a single cruise followed by a descent,
is trickier. The reason is that the cruise distance plus the descent distance must equal the
remaining distance, but the descent distance depends on the weight at its start, which in
turn depends on the length of the cruise. In practice, the top of descent is computed by an
iterative procedure that progressively adjusts the cruise distance until a total cruise+descent
distance is reached that is close enough to the target distance. This procedure can be very
time-consuming, which makes it another good candidate for pre-computation. The difficulty
is that more parameters are involved than in the step-climb case: Both the weight before the
cruise-descent and the remaining distance are unclear.

We solve this problem in the following pre-processing step: For each flight level, we
calculate the maximum descent distance from that level to the ground. We then consider a
discretization of the complete weight range (that is, from the aircraft’s dry operating weight
to its maximum take-off weight). For each weight in this discretization, we compute the
(time-consuming) IVP on the remaining distance.

The complete calculation of the potentials is described in Algorithm 1 for a weight w, a
flight level h, and a remaining distance d. In a nutshell, we compute the IVP as described

above. Step-climbs are not calculated on-the-fly, instead we use the pre-calculated data.

Near the destination airport, we use the second batch of pre-calculated data and interpolate
the weight; of course the potential is only admissible and consistent if this discretization is
fine enough. The step in line 3 is the most expensive part of the algorithm, but it needs to
be calculated only for nodes that are very close to the destination airport.

4 Computational Results

In this section, we benchmark the performance of our A* algorithm using potentials from
Idealized Vertical Profiles (IVP) against Dijkstra’s algorithm (D) and the Single Descent
algorithm (SD). In case of Single Descent, our implementation tries to follow the description
in [15] as far as we could, filling in some gaps using our best judgement. To make the
comparison fair, all algorithms use the same data structures, in particular, the same priority
queue, such that the only difference is in the calculation of the potentials; for Dijkstra’s
algorithm, there are of course none. The programming language is C++, compiled with
GCC 7.5.0. All computations were performed on a machine with 95 GB of RAM and an
Intel(R) Xeon(R) Gold 5122 processor with 3.60GHz and 16.5 MB cache.

4.1 Instances

The airway network, the weather, and the aircraft performance data were provided by our
industrial partner Lufthansa Systems. The airway network consists of 410387 waypoints,
878884 airway segments, and 232 flight levels. A naive construction would result in a
graph with over 95 million (410387x232) nodes and over 47 billion (878884x232x231)
arcs. However, a large majority of those nodes and arcs are not flyable, for example due
to the waypoints and segments not available on the corresponding altitudes, or because
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Algorithm 1 Potential calculation.

Require: w, h,d, max. descent distance function d™**(-), preprocessed step-climb- and final
descent data.
1: wog =w
2: if d < d™**(h) then
3: Calculate the IVP from this point by evaluating all possible step climbs followed by
on-the-fly final descent iterations. If the distance is too short, do a simple descent.

4: w  w—IVP consumption
5: else
6 Climb to the highest level hy that is reachable and satisfies

d — climb distance < d™**(hq)

w 4 w—climb consumption
d < d—climb distance

: h « hl
10: if it’s not possible to climb further then
11: Read from the precalculated results what is the maximal weight on this level that
allows a climb. Cruise until that weight is reached.
12: w 4— w—cruise consumption
13: d < d—cruise distance
14: There is a set of pre-calculated step-climbs starting at the A with weight w.
15: Choose the maximal hy such that the step-climb to ho satisfies

d — step-climb distance < d™%"(hs)

16: w +— w—step climb consumption

17: d < d—step climb distance

18: h + hy

19: end if

20: Cruise until d—cruise distance = d™%*(h)

21: w <— w—cruise weight

22: d + d—cruise distance

23: In the weight discretization, find the closest weights wq,ws s.t. w1 < w < wy

24: Let ¢; be the pre-computed consumption for w;,h and co the pre-computed
consumption for ws, h.

25: w4 w — ;:;full ca + 1'5’22:;)"1 c1

26: end if

27: return wg — w

the segment is too short for a given climb. Furthermore, the availability of certain arcs
depends on the current weight, further complicating things. In our implementation, we
generate the graph dynamically, therefore it is difficult to give an absolute graph size. We
use propagation functions for two aircraft models, an Airbus A320 (suitable for short-haul
flights) and an Airbus A340 (used for middle- to long-haul flights), derived by interpolation
from corresponding tables. Unfortunately, this data, which consists of tables with millions
of entries, is only an approximation of the real performance functions. It turns out that
Assumption 2 is prevalent, but not always satisfied. This breaks consistency of the IVP
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algorithm such that it does not necessarily find the same solution as Dijkstra’s. However,
our computational results show that the resulting gap between Dijkstra’s and the IVP
A*_algorithm is mostly extremely small or non-existent, i.e., this data problem is marginal.

The OD-pairs were defined in the same way as in [15]. For the long-haul test set, we
chose a set of 20 major airports evenly distributed around the globe. All pairs with great-
circle-distances between 4000km and 11000km were considered, resulting in 202 ordered pairs.
For the short-haul test set we did the same thing on the basis of a set of 19 major airports
in Europe, using 500km and 4000km as distance bounds. This results in 294 ordered pairs.
We calculate the short-haul flights with the A320 and the long-haul ones with the A340.

To define the take-off weight, we run Dijkstra’s algorithm once on each instance, starting
with the maximum possible amount of fuel. We multiply the resulting consumption by 1.2
and fix this number as the amount of fuel at take-off.

4.2 Methodology

As is customary in the shortest-path literature, we separate runtimes into two categories:
Those in a preprocessing phase, which is instance-independent, and those in a query phase,
which includes the shortest path calculation and all instance-dependent preprocessing stages.
We ignore the runtime of procedures that are identical across all variants. This includes the
construction of the graph, the initialization of the search algorithm, etc. More precisely:
Dijkstra’s algorithm (D) does not need any preprocessing. For Single Descent (SD), we
consider the calculation of the minimum cruise consumption on each arc as a preprocessing
operation, as dependent only on the aircraft and the weather forecast, but not on the OD-pair.
The backwards search to determine the potentials is included in the query time. Idealized
Vertical Profiles (IVP) require a substantial preprocessing phase for the pre-calculation of
step-climbs and final-descent stages, for which we choose a weight discretization with steps
of 1000kg. This preprocessing effort depends only on the aircraft, but not on the weather
forecast, and not on the OD-pair. It therefore can be done once for each aircraft, which makes
the associated preprocessing time irrelevant. For the sake of completeness, we nevertheless
report it. As with SD, the backwards search to determine the minimum distance from
each node to the destination is included in the query time. Both SD and IVP require the
calculation of lower bounds on the air distance for which we use the super-optimal wind
technique from [4]. Since these computations are identical for both algorithms, we omit them.
We run each calculation thrice and report the smallest time.

4.3 Results

Figures 3 and 4 show the query times of all three algorithms. The results are summarized in
Tables 1 and 2 (short-haul and long-haul instance sets, respectively). For each statistic, we
list both the arithmetic mean (ar mean) and the geometric mean (geo mean). The names
used for the statistics are self-explanatory with the possible exception of nr. labels. This is
the total count of labels that were expanded during the search.

The query times of both SD and IVP are far superior to Dijkstra’s algorithm. Furthermore,
IVP outperforms SD by roughly 5-12% on the short-haul instances and by 33-40% on the
long-haul instances. As one would expect, the number of labels expanded by IVP is much
smaller than that of the other two algorithms. This reduction is so significant that the
expensive potential calculations are compensated. The cost of these calculations can best be
seen by observing the number of labels expanded in the long-haul instances. IVP expands
around 243k labels on average (geometric mean), which is less than half of those expanded
by SD, while the speedup is 1.76 (geometric mean).
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Figure 3 Short-haul runtimes. Figure 4 Long-haul runtimes.

Table 1 Computational results on the short-haul instances.

D SD IVP
preprocessing (s) - 0.19 11.16
ar mean  geo mean ar mean  geo mean ar mean  geo mean
query (s) 11.11 8.71 1.56 1.20 1.47 1.05
cost (kg) 4096.26 3698.07 4107.08 3709.44 4096.27 3698.07
nr. labels 472528.44  379276.36 50298.22  33548.52 41580.47  19310.30
query speedup w.r.t. D (s) - - 9.55 7.33 9.64 7.44
query speedup w.r.t. D (x) - - 8.06 7.24 9.72 8.33
cost gap (kg) - - 10.81 0.00 0.01 0.00
cost gap (%) - - 0.31 0.00 0.00 0.00
labels (% of D) - - 10.09 8.85 7.11 5.09

As can be seen in Figures 3 and 4, but also in the tables, the speedup of IVP w.r.t SD is
much more pronounced in the long-haul instances. This is to be expected for various reasons:
One is that in SD, both the cruise consumption estimation and the descent consumption are
much nearer to the actual consumptions when flying close to the destination airport, which
is the case for a big part of the search on short-haul flights. Another reason is that IVP does
more expensive calculations in the area close to the destination airport — the proportion of
this area to the whole search space is much larger in the short-haul case.

The preprocessing time of IVP (72s in the long-haul case) is definitely longer than that of
SD but still very manageable, especially considering that it needs to be done only once per
aircraft model. In practice, airlines acquire new aircraft so seldom that even a preprocessing
time of several days would be acceptable.

Concerning the quality of the solutions: As expected (see Section 4.1), the gap' between
the values returned by IVP and Dijkstra is not always zero, meaning that, for the data
available to us, the IVP potentials are not consistent. Nevertheless, both IVP and SD yield

' We do not say optimality gap since Dijkstra is not guaranteed to be optimal due to the NP-hardness of
the problem.
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Table 2 Computational results on the long-haul instances.

D SD IVP
preprocessing (s) - 0.20 71.86
ar mean geo mean ar mean  geo mean ar mean  geo mean
query (s) 65.78 57.03 18.52 12.87 12.33 7.30
cost (kg) 57086.24 55678.96 57100.34 55693.62 57099.54 55690.96
nr. labels 2637588.37  2340711.69 686281.66  504259.75 418759.61  243834.10
query speedup w.r.t. D (s) - - 47.26 41.08 53.45 46.77
query speedup w.r.t. D (X) - - 5.36 4.43 11.36 7.81
cost gap (kg) - - 14.09 0.00 13.30 0.00
cost gap (%) - - 0.03 0.00 0.02 0.00
labels (% of D) - - 24.84 21.54 14.56 10.42

results of a very good quality. For both variants and both test cases, the geometric mean of
the gap w.r.t. Dijkstra is 0.00%, meaning that the gap is extremely small except for a few
outliers. Finally, the arithmetic mean shows a small improvement of IVP over SD, especially
on short-haul instances.

Another possible reason is the weight discretization used for calculating the consumption
in the last section of the IVPs. However, a discretization of 1kg instead of the 1000kg used
in our calculations did not yield a noticeable improvement in the solutions’ quality, while
slightly increasing the runtime of both queries and preprocessing. Thus, it is not included in
the presented results.

5 Conclusion

In this paper, we investigated the Flight Planning Problem (FPP), which is a generalization
of the Time-Dependent Shortest-Path Problem (TDSPP). We presented the first proof of its
NP-hardness, which extends to a more general family of TDSPP variants.

We also introduced an A* algorithm based on potentials derived from Idealized Vertical
Profiles (IVPs). We showed that, under reasonable theoretical assumptions on the aircraft
performance functions, IVP potentials are both admissible and consistent, such that a
corresponding A* algorithm finds the same solution as Dijkstra’s algorithm. We show that
IVP potentials can be calculated efficiently by a combination of preprocessing and on-the-fly
computations.

Our computational results on real-world instances show that the effort to calculate IVP
potentials pays off and results in a significant improvement of the overall query time as
compared to the state-of-the-art Single Descent algorithm introduced in [15]. Indeed, we
obtain a speed-up of up to 40% and a smaller consistency gap.
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