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Abstract

The identification of metastable conformations of molecules plays an
important role in computational drug design. One main difficulty is the
fact that the underlying dynamic processes take place in high dimensional
spaces. Although the restriction of degrees of freedom to a few dihedral
angles significantly reduces the complexity of the problem, the existing
algorithms are time-consuming. They are mainly based on the approxi-
mation of a transfer operator by an extensive sampling of states according
to the Boltzmann distribution and short-time Hamiltonian dynamics sim-
ulations. We present a method which can identify metastable conforma-
tions without sampling the complete distribution. Our algorithm is based
on local transition rates and uses only pointwise information about the
potential energy surface. In order to apply the cluster algorithm PCCA+,
we compute a few eigenvectors of the rate matrix by the Jacobi-Davidson
method. Interpolation techniques are applied to approximate the ther-
modynamical weights of the clusters. The concluding example illustrates
our approach for epigallocatechine, a molecule which can be described by
seven dihedral angles.

1 Introduction

In computational drug design, we examine the binding capacity of different
ligands to certain target molecules. Our goal is to find out if structural sim-
ilarities of the ligands imply functional similarities. The results can be used
to decide which new ligands are worth to be tested in laboratory experiments.
Since the behavior of a single ligand molecule depends on its structure, we want
to determine those conformations which are suitable for the docking process
[5][6]. Therefore, the first step consists in the identification of all metastable
conformations and their thermodynamical weights.

Conformation dynamics based on Hybrid Monte Carlo techniques [20] and
the transfer operator approach [21] are powerful methods for conformation anal-
ysis. The software package ZIBgridfree [17] [28] [18] combines these ideas with
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mesh free methods. It does not only figure out metastable conformations and
their thermodynamical weights, but also the correct transition probabilities.
However, this algorithm is very expensive because it is based on a correct sam-
pling of the Boltzmann distribution even in transition regions which are occupied
very seldom. Alternative methods are considered at the time, for example replica
exchange and jump techniques. These techniques deliver the correct distribution
which is essential for the computation of observables. Clustering methods like
successive PCCA [9] or PCCA+ [10] can be used to identify metastable confor-
mations, but further calculations would be necessary to approximate transition
probabilities between these conformations.

These are the reasons why we were looking for a method which can identify
metastable conformations and approximate thermodynamical weights without
a sampling of the complete Boltzmann distribution. We developed an algorithm
based on local transition rates which uses only pointwise information about the
potential energy surface. This idea was motivated by the work of I.L.. Hofacker
et.al. [29] who examine folding dynamics of RNA secondary structures. In their
approach, transitions between secondary structures correspond to the opening
and closing of base pairs. They identify macro states as basins of attraction
of one or more local minima of the energy function. To avoid the course of
dimensionality, they restrict their examination to a few minima with lowest
energy.

Our approach is more general and can be applied to different classes of
molecules. The molecules are represented as points in a space {2 spanned by
the essential dihedral angles. We allow transitions between points which have a
small distance d < € in €). Hence, our method requires an arbitrary set of points
in  which sufficiently represent the area of interest. The application of PCCA+
to the transition rate matrix identifies those basins which belong to a metastable
conformation, independent from the depth of the minima. Furthermore, we use
interpolation methods to compute the thermodynamic weights. This illustrates
the main difference to [29], in that we respect entropic effects.

2 Point Concept

The topology of a molecule is uniquely defined by the coordinates g of its atoms
in position space Q. They also define the potential energy V(g). Throughout
the paper, we counsider the (n,v,T)-ensemble (constant number of particles,
constant volume, constant temperature) where the probability of being in state
q € Q is given by the Boltzmann distribution

m(q) = ZLQ exp(—BV (q)).

Zg = fg exp(—pV(q) dg) is the unknown spatial partition function, and 5 de-
notes the inverse temperature



Figure 1: Set of possible transition pathways for pentane

where T is the temperature measured in Kelvin, and kg is the Boltzmann con-
stant.

However, it has been shown that the essential properties of molecules can
be described by a few dihedral angles ¢1, ..., ¢4 which significantly reduces the
number of degrees of freedom. Since we want to identify metastable conforma-
tions as subsets of Q € IR%, we do not only need a map f : Q —  which is a
standard routine in molecular dynamics, but we also need an energy function
V:Q—R. In general, one point in {2 corresponds to several points in Q with
different energies, but V has to be unique. Let us be given a set of states

For every p € ) we define the energy function

V(p) = min{V(q) |q € Q, f(q) = p}.
The probability of being in state p in equilibrium is given by
1
m(p) =2 exp(—pV(q)) dg.
a.f(a)=p

Since we want to circumvent the sampling, we approximate

7(p) oc exp(—BV (p)). (1)

Furthermore, we define a set of possible transition ways

The distance measure d corresponds to the Euclidian distance in IR¢. Figure 1
shows an example for pentane where () is spanned by two dihedral angles.

Now, we describe the dynamics of the molecule as a random walk on S along
paths in W. We denote by x;(t) the probability that the molecule is in state p;
at time t. Then, the dynamics is described by the master equation

Z;(t) = Z gGizi(t), qi=— Z Qijs

7, (1,5)EW 3> (1,5)EW



where gj; denotes the transition rate from state p; to state p;. In matrix nota-
tion, the equation reads
x=Q x.

The matrix @ can be considered as the infinitesimal generator of an underlying
continuous-time Markov jump process [8], given by the transition probability
matrix P with P(t) = exp(¢tQ) where ¢ is the simulation length of the corre-
sponding molecular dynamics.

2.1 Energy Minimization

Assume we are given a set of points {¢;}}*., € Q and their corresponding images
p; = f(q;) € Q which cover the relevant part of the dihedral space. These points
can be obtained, for example, by a presampling procedure at high temperature
which overcomes energy barriers [28]. Ideally, we want to preserve the dihedral
angles during the minimization process,

V(g) — min!, ¢1,...,¢q = constant.

We use the following restraint objective function in order to solve the minimiza-
tion problem,

Vinod(q) = V(q) + uW(g) — min!, p >0, W(q) =1—cos(¢(q) —0)

where ¢ is the vector of the current dihedral angles, and 6 denotes the target
angles or the target position in €2 respectively. Now we calculate the derivatives

OVimod OVimoa O cos(¢p — 6) dcos(¢)
dq ~ Ocos(¢p—0) Ocos(¢) Jdq
= e cos(e) - TELEE) D),

The expression for the last factor can be obtained from [26]. As minimization
routine we apply conjugate gradients with line search by the method of golden
section.

Obviously, the molecule with minimized energy is represented by a different
point p € € than the original molecule. The parameter p determines the flex-
ibility of the molecule that we allow during the minimization process. If p is
chosen too large, the method fails to find the lowest energy in transition regions
between minima (e.g. saddle points), i.e. we loose information about barriers on
the energy surface. On the other hand, with a small u we often get trapped in
local minima which are irrelevant for the overall dynamic process. An automatic
or maybe adaptive choice of p is still ongoing work. At the time, we usually
choose a large u, but afterwards we use a selection routine which automatically
eliminates those points in Q with too large energy. Additionally, we apply the
minimization algorithm to some points from the presampling trajectory with
= 0 in order to make sure that we find all relevant minima of V.



2.2 Approximation of Transition Rates

It is a well known fact that the potential energy surface in Q forms a rough land-
scape with a number of local minima, especially for larger molecules. However,
it turned out that V is much smoother because the fast degrees of freedom were
eliminated. This allows the assumption that there is no barrier in the potential
energy surface between points in {2 which are close to each other. Consequently,
the transition rate between two points p; and p; only depends on the energy
difference V (p;) — V (p;) which can be related to the fraction :—; by (1).

Since reversibility of @ implies reversibility of P [15], which is a natural and
desired property of Markov jump processes, we want ) to meet the detailed
balance condition

Wiqij:ﬂjqji, VZ,jE{l,,N}
This is a sufficient condition for reversibility.

It is important to note that validity of the detailed balance equation implies

the existence of the stationary distribution 7 [8],

7' Q=0.

Every expression
1
= g

QZ] 7T,L 1)
with a symmetric function s meets the detailed balance condition. We cannot
directly compute 7 due to the unknown partition function, but, as mentioned
above, we operate with the fraction R;; = :—] This offers several possibilities
for the choice of ¢;; [8] [7].

01 —— Metropolis
| - - - Barker

o 1 2 3 4 5 6 7 8 9 10

Figure 2: Illustration of transition rate g;; for Metropolis and Barker kinetics
dependent on the fraction R;;.

Metropolis Dynamics The classic Metropolis choice is

; 1
¢i; = min(1, R;;) = min(1, 7T—]) = — min(m;, 7;).
U T4



For irregularly distributed points in 2, we take into account the number N; of
neighbors of a certain point p;,

1 . (’/Ti ﬂ—j)
ij = — min(—, —=).
qij 7Ti Ni,Nj

This accounts for the fact that the jump rate should be independent of the
number of neighbors.

Barker Dynamics Chemists often use Barker’s dynamic where g;; is given

by
Rij 1 Uy 1 1
qi; = — - — = — ,
Y 1+ Ry o+l mit 771‘7%4'7%
or
1 1
dij = — N N,
ij Wif—:—f—%,

respectively. The second factor can be interpreted as the total drag of two
parallel resistors or the harmonic average, respectively.

3 Identification of Metastable Conformations

Subsets of  can be characterized by membership vectors x : S — [0, 1], i.e. x(4)
is the grade of membership of point p; € Q to the conformation characterized
by this vector. Similar to the analysis of almost invariant (or metastable) sets
in conformation dynamics, we are looking for a partition of {2 into N, subsets
which remain almost invariant during the transition process. The membership
vectors xx, k = 1,... N, of these sets satisfy

N.
Qxr ~ 0, ZXk =1
k=1

The first equation can be interpreted as follows. The rate matrix ) represents a
closed system with mass conservation, indicated by the row sum zero property.
For strictly characteristic vectors x with values in {0,1}, x characterizes the
subsystems of @) for which this property holds, too.

Proposition 3.1 The eigenvalues of the rate matrix @ are located on the neg-
ative real azis in the interval [—2max;(|g|),0]. Moreover, if Q is irreducible,
the eigenvalue 0 is algebraically simple.

Proof: Let D be the diagonal matrix with elements d;; = m;. Then, the
reversibility constraint can be written in matrix notation,

DQ=Q'"D.



Hence, DQ = S is symmetric. () can be reduced to a symmetric matrix Q* by
an orthogonal similarity transformation,

Q* — D—l/QSD—l/Q _ D1/2QD_1/2.

Consequently, @ has only real eigenvalues and is diagonalizable. Following Ger-
shgorin’s Theorem [12],

N

ANQ) € U[Qii = T, Qi + T4l

=1

where r; = min(Zj,j;éi 1G] Zj,j;ﬁi |gji]) = min(|gsl, ZjJ# qji) < |gii|. Hence

N
i=1
and the proposition follows. Since @ has row sum zero, e = (1,...,1) is an

eigenvector of @) corresponding to the eigenvalue 0. Let 6 = max;(|g;|) and
consider the matrix A = 61 + Q. The eigenvalues of A are given by A\(A) =
04+ X\Q) C [-6,0]. The matrix A is non-negative and irreducible as long as Q
is irreducible. According to the Perron-Frobenius-Theorem [4], there exists an
eigenvalue \p(A) > 0 which is maximal in modulus among all the eigenvalues of
A and algebraically simple. Due to the construction of A there is a one-to-one
correspondence between the eigenvalues of A and ). Since 0 is an eigenvalue of
Q, 0 is the largest eigenvalue of A. Since 6 is algebraically simple, A\g(Q) = 0
satisfies this proposition, too. O

Since @ is diagonalizable, the transition probability matrix P = exp(tQ)
possesses the same eigenvectors as @ [15]. Motivated by our work on PCCA+
for such matrices [10], we follow the same idea and try to find x as a linear
combination of eigenvectors of () corresponding to eigenvalues A = 0, i.e.

x=XA QX=XA, A=diag(\)X, A ~0.

Since @ is ill-conditioned (Gmax/0omin is large), we suggest to compute the
eigenpairs of I —(@) instead of Q). They are located in the interval [1, 14| Apax (@)]]
with an eigenvalue cluster at 1.

3.1 The Jacobi-Davidson Method
We have to deal with a non-Hermitian eigenproblem
Ax = Az.

Since @ is generalized symmetric, we could also solve the generalized eigenprob-
lem

Sx = ADx



with the diagonal symmetric matrix D. However, D is not well conditioned
which leads to highly distorted inner products. To circumvent this fact, we
could use the so called QZ approach [11]. But it does not exploit symmetry of
the involved matrix, so we do not gain anything.

The matrix A is large but sparse. Hence, a subspace oriented eigensolver is
recommended. However, we do not know a priori how many eigenvalues of A
are close to our target value. Therefore, it would be ineffective to work with
a fixed subspace size. Instead of that, we decided to use the Jacobi-Davidson
method [24] which delivers eigenvalues one after the other. We explain the main
ingredients of this method following [11].

For the reason of numerical stability, it is advantageous to work with an
orthonormal basis. Therefore, we compute a partial Schur form

AQy = Qr Ry,

with an (n x k) orthonormal matrix Q) and an upper triangular (k x k) matrix
Ry. The diagonal entries of Ry, represent the eigenvalues {\;}¥_; of A. The
pairs (g;, A;) are called Schur pairs. Given the eigen-decomposition of Ry,

RyY = YA,
the eigenpairs of A are obtained by
AQkY = QkRkY = QkYA — AX = XA with X = QkY.

To avoid that the same eigenpair is computed twice, we use a deflation
technique [3]. Suppose that we have already detected k — 1 Schur pairs, i.e.
AQy—1 = Qr_1Ri_1. The following Schur vector gy, is required to satisfy

Ry
G L Qu—1, AlQr—1q1] = [Qr—1ax] [ ]6 ! /{lk }
Hence, (g, A\x) meets

ar L Qr_1, Agqx = Qr—10 + qpAg.

Denote by @} _; the conjugate transpose of Qr—1. Since Qr—1 is orthonormal,
a satisfies

a=Qf_1(A— X 1.
This leads to
@ L Qr—1, (I = Qr-1Qp_1)(A = AI)g = 0.
Consequently, (qx, Ar) is an eigenpair of the deflated matrix
Ag = = Qr1Qp1)A( — Qr-1Qf 1) (2)

This eigenproblem is solved with the Jacobi-Davidson method. It is based
on two main principles.



First, it is a subspace method, i.e. we look for an approximate eigenvector ¢
in a search space V' L Q_1. For this purpose, we compute the Schur form of
the matrix

M =V*A,V = V*AV, MS = ST,

where S and T are ordered such that A = T'(1,1) is closest to some target value
7 € €. The pair (¢,A) = (VS(:;,1),T(1,1)) is an approximation for a wanted
eigenpair of Ag. Observe that A =T(1,1) = S(;,1)*MS(:,1) = ¢*Aqq = q* Aq.

The second idea of the Jacobi-Davidson method includes the expansion of
the search space V' with the solution of the Jacobi correction equation. Assume
we are given an approximate eigenpair (g, A), ||¢|l2 = 1 of the matrix A; with
residual

r=(Aq — M)q.

Note that ¢ L r because A = ¢*Azq. We are looking for a correction (v, AX)
such that
Ailg+v)=A+AN(g+v), vlg vL1Qk.

By ignoring the 2nd order terms we obtain the approximation
(Ag— A)v—Alg~ —r.
Multiplication with the projection
P=1I-qq"
leads to the Jacobi correction equation
P(Ag— A)Pv = —r. (3)

Afterwards, the search subspace span{V'} is expanded with the orthonormal
complement of v w. r. t. V. Observe that

T =

Hence 7 L Qp—1. Since ¢ L Qp—1 and (I — Qr—1Qs_1)" =1 — Qr_1Qj_,, we
obtain

(Ag—X)Pv = AgPv—MI—Qr 1Q;_,)*Pv
= ([ = Qr-1Qp-1)(A—= A — Q-1Q)_1)Pv.

Now we can rewrite (3) as fully deflated Jacobi correction equation
(I = a¢")(I = Qr1Qp_)(A = A = Qr-1Qj—1)(] —gqq")v = —1.

o (I-QQ)A-AI-QQ)w=—r with Q=[Qr1q. ()



Since Q is orthonormal and r L Q, this equation is equivalent to the following
system of equations:

A=X —-Q v | T (5)

Q* 0 AN || 0
Remark 3.2 Consider the eigenvalue problem for A =1—Q. Since we already
know the first eigenvector e = ﬁ(l, ..., 1) € RN according to A = 1, we can

start to search for eigenvectors q; L e by setting R(1,1) =1 and q1 = e. Then
e; = (1,0,...,0) € RF will be an eigenvector of Ry, corresponding to \; = 1.
Consequently we obtain x1 = Qre; = q1 = e as desired.

3.2 Solution of the Correction Equation

In general, (4) is solved by iterative methods. To achieve moderate convergence
rates in the outer iteration, it suffices to solve (4) only approximately [24][23].

If (4) is to be solved by an iterative solver like GMRES, the rate of con-
vergence can be improved considerably by using preconditioning. In [25] it was
suggested to work with a preconditioner

K =(I-QQ")K(I-QQ),

where K is a preconditioner for A — 71 for one fixed value of 7 which remains
constant over some iterations. During the iteration process, we only have to
solve

Kz =b.

An incomplete LU-factorization might be appropriate. However, if 7 is close
to an exact eigenvalue, then A — 71 is nearly singular. When using a large drop
tolerance, the matrix factors are ill-conditioned in that some diagonal entries
are nearly zero. There are several possibilities to circumvent these problems.
For example, we can reorder the matrix elements to obtain a nearly block diag-
onal structure with well-conditioned leading blocks similar to the aggregation
technique used for Markov chains [27]. Sleijpen and Wubs [22] have shown how
such block-wise decompositions can be updated efficiently.

Instead of LU-decompositions, we could also use multilevel solvers. Since we
are looking for eigenvalues close to zero, we choose 7 = 0, and the preconditioner
for A — 71 is the same as for (). Here, we can make use of the fact that —Q
is a singular M-matrix. For such matrices, algebraic multilevel solvers can be
applied [1] but they did not turn out to be efficient for our problems.

However, in our special case we already know the first eigenvector. This
leads to the idea to use a preconditioner for the matrix

M:|:A—*>\I —qu|.
q1 0

10



In contrast to M = A— A, M is regular and we obtain well-conditioned matrix
factors. Let Q@ = [Qx—1(:,2:k—1) g]. Then we can split the system

M_Ch _Q T _NflA
N A I
Q* 0 0

with Z = Q*M _1Q. Thus, solving (5) just requires the action of the inverse of
M or the action of the preconditioner in each iteration step, respectively. As
new vectors are appended to the matrix ), we must update M ~1Q) and Z. This
is also necessary when the shift 7 changes.

On the other hand, if we have a high-quality preconditioner available for
A — A the solution of (5) is already a good expansion vector for the search
space and iterative methods need not be applied. This was pointed out by
Sleijpen and Wubs in [22]. Furthermore, it turned out that it also suffices for our
problem to solve (5) with constant shift A = 7 over all iterations. No updating
of the preconditioner is needed. For this purpose we computed an incomplete
LU-decomposition of M with small drop tolerance droptol. This must only be
done once at the beginning of the outer iteration. Figure 3 illustrates the results
for a matrix Q € IR'!4*191 which was obtained from a discretization of the
potential energy surface of epigallocatechine.

4 Computation of Observables

So far we have obtained a number of points and corresponding membership
vectors. Now we would like to use this information in order to compute the
weights of the conformations which are given by

- Zig [ ) exp(~BV (a))da

and must be approximated by

RS sz-(pj) exp(—BV (p;))w(p;)-

J

Unfortunately, the points are not distributed according to the Boltzmann distri-
bution and we do not know the correct weights w(p,). However, we can try to
approximate these weights by interpolation. For this purpose, we used different
interpolation techniques as described below. The computation of conforma-
tional weights is just an instance of the more general problem of computing
observables

<f>= ZLQ/QJC(Q) exp(—pV (q))dq.

In our case, f = x;. Note that we only know the value of x; at the given points
pj-

11



Figure 3: Convergence of eigenvalues of a rate matrix for epigallocatechine
during the Jacobi-Davidson iteration. Computation of the first 20 eigenvalues
close to zero. We chose A = I — @ and kept the constant shift 7 = 1 during
all iterations. M was approximated by an incomplete LU-decomposition with
drop tolerance le — 10. The figure on the left shows the convergence history,
i.e. the log; of the Euclidian norm of the residuals as a function of the iteration
number. The jump in the curve corresponds to the detection of eigenpairs and a
start for another eigenpair. Eigenpairs were accepted if the norm of the residual
was less than 1le—8. The method stagnated after the detection of 18 eigenvalues.
The figure on the right shows the detected eigenvalues 1 — A\(A) plus the next
two values that were obtained by a new start of the algorithm with a different
shift 7 = 1.3. Note that the first eigenvalue equals zero.
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Figure 4: Grid for interpolation and approximation of observables. The points
illustrate the given ones, the stars are the mid points of the squares.

4.1 Interpolation Techniques

In a first approach, we covered the domain 2 with patches A; with midpoints
m; and side length h;. The covering can be a regular grid as in figure 4. The
patches could also have different sizes but must not overlap. Then, the integral
is written as

<f>= Z |Ail f(m),

where |A;| = hdi™ denotes the size of patch A;. There are several possibilities
to approximate f(m;).

Local Approximation First, we take into account the points p; which are
close to m;, and approximate

)= Y ) en(—5V () (6)

" {jlp;EA:}

where N; is the number of points p; in patch A;.

Global Approximation The pointset {pj}j-vzl can be used to define a set of
radial basis functions.

exp(—adist(p, p;))
Y-, exp(—adist(p,p;))’

These functions form a partition of unity and can be interpreted as weights of
the points p; in an arbitrary point p. Hence, f(m;) can be approximated by

f(m;) = Zf(pj)saj(mi).

vj(p) =

This interpolation technique is frequently used in mesh free methods [16].
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5 Numerical Illustrations

We applied our algorithm to epigallocatechine, see figure 5. Its conformational
space is described by 7 dihedral angles. Three dihedrals determine the form
of the ring RO, three dihedrals at the oxygen atom (denoted by “oxy” in fig-
ure 7) determine the position of the ring R3, and one dihedral determines the
orientation of the ring R2.

We generated a molecule trajectory of 20000 time steps at 300K by using
a hybrid Monte Carlo method combined with replica exchange. From these
molecules we chose 1500 molecules evenly spaced in the important part of the
dihedral space. We applied a local minimization routine as described in section
2 with penalty parameter p = 100. Furthermore, we chose 500 equally spaced
position states to which we applied an unconstrained minimization of energy.
Afterwards, the 2000 elements were reduced to 1500 removing those molecules
which had a high potential energy but were close to molecules with low energy.
Thereafter we computed the transition rates between points which were closer
than a distance € = 0.3 in the dihedral space.

The eigenvectors corresponding to eigenvalues close to zero are computed by
the Jacobi-Davidson algorithm. Besides the gap in the spectrum, we computed
the minChi-values [10]. We decided to take the largest possible number of
clusters for which the minChi indicator as well as the eigenvalue is acceptable.
This results in 18 clusters. The behavior of minChi as well as the resulting
membership vectors are shown in figure 6.

By plotting histograms of the dihedral angles for the different clusters, we
identified those angles which are significant for the partition:

Dl:7-9-44—-43, D3: 9—-44—-51—-6, D4:10—25—-19—1T7.

The numbers correspond to the labeling of the atoms in figure 7. The dihedral
angles D3 and D4 indicate the orientation of the two rings R2 and R3 with
respect to rotations while the angle D1 determines the form of the ring RO
and consequently the positions of the rings R2 and R3 relatively to each other.
The distribution of these angles within single clusters are similar to normal
distributions. Therefore, we considered their mean values as significant feature
for the identification of a cluster. They are reported in the table. Note that
the angles are in the periodic interval [—180, 180]. Since single points belong to
several clusters, the number of points in the table is not an integer. The last
cluster can be considered as numerical artefact because it consists of a single
point. The weights were determined by (6) with h; = 27/10 for all i.

The last column displays the lowest energy of all points which would uniquely
belong to the corresponding cluster if the soft clustering was transformed into
a hard clustering. The table is divided into different blocks. Within the first
three blocks, there is a 4-clustering induced by a rotation of the two rings R2
and R3. The first block is divided from the other ones by the angle D1 which
corresponds to a change in the positions of rings R2 and R3. The fourth block
in the table represents a third state of angle D1 which also forces the angles D3
and D4 to take positions different to the ones in the previous blocks. However,

14



Figure 5: 3d representation and line formula of epigallocatechine. The 3d plot
was generated with amira [2].
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Figure 6: Transformed eigenvectors of the transition rate matrix for epigallo-
catechine and the minChi-values for different numbers of clusters.

Figure 7: 3d representation of epigallocatechine with labeled atoms.
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D1 D3 D4 points | weight | minimal energy

cluster 1 48.2 | -38.2 -3.4 356.0 31.9 115.9
cluster 2 47.8 | 147.6 -1.9 349.1 13.3 116.4
cluster 3 48.3 | 144.8 | 175.4 | 363.8 33.2 116.4
cluster 4 48.3 | -37.7 | 177.7 | 290.6 20.5 116.6
cluster 5 | -33.8 | -33.4 -9.0 24.6 0.058 129.9
cluster 6 | -33.0 | 145.7 0.9 18.4 0.140 130.3
cluster 7 | -30.7 | 139.7 | 177.0 84.0 0.420 129.9
cluster 8 | -32.2 | -47.5 | -178.4 | 116.6 | 0.189 130.2
cluster 9 | -29.7 | -48.5 11.1 60.7 0.061 130.5
cluster 10 | -30.1 | 137.0 4.5 54.6 0.158 130.7
cluster 11 | -34.8 | 151.6 | 173.8 29.8 0.016 135.2
cluster 12 | -36.0 | -30.8 | 174.9 31.5 0.048 134.9
cluster 13 | -47.4 | -136.3 | 12.2 54.5 0.034 134.7
cluster 14 | -49.0 | -141.1 | -178.0 | 15.8 0.001 141.3
cluster 15 | -50.7 | -132.7 | -13.9 22.3 0.001 141.5
cluster 16 | -53.1 | 394 179.7 30.9 | 0.0004 143.6

] cluster 17 \ -43.5 \ -132.1 \ -74.9 \ 9.2 \ 6e-5 \ 150.4 \

[cluster I8 [ 484 [ - [ - [ 15 [ le8 | 320.6 \

Table 1: Mean values of significant dihedral angles for different clusters.

apart from cluster 13, they have a vanishing weight due to their high potential
energy.

6 Conclusion and Outlook

We have demonstrated how pointwise information about the potential energy
landscape of a molecule can be used to identify metastable conformations. As
an advantage of our algorithm, we know the stationary distribution of the un-
derlying Markov jump process in advance which turned out to be useful for
the eigenvector computation. One conformation comprises different basins of
attraction of local minima which can be connected by paths over low energy
barriers while different conformations are separated by high energy barriers.
Points in transition regions are used to obtain information about the shape of
these conformations in the dihedral space. They serve for the approximation of
the cluster weights.

Of course, we can only extract the information which is contained in the given
points. In future, we aim to include more points in regions where they are nec-
essary in order to improve the results, but without a complete re-computation
of the eigenvectors. Furthermore, it remains to examine the influence of certain
parameters, for example the transition length € or the penalty parameter u, on
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the results.
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