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Abstract

This report combines the contributions to INOC 2005 [20] and DRCN 2005 [9]. A
new integer linear programming model for the end-to-end survivability concept demand-
wise shared protection (DSP) is presented. DSP is based on the idea that backup ca-
pacity is dedicated to a particular demand, but shared within a demand. It combines
advantages of dedicated and shared protection: It is more cost-efficient than dedicated
protection and operationally easier than shared protection. In a previous model for DSP,
the number of working and backup paths to be configured for a particular demand has
been an input parameter; in the more general model for DSP investigated in this paper,
this value is part of the decisions to take.

To use the new DSP model algorithmically, we suggest a branch-and-cut approach
which employs a column generation procedure to deal with the exponential number of
routing variables.

A computational study to compare the new resilience mechanism DsP with dedicated
and shared path protection is performed. The results for five realistic network planning
scenarios reveal that the best solutions for DSP are on average 15% percent better than
the corresponding 1+1 dedicated path protection solutions, and only 15% percent worse
than shared path protection.

Keywords: demand-wise shared protection, resilience, network design, integer linear pro-
gramming

1 Introduction

It is of utmost importance for network operators to protect traffic against node and link
failures. To this end, many survivability concepts have been proposed. Their applicability
depends on the used technology (e.g., MPLS, ATM, SDH, WDM), and each of the concepts
has its particular strengths and weaknesses with respect to investment cost, management ef-
fort, and recovery performance. Dedicated protection concepts (like 141 or m : n dedicated
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path protection) are easy to implement in terms of network management and provide short
recovery times, but the resulting networks are often rather expensive. In contrast, shared
protection concepts (like m : n shared path protection) make more efficient use of backup
capacities and thus can potentially reduce network cost, at the expense of a more complex
network management. In this article, we present a new model for the protection concept
demand-wise shared protection (DSP) which combines the main advantages of dedicated and
shared protection. It can be expected to be less expensive than dedicated protection and,
at the same time, easier to realize than shared protection.

From a network operator’s point of view, a survivable routing must fulfill two basic re-
quirements: For each demand, a predetermined demand value has to be satisfied in the
failure-free network state, and in any considered failure state, a specified fraction of the de-
mand must survive. Further desirable features of a survivability concept are cost-efficiency,
ease of network management, and short failure recovery times. Two approaches in this
direction are p-cycles [6] which combine sharing of backup capacity with short recovery
times, and a special case of DSP presented in [13] which combines shared backup capacity
with ease of network management. Using DSP, backup capacity is dedicated to a particular
demand, but shared within a demand. This concept is promising because

(i) capacity sharing can reduce total network cost compared to purely dedicated protec-
tion,

(ii) all paths are pre-established end-to-end, and

(iii) interdependencies between working and backup paths are limited to individual de-
mands.

(a) 141 routing with 8 paths (b) DSP routing with 6 paths (c) DSP routing with 5 paths

Figure 1: Different survivable routings.

The concept of sharing backup resources within a demand is illustrated in Figure 1, where
four demand units have to be routed between Frankfurt and Leipzig with full protection
against single link failures. Figure 1(a) shows a 141 protection routing where no backup
capacity is shared, leading to eight paths (e.g., lightpaths in WDM or VC-N-paths in SDH)
which have to be configured. Figures 1(b) and 1(c) illustrate two DSP routings with six and
five configured paths, respectively, where backup capacity is shared by the working paths



of the demand. In both routings, any link failure is survived by at least four paths for this
demand. The figures illustrate that sharing backup resources within a demand and allowing
for more diversity in the routing may lead to fewer paths which have to be configured in
total.

In [13], DSP is parameterized in order to balance the total number of paths to establish
and the corresponding requirements on the routing (in terms of diversity). Varying the
parameters yields different routings, as shown in Figure 1. However, the decision which
parameters to apply has to be taken a priori, but it is not clear which of the resulting
routings is preferable from a (total) cost perspective. In particular, a minimum number of
paths need not be most cost-efficient. In Figure 1, eight paths are needed for 1+1 protection,
compared to five or six paths using the shown DSP routings, while the least total number
of hops (as a rough approximation of network cost) is needed in Figure 1(b) with six paths
and ten hops in total.

The key observation is that the total number of needed (working and backup) paths is not
determined by the two basic requirements for survivable routings stated above. So, rather
than taking it as an input parameter, determining an optimal path number together with
the routing is preferable. To realize this idea, we present a more general model for DSP in
this paper. Besides the capacity restrictions, the only routing constraints in the new model
are the two basic requirements formulated above (which do not prescribe the final path
number), while the total network cost is to be minimized.

As these constraints are also satisfied by all solutions for any purely dedicated protection
concept as well as for the DSP model with a fixed number of paths, the new model allows
for further cost savings while keeping the operational advantages. On the other hand,
capacities designed for DSP are also sufficient to accommodate a purely shared protection
routing, whose optimal network cost therefore gives a lower bound for any DSP solution.

A computational study on five realistic network instances presented in Section 5 reveals
that the best solutions for DSP are on average 15% percent better than the corresponding
141 dedicated path protection solutions, and the best solutions for SPP are not more than
15% percent better than the best DSP solutions. Furthermore, DSP is very beneficial for low
protection levels and loses gain as the protection level advances towards 100%.

The article is organized as follows. In Section 2 we review the existing resilience mecha-
nisms and introduce demand-wise shared protection. We compare their characteristics in
Section 3. Section 4 presents a mixed-integer programming model and a branch-and-cut-
and-price algorithm to compute a minimum cost hardware configuration together with a
DSP routing. A computational comparison of the cost and bandwidth requirements of the
different concepts is presented and discussed in Section 5. Our conclusions are summarized
in Section 6.

2 Protection Mechanisms

In this section, the resilience concepts dedicated path protection, shared path protection,
and demand-wise shared protection are specified. These concepts are then discussed with
respect to the key properties capacity consumption, required signalization, and recovery



time in Section 3.

In the following, a demand refers to a requirement of a number of connections to be estab-
lished between two nodes in the network. These connections can be routed independently
of each other.

2.1 Dedicated Path Protection

To survive a network element failure using 141 dedicated path protection [7], information is
duplicated at the source of the demand and routed simultaneously along two disjoint paths
towards the destination node. It depends on the planning requirements, whether these
paths must be disjoint with respect to links, nodes, or other sets of network components.

Figure 3 depicts an example configuration of two demands protected by 1+1 path protection.
In the example network, the demand from node A to node K is routed along the paths A-

no sharing

Figure 2: Example of a path configuration for 1+1 dedicated path protection, where traffic
is simultaneously sent over working and backup path.

C-F-I-K as well as on the node-disjoint path A-B-E-H-K. In case of a single link or node
failure, the sink of the demand still receives a copy of the data from one of the two paths.

Notice that by definition of dedicated path protection, the capacity occupied by a single
demand cannot be used by another demand.

2.2 Shared Path Protection

For shared path protection [7], information is only sent over the working path in the failure-
free state. For different network failure cases, there exist pre-calculated and pre-configured
backup paths. Using appropriate signaling mechanisms, these backup paths are then estab-
lished in reaction upon the failure by the source node of the demand. If working paths are
not affected simultaneously by one considered failure pattern, they can share the resilience
capacity with each other.

Figure 3 shows an example configuration for two demands protected by shared path pro-
tection. In the failure-free state, the demands A-K and C-J are routed on the (working)
paths A-C-F-I-K and C-D-G-J only. No copying of data is required. A failure of a net-
work element is detected by neighboring nodes via physical or protocol failure-detection
mechanisms (e.g. Bidirectional Forwarding Detection [11]), notifying the source node(s) of
the affected demand(s). After receipt of these failure signals, a source node switches the



traffic from the failing path onto the pre-defined failure-free backup path (A-B-E-H-K and
C-B-E-H-I-J).

sharing

Figure 3: Example of a path configuration for shared path protection, where two demands
(A-K and C-J) are protected.

In the example network, both working paths are link-disjoint; hence, if only single link
failures are considered, the backup capacity on the subpath B-E-H can be shared between
these two paths and the required overall capacity can be reduced.

2.3 Demand-wise Shared Protection

A survivable routing must fulfill two basic requirements: For each demand,

e a predetermined demand value has to be satisfied in the failure-free network state,
and
e in any considered failure state, a specified fraction of the demand must survive.

The concept demand-wise shared protection consists of pre-establishing a set of paths for
each demand such that those requirements hold. The number of paths is at least the
required demand value to enable routing in the failure-free network state. Moreover, the
routing is carried out such that in each failure state at least the specified portion of the
paths survives. DSP does not dedicate paths to be exclusively for working or backup traffic.

DSP combines advantages of dedicated and shared path protection with each other. As
with dedicated path protection, the capacity occupied by a single demand cannot be used
by any other demand. Furthermore, as with shared path protection, backup paths are pre-
established and only used in case of a network element failure. As main property of DSP,
sharing of backup resources is restricted to paths of the same demand and, in consequence,
a setup of backup paths (restoration) is not required in case of a failure.

An example of an admissible DSP configuration for the demand between node A and node
K is depicted in Figure 4. The two working paths are A-C-F-I-K and A-D-G-J-K. Since
they are node-disjoint, both paths can be protected by the backup path A-B-E-H-K.

In a first version of DSP (see [12,13]), the number of (working and backup) paths which
has to be established in total is pre-determined based on connectivity arguments, and
given as an input value. Two cases have been considered: (i) exploration of the maximum
node-connectivity between every pair of nodes (DSP-MAX), and (ii) exploration of node-
connectivity two between every pair of nodes (DSP-TWO).
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Figure 4: Example of a path configuration for demand-wise shared protection, where backup
capacity can be shared between working paths belonging to the same demand.

The above introduced general version of DSP can be realized by explicitly formulating the
two basic requirements as linear inequalities, see Section 4. This way, both the total number
of paths to be established and their routing remain flexible and is part of the optimization.

3 Comparison

In this section, we discuss and compare qualitative and quantitative properties of the dif-
ferent mechanisms. Table 1 summarizes the reaction times, bandwidth requirements and
management complexity of the three protection mechanisms.

141 dedicated shared path demand-wise shared
path protection protection protection
sharing no sharing between any disjoint | between paths
working paths within a demand
number of one per flexible flexible
backup paths working path
required none backward backward
signalization (and forward)
reaction time very fast medium fast
management small large medium
complexity

Table 1: Comparison of resilience characteristics.

3.1 Required Capacity

Using 141 dedicated path protection, backup capacity is not shared. Each signal is dupli-
cated and therefore the used capacity is more than doubled if the working path is always
routed on a shortest-hop path. Notice, however, that it depends on the particular (discrete)
capacity/cost structure how much extra investment is necessary. With shared path protec-
tion, the capacity of resilience paths can be shared if the working paths are not affected by
the same failure pattern. A reduction of up to 70% used capacity can be achieved com-



pared to dedicated path protection [8]. The concept of DSP enables the sharing of resilience
capacity. However, the sharing possibilities are reduced compared to shared path protec-
tion since capacity can only be shared between working paths of one demand. Thus, the
capacity requirements of DSP are bounded from above by 141 dedicated path protection
and bounded from below by shared path protection.

3.2 Reaction Time

141 dedicated path protection requires no signalization to the source or the sink node.
From a technology point of view it is possible for the sink node to receive both copies
simultaneously. Thus, in case of a network element failure along one path a very fast and
almost hitless non-stop operation can be performed.

DSP requires a failure detection and backward signalization before the traffic can be detoured
to the surviving paths at the source node of the demand. Hence, only operation at the end
nodes is necessary, which makes recovery fast.

In contrast to DSP, resilience capacity can be shared between any disjoint working paths
in shared path protection. If the target node is not included in the traffic data (e.g., as
it is the case for MPLS), a reconfiguration of switches (e.g., the adjustment of a mirror in
DWDM) is required to setup paths for detoured traffic. This adjustment has to be done
before the backup path can be used. Thus, the reaction time of shared path protection (or
then restoration) requires additional time for the switching adjustment along the backup
path.

3.3 Mechanism Complexity

141 dedicated path protection requires one resilience path per working path. From a con-
figuration and management point of view this structure is very simple. The configuration,
choice, and management of shared resources however is more complicated: the sharing of
resources prevents the pre-establishing of backup connections, and thus these connections
have to be setup on request. In DSP, all paths are pre-established but their usage depends
on the failure state. Due to the guarantee that sufficiently many paths survive in any failure
state, the traffic to be protected has to be reassigned to these surviving paths. Hence, no
path setup, but only a traffic reorganization in the source node has to be carried out.

4 Mathematical Model for DSP

To quantify the benefits of DSP, we formulate the corresponding network design problem
as integer linear program. The model for DSP, as well as the other concepts, is composed
of two major blocks: one for the routing which requires link capacities, and one for the
hardware configuration (for both nodes and links) which provides these capacities. The
goal is to find a cost-minimal network design including

e a topology,



e a hardware configuration, and
e a (dedicated, shared, DSP) protection routing.

For the hardware configuration, the generic integer linear programming (ILP) model pre-
sented in [14] is used for the selection of a topology, switches, cards, ports, and link capac-
ities. This hardware model is used for all studied survivability concepts; only the routing
model changes. Since the focus of this paper is on the routing model for DSP, we omit the
details of the hardware model here and refer to [14] for further information.

In this section, the routing model and the algorithm used for computing DSP solutions are
described in more detail. For the other survivability concepts we refer to [18] for dedicated
and shared path protection, and to [12] for DSP-MAX and DSP-TWO.

4.1 Routing Model for Dsp

The network is modeled as an undirected graph G = (V, E). For the routing part, let
Ye € Zy denote the capacity of link e € FE, which is to be determined along with the
topology, hardware, and routing decisions; these capacities are derived from a given solution
of the hardware ILP.

Let S be the set of operating states for which the network is to be designed. In addition
to the failure-free state, this set comprises a subset S* of failure states, each of which is
characterized by its failing nodes or links. The set V*® C V' consists of all non-failing nodes
in operating state s € S.

Let D be a set of point-to-point communication demands. For every demand uv € D and
every operating state s € S in which neither u nor v fails (i.e., u,v € V%), a demand value
d;, € Zy is specified. In the failure-free state, this value denotes the demand to be routed;
in failure states, it is the demand value which must survive in this situation. For ease of
notation, we set d;, :=0if u € V¥ or v ¢ V°. A demand uv € D may be routed on one or
more paths from the set P,,, which comprises all simple uv-paths (i.e., without loops). In
failure state s € §*, the subset P;, C P,, denotes all surviving paths. Using non-negative
integer flow variables f,,(P) € Z4 for all demands uv € D and all paths P € P,,, the
routing model reads as follows:

Z fuo(P) > d3, weD, se€S (1)
PePs,

ye_z Z qu(P)ZO eck (2)

UVED PEPyy:
ecP

Ye, fuv(P) €Ly (3)

The demand constraints (1) and capacity constraints (2) formulate a multicommodity flow
problem where it is allowed to route more flow than strictly necessary. Constraints (1) ensure
for each demand that at least the specified number of paths survives in any operating state.
Notice that extensions of this model, such as hop limits, are straightforward by restricting
the set of admissible paths appropriately.
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Figure 5: Algorithmic approach.

4.2 A Branch-and-Cut Algorithm with Column Generation

Our proposed solution approach, which has also successfully been applied to problems with
other routing formulations [15, 19], is similar to Benders decomposition [2]. The central
procedure is a branch-and-cut algorithm (see [17] for a detailed description) based on an
LP relaxation which contains only hardware variables and constraints, but no routing in-
formation. To strengthen the LP relaxation, cutting planes are separated during the whole
branch-and-bound process, such as band inequalities [4], GUB cover inequalities [21], and
generalizations [15,19] of metric inequalities [10].

Each time an integer hardware configuration is identified during the branch-and-bound
process, it is tested for feasibility with respect to the (missing) routing constraints. If
a feasible routing exists within the corresponding capacities, such a routing is generated.
Otherwise, a violated metric inequality is derived from the dual objective function of the
routing LP, which is then added to the relaxation in order to cut off the infeasible hardware
configuration. This process is illustrated in Figure 5.

To test whether a feasible routing exists within given link capacities § derived from the
hardware part of the model, the routing LP has to be solved with § as right-hand side
in the capacity constraints (2). As the routing LP has an exponential number of path
variables, column generation has to be employed in order to know whether the LP has a
solution or not. Optimality of a given solution can be guaranteed if feasibility of ¥ with
respect to the routing constraints can be tested exactly. For instance, this is the case if the
pricing problem is polynomially solvable. In the remainder of this section, we show that
for DSP with single node or link failures and fractional routing path variables, the pricing
problem can be solved by shortest path computations and thus in polynomial time. With
integer path variables, this approach still leads to a valid lower bound and hence to a quality
guarantee for solutions.

Testing a link capacity vector y := (y.)ecr for feasibility with respect to the routing con-
straints can be formulated as the following optimization problem (with the dual variables



in brackets) by introducing a capacity excess variable a:

(o :=) min «
Z fun(P) > d3, weD,seS (75 ]
PeP;,

a=> > fuwlP)> -y cckE [1te]

UVED PEPyy:
ecP

a, fuv(P) S R+

The capacity vector y admits a feasible routing if and only if o* = 0. Suppose that the
LP above is initialized with a restricted set of paths which admit a feasible solution for
sufficiently large « (for instance, two node-disjoint paths for each demand). Let o denote
the optimal value of such a restricted LP and notice that o* < a.

If o = 0, a feasible routing for the link capacities y has been found, and we are done.
Otherwise, o > 0 means that no such feasible routing exists on the restricted path set.
It remains to test whether a routing would exist after adding additional path variables to
the LP. An improving path variable is indicated by the violation of the corresponding dual
constraint with respect to the current dual solution. The dual of the LP above, with the
associated primal variables in brackets, is:

max Z Z dfwﬂ-zsw - Z Yelle (4)

uwveD s€S eckE
Z 7T18w - Z He < 0 uv € Dv P e Puv [fuv(P)] (5)
A

Y ne<1 [o] (6)

ecE

He, ﬂ.’il} € R-i— (7)

Constraint (6) is always satisfied by the optimal dual solution because « is contained in
the restricted primal LP. Therefore, it suffices to test whether all dual constraints (5) are
satisfied in order to state optimality of o) with respect to all path variables. If §* consists
of all single link and node failures, this can be done as follows. First, notice that a routing
path P fails if and only if it contains the failing link or node. Second, a simple path contains
a failing node as inner node if and only if it also contains exactly two incident links of the
failing node. Third, w.l.o.g., w3, = 0 can be assumed if u ¢ V* or v ¢ V*. Using these
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observations, the dual constraint (5) of a path P of demand uv can be rewritten as

0> e > mu=d e~ (X mn— > )

eeP SES: ecP seS SES*:
PEP, PP,
s s
= E He + E Tuw — E Tuw
eeP sE€S*: SES
P¢Phy
_ ( + e + 1( x + Yy )) o s
- e T 92 Tuw T T
e=zycP s€S

The last sum only depends on the demand uv, not on the path P. Hence, by defining

1
Yoi= pe T 45 )  (e=ay) and L= Yom,
seS

constraint (5) can be rewritten as

Y(P) = Z'Ve > lyp-

eeP

Since v, > 0 for all e € E, violation of this inequality can be tested by searching a shortest
uv-path P* with respect to the link weights 7. with Dijkstra’s algorithm [5]. If v(P*) < ly,
then P* violates its dual constraint and can be added to the primal LP. Otherwise, if the
shortest uv-path P* satisfies its dual constraint (P*) > [, all other uv-paths satisfy their
dual constraints (5) as well.

Summarizing, the decision whether a feasible (fractional) DsP-routing exists can be done in
polynomial time by solving |D| shortest path problems. Although the separation of metric
inequalities is based on a fractional routing, the described approach still leads to a valid
lower bound on the whole planning problem with an integer routing. In fact, a capacity
vector y is only cut off by a separated inequality if no fractional routing exists within the
given capacities, which means that no integer routing exists either. If, on the other hand,
a fractional routing but no integer one can be found, y is declared to be infeasible without
being cut off. In this way, an optimal solution may not be found, but the overall lower
bound is still valid and leads to a quality guarantee for any feasible solution.

For generating an integer routing out of a fractional one, a combination of rounding and
rerouting techniques is used. In a first step, the routing formulation is solved as an integer
program whose set of variables is restricted to those paths which have a non-zero flow in the
fractional routing. The objective is to minimize the total flow in the network. Even if no
integer routing exists within the given capacities using the restricted path set, the routing
is made integer by rounding up some flow values. In any case, the resulting integer routing
is post-processed by a min-cost-flow heuristic within the given capacities. It tries to shift
flow away from links with a small flow-to-capacity ratio, in order to free these links. This
post-processing aims to set the capacity on some links to zero and thus to a smaller total
network cost. On our test instances, the running time of the whole heuristic is usually less
than half a second per iteration.
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5 Case Study

In order to compare the survivability concepts rather than the codes used to generate
feasible solutions, it is desirable to have provably optimal solutions for the various resilience
mechanisms at hand. Integer linear programming is a very powerful approach in order
to obtain high-quality solutions for network design problems. Realistic network scenarios,
however, are typically too complex to be solved to proven optimality within reasonable time
bounds. Nevertheless, it is still possible to draw valuable information from the results if
upper and lower bounds on the optimal network cost are available which are not too far
apart.

In this section, we compare the new DSP variant from Section 4 to

e the first DSP version [12, 13|, where the number of paths to be used is set to the
maximum node-connectivity (DSP-MAX) or to two (DSP-TWO).

e 1+1/1:1 protection as an upper bound for DsP,

e shared path protection (SPP) as a lower bound for DSP.

The approach for the concepts DSP-MAX and DSP-TWO is similar to the approach described
in Section 4. The minimum cost network design with 141 protection can be formulated
similarly to the DSP variants and is not explained further.

The integer linear programming formulation for SPP is more complex in the sense that the
flow variables f,,(P) have to be indexed for each operating state, resulting in an order of
magnitude more flow variables [16]. Moreover, our postprocessing techniques to generate
integer routings cannot be applied in this context. As a consequence, in contrast to all
other concepts, solutions of SPP may contain fractional flows. Thus, the difference between
the values for DSP and SPP is not only due to the more flexible routing mechanism of SPP,
but also to the relaxation to fractional flows. Moreover, in case of SPP we could not always
finish the column generation completely (i.e., solve linear programming relaxations for the
constraints at hand to optimality) which implies that the lower bound presented is only
guaranteed under the precondition of a restricted path-set P, for all demands.

All computations follow the algorithmic approach presented in Section 4.2. As underlying
LP solver, CPLEX 9.1 [1] has been used. A time bound of three hours of CPU time is used
for all computations.

5.1 Instances compared

A total of 5 network instances has been used in this case study. Table 2 shows some
characteristics for the topology, demands, and operating states. Besides the failure-free
state, we consider all single link and node failures as operating states (i.e., |S| = |V|+|E|+1).
The networks NSFNET, GERMANY and EUROPE have been used before in the study of the
first DSP version and originate from the MultiTeraNet project [3]. The GERMANY-EXT
network bases on the GERMANY network, but contains five more links as to increase the
connectivity and by this extend the solution space for the various concepts (in particular for
DSP). The P23 network is a modified version of a network of one of our industrial partners.
All instances are available from the authors upon e-mail request.
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instance V| |E| |D| > d, |S|

NSFNET 14 21 91 2710 36
GERMANY 17 26 58 686 44
GERMANY-EXT 17 31 58 686 49
EUROPE 28 41 378 1008 70
P23 11 34 24 4621 46

Table 2: Instance characteristics

The network designs for NSFNET, GERMANY, GERMANY-EXT and EUROPE have been com-
puted with an optical equipment cost model, see [12] for details. For P23, a SDH equipment
cost structure is used.

For every network instance, we consider three scenarios: 50%, 75%, and 100% protection
of all traffic requirements. Fractional survivability requirements are rounded up as to guar-
antee that at least the percentage of the traffic survives. Combined with the 5 different
networks, the 3 protection scenarios result in a total of 15 instances used in the case study.

5.2 Results

The results of our computational comparison are presented in Figures 6-8 for 50%, 75%,
and 100% traffic protection, respectively. Each of these figures shows lower and upper
bounds on the network cost for each of the networks and each of the concepts. The values
are normalized according to the upper bound for 141 protection. In this way, the savings
by DSP solutions to 141 solutions can easily be detected.

For NSFNET the gap between lower and upper bounds is roughly 2 — 3%, which allows more
concise statements than for the other networks. P23 turns out to be the most difficult one
of our test set.

Besides the cost figures, we also can compare the number of paths actually routed in the
various designs. For 141 protection, DSP-MAX, and DSP-TWO, these numbers are fixed
beforehand, but for Dsp the number of paths is part of the optimization. Figure 9 shows
this number of paths for the P23 network, the different concepts, and the various protection
levels.

5.3 Discussion

From the figures, we can observe that DSP is very beneficial for low protection levels and loses
gain as the protection level advances towards 100%. For 50% and 75% protection, the best
solution by DSP is in many cases below the lower bound for 141 protection, which demon-
strates that DSP is indeed a more cost-effective survivability concept than 1+1 protection
regardless of optimality of the solutions. On average over all versions (50%, 75%, 100%),
the best solutions for DSP are 15% percent better than the corresponding 1+1 dedicated
path protection solutions.

Compared to SPP, the DSP solutions for NSFNET with 50% protection do not differ much

13
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Figure 6: Relative network cost values and lower bounds for 50% protection
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Figure 7: Relative network cost values and lower bounds for 75% protection
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Figure 8: Relative network cost values and lower bounds for 100% protection
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Figure 9: Number of paths in designs for various concepts

from the SPP values, indicating that in this case DSP is close to what can be achieved by
shared protection mechanisms. The increasing gap between lower and upper bounds (both
for DSP and spP) for the other instances does not allow for more general statements in this
direction. This is also the case for higher protection levels (e.g., the upper bound for DsP
and the lower bound for SPP grow apart). On average over all versions (50%, 75%, 100%),
the best solutions for SPP are an additional 15% percent better than the best DSP solutions.

The flexibility of DSP compared to DSP-MAX and DSP-TWO is reflected in both the cost values
and the number of paths routed. In most cases, the DSP solution has a value somewhat
below the solution values of both DSP-MAX and DSP-TwO. In fact, for 75% and 100%
protection, the lower bound of DSP-MAX is in several cases higher than the upper bound of
DSP indicating that DSP outperforms DSP-MAX on network cost. For 50% protection, this
effect cannot be observed: The number of paths used for a demand in DSP is in between
DSP-MAX and DSP-TWO. For 50% protection, these numbers are often equal, and hence the
flexibility in a DSP design compared to DSP-MAX is very limited (cf. Figure 9).

Also, the lower bound is typically lower than those of DSP-MAX and DSP-TWO. Although
the existence of (significantly) better solutions could be one reason, the higher complexity of
solving DSP is to some extent responsible for this: the number of branch-and-bound nodes
processed within the three hours of computation time is significantly lower for bsp than for
DSP-MAX and DSP-TWO. The higher complexity of DSP is also the reason that in a single
case the upper bound of DSP is above DSP-MAX, DSP-TWO as well as 141 protection.

Among the three DSP variants, DSP-MAX turns out to be the best computable, i.e., the gap
between lower and upper bounds is typically the smallest after three hours of computation
time. The requirement in DSP-MAX to use many disjoint paths seems to be responsible
for this: the number of disjoint path combinations is typically small if the connectivity
between two nodes is high in comparison to the number of nodes in the network. This is in
particular the case in P23 with 100% protection: DSP-MAX could be solved to optimality in
only two seconds. A high spreading of the traffic routing hardly allows to leave links unused.
In connection with a coarse granularity of installable capacities, their effective utilization
is hampered by the limited routing flexibility. This explains why DSP-TWO and DsP find
significantly better solutions than the optimal DSP-MAX network, although the number of
established paths is about 65% higher (cf. Figure 8 and Figure 9).
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6 Conclusion

Demand-wise Shared Protection is a promising approach to protect a network against single
element failures. It combines the good characteristics of shared path protection and ded-
icated path protection: good reaction times, good bandwidth requirements and a simple
network management.

A quantification by integer linear programming showed how expensive solutions for DSP are
compared to other protection mechanisms: DSP is an excellent alternative to 1+1 dedicated
path protection, in particular if not 100% of all demands needs to be protected. Average
cost savings in the order of around 21% have been identified for 50% protection, while still
around 15% over all scenarios.

Solving the integer programming models for DSP turns out to be computationally more
complex. In order to design proven minimum cost networks for DSP in reasonable short
computation times, further improvements of the mathematical optimization approach are
therefore needed.
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