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Abstract Globally optimal free flight trajectory optimization can be achieved
with a combination of discrete and continuous optimization. A key requirement
is that Newton’s method for continuous optimization converges in a sufficiently
large neighborhood around a minimizer. We show in this paper that, under
certain assumptions, this is the case.
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optimization, global optimization, newton’s method
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1 Introduction

The Free Flight Trajectory Optimization Problem - finding the time-optimal
route from A to B with respect to the wind conditions - is usually solved using
direct or indirect methods from Optimal Control. These are highly efficient,
but suffer from one key drawback: They only converge locally and are thus
dependent on a sufficiently good starting point. This makes such methods, used
as a standalone, incapable of meeting airlines’ high expectations regarding the
global optimality of routes.

In |1]-[3] a deterministic two-stage algorithm was proposed that combines
discrete and continuous optimization in order to find a globally optimal solution
to the free flight trajectory optimization problem. With this approach the expo-
nential complexity of other branch and bound based algorithms is circumvented.

The discrete optimization stage involves the creation of a locally dense-
ly connected digraph of certain density characterized by node spacing h and
connectivity length ¢ and the enumeration of shortest simple paths on this graph
using Yen’s algorithm [4]. Doing so, the space of feasible trajectories is sampled
evenly and analyzed efficiently. Promising paths serve as initial guesses for a
subsequent refinement stage in which a continuous solution to the problem is
calculated up to the desired accuracy.
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The present paper is concerned with the second stage. One way to generate
a continuous solution is to apply Newton’s method to the first order neces-
sary conditions (the KKT-conditions) — an approach commonly referred to as
Newton-KKT or Sequential Quadratic Programming (SQP) (see e.g., [5]). It is
now shown that there is a quantifiable domain around a global optimum such
that Newton-KKT converges if initialized accordingly.

Since the computational effort of the first graph-searching stage depends
exclusively on the problem instance, i.e., the wind conditions, the algorithm
asymptotically inherits the super fast convergence rates of the Newton-KKT
method.

The paper is structured as follows. After defining the problem and intro-
ducing a formulation that is convenient for the analytical discussion in Ab-
schnitt 2] we formally state the necessary and sufficient conditions as well as
the Newton-KKT approach in Abschnitt|3] The proof of convergence is provided
in Abschnitt [4] followed by a conclusion emphasizing the impact on previous and
future work.

2 The Free Flight Trajectory Optimization Pro-
blem

Neglecting any traffic flight restrictions, we consider Lipschitz-continuous flight
paths ¢ € C%1(]0,1[,R?) connecting origin £(0) = o and destination £(1) =
zp. By Rademacher’s theorem, such paths are almost everywhere differentiable,
and moreover contained in the Sobolev space W1°(]0, 1[,R?).

A short calculation reveals that an aircraft travelling along such a path £ with
constant airspeed U through a three times continuously differentiable wind field
w € C3(R?,R?) with bounded magnitude ||w(z)|| < ¥ reaches the destination
after a flight duration

1
7€) = [ (6.6 (7)) dr 1)
0
with &, denoting the time derivative of £ and

FEE) =t = —Gw+ \/(ETTiUQ)2 + (sz - wTw)(ETTST)’ @)

vt —wrw

see |1]-[3].

Among these paths &, we need to find one with minimal flight duration
T(&), since that is essentially proportional to fuel consumption [6]. This classic
of optimal control is known as Zermelo’s navigation problem [7]. It can easily
be shown that in case of bounded wind speed, the optimal trajectory cannot be
arbitrarily longer than the straight connection of origin and destination. Hence,
every global minimizer is contained in an ellipse  C R? with focal points 2o
and zp.

Since the flight duration T" as defined in ([1)) is based on a time reparametriza-
tion from actual flight time t € [0, 7] to pseudo-time 7 € [0, 1] according to the
actual flight trajectory x(t) = £(7(t)) such that ||x;(t) —w(x(t))|| = T, the actual
parametrization of £ in terms of pseudo-time 7 is irrelevant for the value of T
Calling two paths &, € equivalent if there exists a Lipschitz-continuous bijection



7 :]0,1[ — ]0,1[ such that &(r(7)) = £(7), we can restrict the optimization to
equivalence classes. Moreover, every equivalence class contains a representative
with constant ground speed ||&,(7)|| = L for almost all 7, that can be obtained
from any € with ||, (7)|| # 0Vr via

o i éT(t) L bz T T
R T e el ®)

Hence, we will subsequently consider the equivalent constrained minimization
problem

. 2 _ 72
ge?gleRT(g), st. & ()| =L* fora.a.Te€]0,1]. (4)

Here, the admissible set X is the affine space
X ={£e Wh*(0,1[R?) | £(0) = w0, £(1) =xp}. ()

Note that, if the constraint in is satisfied, L also represents the path length,
since

1
| = 1. (6)
0

3 Continuous Optimization: Newton-KKT

In order to find a continuous solution to the free flight optimization problem
we apply Newton’s method to the first order necessary conditions (the KKT-
conditions), which is also known as sequential quadratic programming (SQP).
Before we formally introduce Newton’s method, we discuss the necessary and
sufficient conditions for optimality, which also defines the goal of the presented
algorithm.

3.1 Optimality Conditions
3.1.1 Necessary Conditions

Let us first consider the unconstrained problem analogous to ,

in T. 7
5 @

Any global minimizer £** of is clearly non-isolated due to possible repara-
metrizations of the time. Let £** denote the equivalent trajectory with constant
ground speed, ||&5*(7)|| = L** for almost all 7.
Note that T : X — R is Fréchet differentiable with respect to the correspon-
ding linear space
5X = W (10, 1, R?) (8)

of directions 6§ with zero boundary values, that consequently do not change
origin and destination, equipped with the norm

10€llx = 10&] L qo,1p) + 1€+l oo go,1p) - 9)



Both solutions £**, £** satisfy the first order necessary condition
0="T'(&*)[6¢] V& edsX. (10)

We now turn back to the constrained problem and express the constant
ground speed requirement by means of a constraint h(z) = 0, where z := (L,{) €
Z =R x X and

h:Z— A:=1L>(]0,1[,R), =z &l¢, — L2 (11)
Further we define the linear space
07 =R x6X (12)

and equip the spaces Z and §Z with the norms

[2llzee = [L] + (€]l go,1p) + &Il Lo go,1p»  and (13a)
Izllz2 = LI+ 1€llz2o.ap + € llL2qo,1p- (13b)
If not stated otherwise, we assume || - || to denote the (>-norm. Accordingly, we

use the following quantitative definition of the L>-norm in terms of the {2-norm.

Definition 1. Let f: Q — R™. Then we define
I fllzoe () :=inf{C > 0: | f(z)|]2 < C for a.a. x € Q}. (14)

The goal of the present paper is to find an isolated globally optimal so-
lution &£** to that satisfies T(&**) < T(§) V€ € X, contrary to a local
optimizer £* that is only superior to trajectories in a certain neighborhood,
T(€*) < T(&) V¢ € N(£*) C X. An isolated global minimizer satisfies the ne-
cessary Karush-Kuhn-Tucker (KKT) optimality conditions [8] given that it is a
regular point, which is always the case, as confirmed by the following Theorem.

Theorem 1. Let z = (L,§) € Z with L > 0 and assume there is a direction
u € R? and ¢ > 0 such that Xu > ¢ almost everywhere. Then, h'(z) : 6Z —
L*>(]0,1]) is surjective, i.e., z is regular.

Beweis. Let f € L*(]0,1]) be given and b := ¢X'u > c. We set

sp_ _Jo b f/2dr

L[ b-tdr
and
g=b""(f/2+LL), & = gu.
Due to b > ¢ almost everywhere, b~! is bounded and hence g,&, € L*°(]0, 1]).

By construction, fol d&- dr = 0 holds, such that §z = (6L, ¢) € §Z.
Now we obtain

B (2)[62] = 2¢L6¢, — 2L0L

= 2bg — 2LJL
=2(f/2+ LOL) — 2LSL
=/
and thus the claim. O



For A € A*, the Lagrangian is defined as
L(z,A) :==T(&) + (A h(2)). (15)

The KKT-conditions guarantee for a regular minimizer z** the existence of a
Lagrange multiplier A** € A*, such that

0=L.(2",\7)[z] Yoz €0Z,
0= (6N, h(z*)) VoXe A

hold, where 0z := (6L, d§) € §Z. In our case, these necessary conditions read

1
0 = T'(6*)[66] +2 / N (6¢F e — oL L) dr Véz€dZ, (16a)
S———— 0
=0
1
0 :/ S ((E)TEr — (1)?) dr VoreA*.  (16b)
0

Consider once more the unconstrained problem and a global minimizer 5**
thereof. As discussed before, there is an equivalent route £** that satisfies the
constraint and hence — together with L** from @ —is a global minimizer of the
constrained problem, which indicates that the ground-speed-constraint is
only weakly active. We confirm this by showing that the corresponding Lagrange
multipliers A** vanish.

Lemma 2. Let (&*,L**) be a global minimizer of . Then, this solution
together with
A =0 (17)

satisfies the necessary conditions (106)).

Beweis. Since £** is also a global minimizer of the unconstrained problem, the
necessary condition states that T"(£**)0& = 0. The term fol A (55?5;‘* — 0L L**) dr
of vanishes for A** = 0. (16b) is satisfied because ||£*|| = L** for almost
all 7 €]0,1[. O

3.1.2 Sufficient Conditions

Now we turn to the second order sufficient conditions for optimality. In general,
a stationary point (z*, \*) is a strict minimizer, if, in addition to the necessary
conditions above, the well known Ladyzhenskaya-Babuska-Brezzi (LBB) con-
ditions (e.g., |9]) are satisfied, which comprise a) the so called inf-sup condition
and b) the requirement that the Lagrangian’s Hessian regarding z, £, need be
positive definite on the kernel of h'.

The inf-sup condition states that for the minimizer z* there is a x > 0 such
that

(0N, W' (2%)[02])
in sup >
SAA0€L2(]0,1]) 52e622 H5)\HL2(]0,1[)||52||Z2

(18)

Formally, the second part of the LBB-conditions requires that there is a B > 0
such that

L.o(2)[02 = B ||62%



for any §z € §Z that satisfies
(SN B (2)[62]) =0 ¥ 6X € L*(]0,1]).

In the present case, this reads

T"(€)[0€)* +2 /01 N (06706, — SL?)dr > B0z % (19)
for any §z € §Z such that

/01 SA(66F e —SsLLY)dr=0 Vo e L3(]0,1]).

In case of a global minimizer 2** = (£**, L**), this can be reduced using \** = 0
from Lemma Moreover, the constraint is equivalent to requiring that §¢Z ¢ =
0L L** almost everywhere. With this, we conclude that for any isolated global
minimizer z** of that satisfies the inf-sup condition, there exists a B > 0
such that

T"(£)10€, 06, 1% = Bl|d=| % (20)

for any 0z € §Z such that 66X ¢5* = §L L** almost everywhere.

It is important to note that the second order sufficient conditions are formu-
lated in a L2-setting, while differentiability only holds in L°°. This is known as
two-norm-discrepancy [10).

3.2 Newton’s Method

In order to provide a more compact notation, we use x = (2,\) € Z x A* =Y
in this context and define F' as the total derivative of the Lagrangian,

F:ZxAN — 62" x A, F(x) :=L'(z,\). (21)
On Y we define the following norms,

Ixllye = [l2]|z + [[AllLqo,1y and (22a)
Ixlly2 = l2llze + [IAllz2qo,1p- (22b)

The problem is now to find a x** such that the first order necessary conditions
for optimality as stated in are satisfied, which translates to

F(x™)=0. (23)
Applying Newton’s method, we iteratively solve
F'(xXM)[AX*] = —F(x*) (24)

for Ax* and proceed with xY**1 < y* 4 Ax*, starting with some initial value
X". In other words, in every iteration we need to find (Az*, AX¥) such that

T"(E5)[BENAEF] + (A, 1" (%) [82][AZF]) + (AN, 1 (%) [62])
= —T'(EM)[og] — \F W (20)]82]) Vo2 €67, (25a)
(6X, B! (2F)[AZF]) = —(5X, h(zF)) VoA € A*. (25b)



4 Proof of Convergence

On the way to prove the existence of a non-empty domain B(x**, R) such that
Newton’s method as defined in Abschnitt[3.2]converges to the corresponding glo-
bal minimizer x**, if initialized with a starting point within this neighborhood,
we first prove that the KKT-operator F’ is invertible and that the Newton step
AxF is always well defined. Essentially, this is the case if the LBB-conditions as
given in and are satisfied. Hence, we will show that there is a R > 0
such that the inf-sup condition is satisfied and that the Lagrangian is positi-
ve definite on the kernel of the constraints for any x € B(x**, R). Further, we
show that an affine covariant Lipschitz condition holds, which finally helps to
complete the proof.

Before we get there, we recall the following Lemma from |2, Lemma 7] which
provides a bound for the path length of a global minimizer.

Lemma 3. Let 2** = (L**,£**) be a global minimizer of (), let ||w|| () < o,
and define L = ||xp — zo|. Then it holds that

(26)
As most of the subsequent results hold in a L*>°-neighborhood of a minimizer,
we introduce the following notation.
Definition 2. We call the L* -neighborhood of a point z € Z orx € Y,
B(z,R):={2€Z:||Z—z|ze= <R} or (27a)
B(x,R):={x €Y :|X—xlly~ <R}, (27b)
respectively.

Moreover, we provide three simple yet useful bounds that hold in such a
L*°-neighborhood of a minimizer.

Lemma 4. Let x** = (2**, \**) be a global minimizer of and the correspon-
ding Lagrange multipliers. Then for every x € B(x**, R) it holds that

L** _ R S L S L** _|_}%7 (283,)
L™ = R < ||&|[neqoap < L™ + R, (28Db)
0 < |IMlzeqoip <R (28¢)

Beweis. The first two inequalities follow immediately, since a global minimizer
satisfies the constraint from . The latter two are a direct consequence of
Lemma 21 O

4.1 Inf-Sup Condition

We now show that the inf-sup condition, introduced in , holds in a certain
neighborhood around a global minimizer. First, however, we point out that
deviations 6§ and §&, from a trajectory are inherently related and that the
former is always bounded by the latter.



Theorem 5 (Wirtinger’s inequality). Let 6¢ € H}(]0,1[). Then

1
166012 20,1 < ;||557||%2(]o,1[) (29)
holds.

Theorem 6. Let z** be a global minimizer of . Further, let there be a con-
stant ¢ > 0 and some direction u € R? with |jul| = 1 such that uT&* > ¢ for
almost all T €]0,1[. Then for any z = (L,&) € B(z**,R) with R < c there is
some Kk > 0 such that

in (A W (2)[02])
A£0€L2(10,1]) sze52 ||A|lz2qoap 102]lz2 —

with
~1/2

k(R) = (¢ — R)

3 T4+c R\?
249 i
g " (v—co+L>

Beweis. For f € L?(]0,1[) we define

J— 1 ~ J—
f:z/)deER and f=f—Ff,

= ~ —2
1 1Z2q0.1p = I + 200y = 17200y + F -

With
Y OF R > ¥+ R>b:=Tu>c—R (30)
vV — Co 1)

2L
For this choice, we obtain for 6z = (0L, 6§)

we choose 0§, = %Xu and 6L = 5 (ﬁ —(c— R)X). Note that 6§ € d.X holds.

1
(N B (2)][02]) = /0 (26766, X — 2LSLN) dr
1 ~ —
= / bANdT — 2LS LA
0
1 ~ ~— —
= / (BN + bAN) dr — 2LSLX
0

1
> (c— R[N +(/ b:\dT—2L5L>/\
( AN Z2q0,1p ;

1 - —
= (c = R)INZ2q01p + (/0 bAdr — bA + (c — R)A) A

. —2
= (c—R) (||/\||2L2(]0,1D +A )
= (¢ = R)IAIZ2qo1p-



Moreover, we have
16&+ 112 o,1p) *||)\||L2(]o,1[)

and, since clearly ¢ < L**,

521 < 5 (B0 1 2o + (e — R))
& 5 (2 + Rz go.p + (e = B)IF)
< (2524 2) Wlzgoay + ).
which implies
[162(|%- ) 16€1172qo.1p + 1961172 50,1p) + 0L
< 2168 2o, + 0L

) 2
3 v+c R 2 — 2
< <||)‘||L2 qo,1p + (_CO + E) (Ml z2qo,ap +A) )

3 v+% R Tta , B)p
< <8||)‘||L2 101D+2<_CO ) ||A||L2(101[>+2< —cO+E) A)

3 T+c R\’ <112 2
< |5 +2 (vco +E> (||/\||L2<]o,1[> +/\)
3 T+ R\?| .
g t2 (U % i) IAIIZ20,1p-
Consequently,

97 —1/2

(AW (2)[62]) = (e — R)

Al z2qo.1p 1102]| 22

yields the claim. O

4.2 Positive Definiteness of the Lagrangian

The next step in order prove invertibility of the KKT-operator F'(x), ,
is to show that the second partial derivative of the Lagrangian L(x),
with respect to the state z is positive definite on the kernel of the linearized
constraints. On the way we derive a similar result for the objective T'(€), for
which we first derive an upper bound for its third derivative.

)

Lemma 7. Let ||wHLoc(Q) < ¢ < @/\/5, ||wzHLoc(Q) <7, HU)mz”Loc(Q) < ©o,
and || Waee || @) < €5 and define v? :=v* — €. Then, for any & € X, the third



directional derivative of f as given in is bounded by
(€, €)10€, 06 °[AE, A& ]|
— — v
< (%II&”TIII(%2+72||5£|||5£T|| + 4||5£T||2> IAL]

&
+ (71||5£||2 + Hz—SHHéana@n + ”g%naan?) 1AL (31)

with v, > 0,4€0,...,5, given as

2 . _— z 7 4
Yo = A (37} + 211090 + 2e307) T8 = 4()?7
T gl El
i = & (oot 4 7). T
— 1 72 C: Vs = 1
7> = (5723 + 13u2), a8y )

The proof can again be found in the appendix. With this result we can derive
a bound for the third directional derivative of T'.

Theorem 8. Let (L**,&£**) be a global minimizer of and define L := ||zp —
zoll and AE = € — €%, Moreover, let |lw(p)|| < @ < 5/v/5, |w.(p)] < @,
|wee (P)|| < €2, and ||weze(p)|| < T3 for every p € Q. Then, for any & € X with
|A¢||x~ < R < L, it holds that

[T ()[6€)*[A¢]] < F(H5§||2L2(]0,1[)+ H5§r||%2(]o,1[)) [AEllcorqoap - (33)
with [|AE]|coa o1 = I1AE] Lo qo,1p + A& L= 0,1 and

F:max{ (v+COE+R>%+72 o+ 2,

v —Co 2’

L—-R
_ 7 5 5
Nti-n -’ AP } (34)

and g, ..., V5 as given in Lemma |] above.

Beweis. From the definition of T in , we know that

1
T (€) (5617 [ A€] = / FE 606, 66,12 AE, AL, Jdr.

Inserting the bound from Lemmata[4 und [7] above and using Young’s inequality

10



yields

T (eI
1
Foll&-NIOEN* + 7o || 0] [0+ 572)A
< [ (Folleloet? +maloshioe | + 2o 12) D)
7.|16€|1% + O&||||0&+ 0&r 2> A& dr.
+ (mloel? + 720 5””“””@”2”5” 1a&| dr
1
<18¢le= [ Toll&NIGE +Tal3€010 -+ L6, Par
: ]
1
A& | 7,ll0€]% + 5€|/|I8&, 56| d
86 i [ Aol + €||H§||+”£T”2||§H r
1
Afl~ [ (2F2f ) SE|I2 + T 6166 1| + =14 |18¢,
& 10¢tum [ (FERL o+ R) sl + Talellse )+ 2 e
1
2 2
I8¢ i [ TOEI + T + 2 I

O ) 4 ’72 2
< 1l [((FE2r+r) 70+ 2) 1aele + (725 + 2 ) 1oer

v s
e | (7 + 5 ) Vel + (g + ) Vel
< T (|8 22 + [|6&- |52 A 0,1 .
(168122020 + 168+ 32019 1A&lcoagop

O

Having bounded the third derivative of T, we can estimate the potential
decay of T and thus derive a lower bound for the size of this neighborhood.
Similarly, we can bound k" and hence £..

Theorem 9. Let ||’IU||Loo(Q) < cy < 5/\/5, ||waLoo(Q) < 61, Hw:r:v||L°°(Q) S C2,
and ||[Weez| @) < €3 and define L = |zp — xo|| Moreover, let x** =
(2, ) be a globally optimal solutzon to problem (4), that satisfies the ne-
cessary and sufficient conditions , , and (20) fwzth B > 0. Then there is

a0<R< mln{g, 4% %} with T from Theorem o such that

Lo2(x)[62]* 2 *H(SZHW (35)

holds for any x € B(x**,R) and any 6z € §Z such that £16¢, = LSL holds
almost everywhere.

Beweis. Let A := & — £ and note that [|Af||z~qo1p < [[Az][z~ < R < %.

11



Then we obtain

1
T(€)[66, 56, )2 = T" (€766, 56, )% + / T (€ + vAE) (56, 56, IAE, AL, dv

1

> Bzl + [ T+ vAisE o6 I Ac)dv
0
> Bll6z]|%. — T(||6¢)|%- + ||16&- %2 Az g
162122 — TN 01 + 166+ 122001p) 142112
> BlI5zll%e — T6z]3 | Azl 2~
(13Db)

B
> 25z,

Further, we point out that

L**
2 9

|t

R<Z <

which together with the bounds from Lemma [] yields

(" (2)[62)?) = /O A(6¢fog, —oL?) dr

[ eroe\?
_/o )\<||5§T||2_(L> dr

1 2 9
ST 557
2 =[[Allze=qo,1p (|5§T||2L2(]o,1[) +/ w dr

0

613 gop [
> ~ M= goap <||5&%2<m,1[> + =l / |3¢- |2 dr

(12** +_1%)2

-R <|5§r||2L2(]0,1[) + M||6£T||%2(]071[)>
> -k (1+ N 6oy

‘) —10RH5§T||2L2(]0,1[)

> ~ 2158 2oy

B
> 2622,
4

Together, these bounds yield the claim with
L..(0182]% = T"(€)[6€]* + (h"(2)[02]°)
B B
> S1102% — Z16211%

B
Z ij&zH%2.

12



4.3 Upper Bound for the Lagrangian

As a counterpart to the previous Lemma, we also derive an upper bound for L,
close to a minimizer. Again we start with the underlying function f in order to
bound the error in the objective function 7.

Lemma 10. Let ||w||Loo(Q) <c < @/\/5, ||w1-||Loo(Q) < ¢, and ||wrr||Loo(Q) <

Cy. Moreover, let v := v? —€%. Then, for any £ € X, the second directional

derivative of f as given in s bounded by
(&, 666, 66:][6€, 86,11 < Bolig- o€ 116€]|

+51 (I8 N110&, 1| + 15 1I115€ 1))
+Ba - 1710 16| (37)
with

I T _ 2} _
50:141%*4;27 Bi=T5 and B =

(38)

SEIE

The proof can be found in the appendix.

Theorem 11. Let 2** = (L**,&**) be a global minimizer of and Az := z —
2**. Moreover, let ||wl| o) < T < v/v/5, lwz||Lee (o) < €1, and ||wae || Lo (o) <
Cy. Also define v* =52 — ¢ and L := |xp — xo||. Then, for any z € B(z**, R),
the second directional derivative of T as defined in is bounded by

T"(€)[AE] < Bl|Az||Z- (39)

with B := [, + max { (%IZ + R) Bos %} and By, B1, B as defined in Lem-
ma 10

Beweis. From the definition of T in we know that

1
T"(€)[AE, AL, = /O A€, AE P,

which, together with the bounds from Lemmata (4] und as well as Young’s

13



inequality, then leads to

1
IT”(S)[A&A&]QIS/O <ﬂo||€T|IIA€|2+251IIA£IIIIA§TII+ |IIAETII2>

1€+

< Bl L**+R/ | AE||2dr
(28)

128, / | AE[|IIAE, |ldr

bz [ 1aepar
< ((L*™* 4+ R)By + B1) HAEHLQ(]OJ[)

(y)
L L +R (] 71[)

U+ ¢
< <( — OLJFR) 50+61) ||Af||L2(]01
(26) v Co
+ (51"‘ ~Bg )”AfTHQL? 0,1
Itk 0,11

< B (J1A¢l32q01p + 188 [32q0.1p )

< BHAZ||Z2

O

Theorem 12. Let x** = (2**,\**) be a global minimizer of and the corre-
sponding Lagrange multipliers. Then for every x € B(x**, R) and every 6z € §Z
it holds that

1£..()[02]°] < (B + R) [|62]1% (40)
with B(R) from Theorem .
Beweis. Using the bound from Theorem [11] and Young’s inequality, we get

L2 (0)[02]%] = IT"(€)[8€]* + (h"(2)[82]%)]

1
< E||dz||222+/0 A (667 6¢, —SL?) | dr

]

< BldzlZe + [N qop (166130, +9T°)

< z 22 R (|6 22 +(51/2
&) Bl|dz||Z- + (” & 1122 0,1 )
< (B+R)|dz||%-.

({13b) ( ) Iz

14



4.4 Invertibility of the KKT-Operator

Using the previous three results, which together state the existence of a neigh-
borhood around a minimizer such that the LBB-conditions are satisfied, we are
now ready to prove that the KKT-operator F' is invertible.

Lemma 13. Let x** = (2**,\**) be a global minimizer of , that satisfies
the first and second order conditions for optimality with some B > 0, and the
corresponding Lagrange multipliers. Further, let there be a u with ||u|| =1 such
that uT&* > ¢ > 0 for almost all T €]0,1[. Then for F as given in it holds
that

IF'(x) " ly2 <wn (41)
for every x = (z,\) € B(x**, R) and

wy = \/imax{;, % (1+ 4(82 R)> : B;R} (42)

and B(R) and x(R) as given in Theorem|11| and Theorem@ respectively.

Beweis. The proof builds on some prerequisites that have been established above
and are briefly summarized.

i) In Theorem |§| it was proved that the inf-sup condition is satisfied:

(0N, W'(2)[02])

inf up K > 0.
sxeL2(10.1]) szesz 110222 |0A] 22(j0,1p)

ii) In Theorem |§| it was proved that £, is positive definite on the kernel of
the constraints, i.e.,

L. (x)[02]* = T"(€)[6€]* + (1" (2)[02]%) > %I|5Z||2zz
for all 6z € 6Z such that h'(z)[0z] = 0.

iii) In Theorem it was proved that £, is bounded from above as

|£2:00[02]| = |T"(§)[6€]° + (R (2)[02]*)] < (B+ R)||d2]|7%

Under these conditions, it follows from Brezzi’s Splitting Theorem (9, Thm. 4.3]
that F”’(z) is isomorphic. Further, it can be shown that for every right hand side
F(z) of the saddle point problem there is exactly one solution (Az, AX)
with

4
1A2]lz2 < 7 IT(€) + (A (2))] 22

1 4B+ R
+ = (1 + (B>> 1R(2)Il2q0,17)5

=

LE) 1r© + 0z

B+R 4(B+R
(1+252) 1o azgoan,

1
lAN[ 20,1 < - 1+

/N

+

K2

15



With [|[F(x)| = [IT7(€) + (R (2))][

+ ||h( )”Lz (0,1 follows that

+(1+ 2D e,

(1+ 260 BB e,

|Az||z2 < \fmax{

x| = \m\ph

1A 2o < ﬂmax{

which directly yields

1Ax132 gz 18213 + 1AM o < FIPGOI
with w; = v2max {f = ( B+R)) ,E:ZR}. This completes the proof, since
A
P = s AN
I1E" (x p

1EGOlly2 [E0 v

4.5 Lipschitz Constant

We are almost ready to provide a Lipschitz constant for the free flight problem.
One more bound is given in the following Lemma.

Lemma 14. Let x** = (2**,\**) be a global minimizer of and the corre-
sponding Lagrange multipliers. For any Xieq1,2y € B(X*™*, R) there is a B such
that

[(F'(x2) — F'(x1))[x2 — x1]llv2 < wallx2 — x1llv2 (43)
with
wa = (8 + B)R. (44)

Beweis. From Lemma [f] and Lemma [4] it directly follows that

|La — L1] < 2R, (45a)
1672 — fr,1||Loo(]o,1[) < 2R, (45b)
A2 = Atllzeqoap < R. (45¢)

Using these bounds as well as the Cauchy-Schwarz inequality and Young’s ine-
quality, we show that for any dx € 6Z x L*(]0, 1[) with ||6x||z2¢o,1p < 1 it holds

16



that
[(Aa, ' (22)[22 — 21,02]) — (A1, B (21)[22 — 21, 62])]
-1/ AT (€1 — E01) — OL(La — L))
M (6 — Er1) — OL(La — L1))dr]

1
-y / (o — MO (€ — 1) — SL(La — L))dr]
0
1
< / D2 — M|18E 1Erz — Enn dr
0
1
+|5L||L2—L1|/ I |dr
0
1 1/2 1
< [ / ||65T||2dr] [ JRCRE SR —&,1|2d7]
(CS) 0 0
+|0L| |La — Li|l|A2 = Millzrqo,ap

1
< 1olos |28 [ o = nlléa = gnalar]
0

+ R|6L| |Ly — L]

& VERIBE e = M2 o

1/2

1/2

1/2
L2

+ R[OL| [Ly — L]

V2
< 7R||5€THL2 (A2 = Arllzz + 1§72 — §rnllze]
)

+ R[OL] |Ly — Li|
V2

< TR[H)Q = Millzz + 16r2 — &rallz2]
+ R |L2 - L1|

< R[H)\z —AMllez + 1r2 —&rallre + 1&2 — &ullpe + | L2 — L1|}
1/2
< 2R[||Az M 6 — €2 + €2 — €[22 + Lo — L1|2]

= 2R —
||X2 X1||Y2

17



as well as
[(A2 = A1, (B (22) = ' (21))[0z])]

1
= I/ (A2 = M) ((&r2 = &1)7 06 — (L2 — L1)dL) dr|
0
1
< / Mo — M€ — Ealllde lldr

1
+ |L2 — L1||(5L|/ |)\2 — )\1|d7’
0

1 1
< [ / ||5ff||2czr] [ | 0= 27 lera - sdeT]
(cs) LJo 0
+ | Lo — L1 ||0L|[| A2 = Ml £ o,1p

1/2 1/2

1 1/2
< 166loe |20 [ o =l e - €l
0

+ R|Ly — Lq||6L]|
. 1/2
< V3R { AN 57,1||df}
0
+ R|Ly — L4

5 V2R|A2 = Ml 2 NEr2 — Erall s

+ R|Ls — Ly|
V2
< - RI[IA2 = Mllzz + (€2 — &rallre]
) 2
+ R|L2 — L1|

< R[HAQ Al 4 s — Erallie + l1€ — €ullie + Lo — qu

1/2
< 2R[||Az M 6 — €2+ €2 — €[ + Lo — L1I2]

= 2R —
||X2 ><1||Y2
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and
(G, (H (22) — B (1)) [22 — =)
oy /0 SA(Erz — Enn) (Era — Er) — (L — L)?)dr|

1
< / A€ —
0

1
< 2R [ JoAlra = €raldr + 2R1L2 = LalloM] xgoy

]

+2R|La — La| [0l L1 go,1p
<2R[[6A|lL2 €72 — &rallLe

+2R[La — La| (|6l 1o,y
<2R|[&r2 — &rallpe +2R[ Loy — Ly |

1
2d¢+(L2—L1)2/ |oX|dT
0

1/2 /2

< 2R[||A2 ol 4 162 — Erallie + l1€ — Exlle + | Ls — qu

1/2
< 4R[||A2 M 6 = €2+ €2 — €[ + Lo — L1|2]

= 4R — .
&) ||X2 X1||Y2

As shown in Lemma [§]in the appendix, there is a B < 00 such that

|[(f"(&2) = £"(€0) [E2 — &1, 6¢]]
< By/lle — &al12 + Iz -

[3€T” + T3€. 117,
which provides the following bound, as

(&) — T"(€) |6 — &1,6¢])

—| / £1(€) - 1(€) & — &, dldr]

<8 / sz—gluu||sf,2—gf,1||2 [o€2 + I8¢, [Pdr

58 / 162 — €02 + lr — Ena]Pdr / 18¢11% + [16¢, |2

< <||§2 —&lZ2q0p + Iér2 — )) <H5§HL2(]071[) + ||5§TH2L2(}0,1[)>
< Blx2—x1

&

< BR||x2 — x1|ly=-

Finally, we use the bounds derived above to show that for any dz with ||0z||y2 <
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1 it holds that

I(F"(x2) — F'(x1))x2 — x1,0x]| = [(T"(&2) — T"(&1)) [6€, &2 — &1
+ (Ao, B (22)[02, 20 — 21])
— (A1, W' (21)[02, 29 — 21])
+ (A2 = A1, (B (22) — W (21))[02])
+ (0N, (W (22) = B/ (21))[22 — 21])]
< BR|x2 — x1llv=
+2R|[x2 — x1lly2
+2R|[x2 — x1lly2
+4R|Ix2 — x1lly>
< 8+ B)Rlx2 — xully>
< wallx2 — xally2

with

This directly yields the claim, as

[(F"(x2) = F'(x))[x2 — x1lllz2qo,1p = § S]\up:ll(F,(M) - F'(x1))[x2 — x1,0x]l

< wallx2 — x1llye- (46)
O

4.6 Convergence of Newton’s Method

We are now ready to connect the results outlined above to prove that the
Newton-KKT method applied to the free flight optimization problem con-
verges under suitable conditions.

Theorem 15. Let x** = (2**,\**) be a global solution of that satisfies the
first and second order conditions for optimality with B > 0. Moreover let there
be ac >0 and a u € R? with ||ul| = 1 such that uT€>* > ¢ for almost all
T €]0,1[. Finally, let w := wiwa, as given in Lemmata und .

Then there is a Rc > 0, such that the ordinary Newton iterates defined in
Abschnitt [3.3 converge to x** at an estimated rate

w

I =Xl < I =Xy, (47)
if initialized with x° € B(x**, Rc) and provided that the iterates xX* remain in
B(x**, Rc). Moreover, x** is unique in B(x**, R¢).

Beweis. In Theoreme [6] [0 und [I2] we showed that the inf-sup condition is sa-
tisfied, that, £,.(x) is positive definite on the kernel of the constraint for all
x € B(x*, R¢), and that it is bounded from above. Consequently, F’(y) is
invertible with

[F'()"" <w1 VxeBX™ Re),
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as confirmed in Lemma [T3] Further, it follows from Lemmata [I3] und [I4] that

IF' (x1) " (F'(x2) = F'(x)[x2 — xallly=
< NIF () v I1F (x2) = F'(x1)) Ix2 — xallly»
< wiwallx2 — x1lly2

< wllxz — xallye

for x1,x2 € B(x**, Rc). It is clear that since w; is bounded and wy = (8 + B)R,
there is a Rc > 0 such that w := wjws < 2. We now define ey, := x* — xy** and
proceed for p €]0,1[ as follows:

I+ A — x|y
= llex — pF' (x*) " F(OF) [y
= llex — uF' () HEKF) = F(xX™)lly2
——
=0
1
1= me = nF 6O [ (FOE = se) — PO ewds |y
s=0
1
< (U= p)llerlly= + Zwllexllv2,
which yields the claim with p =1 as
w
llexsillye < §||€kHY2~

In order to prove uniqueness in B(x**, R¢), assume there is a second solution
X* # x** with F(x*) = 0 and x* € B(x**, Ro). Initialized with x° := y* it
certainly holds that x! = y*. However, from we obtain

w
Ix" = x*lly= < gl\xo =Xz < IX° = x|y,

due to w < 2, which yields a contradiction. O

5 Conclusion

It has been demonstrated that the Newton-KKT method can be used to solve
the free flight trajectory optimization problem under certain conditions. These
conditions include i) the presence of certain constants that can be proven to
exist for mild wind conditions and are likely to exist in most cases, ii) the
requirement for the iterates to remain within a L°°-neighborhood of the solution,
and iii) a starting point that is sufficiently close to the solution. Such a suitable
starting point can be found efficiently by calculating shortest paths on a specific
graph [2]. Hence an important tool for efficient deterministic global optimization
of the free flight problem has been established.
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A Supplementary Material
A.1 Global Bounds

The derivative f = t, of parametrized time as defined in consists of two
terms, the tailwind term

and the length term

fo= g7 (€T w)? + g(e7€) " (50)
At each time 7, we obtain

v? =77~ < g <7 (51)

The directional derivatives of g in direction 0§ and A& € 6 X read
q'66 = —2wTw,6¢ (52)
= gl < 260 (53)
56T 56 = ~206T Wl w6 — 2w, €, 6] (54)
= 9"l < 2(2% + oca). (55)

g"[0€, 08, Al] = —6waq (W50, 08, AL] — 2waaa|w, 0E, 66, AL]) (56)
= Hg"'H < 2(35152 +EoE3). (57)

For the tailwind term, we consider
F1(6.6)[06, 86 ) = g2 (61 w)(9'08) — g~ 1€ wa b6 — g™t wT o6, (58)
which is bounded by

L6 6106, 06,)| < ( ) lecllach + Shecl. 69
The second directional derivatives is
FINE 6106, 86,)[08,0€,] = —2973(g'5€) (€Tw)(9'68)  + g 2(5€, w)(g/€)
+ 972w, 0€)(g'5€) g 2(EFw) (€7 g 6¢)
+ 97 2(g'08)(EFw,6¢) 9708wy 6€)
— g waa &7, 68, 0€] 97 2(g'08) (wTs¢,)
— g7 (06w, 0¢) (60)

and in particular
FU(E 666,662 = —2972(g'66)*(Efw)  +297(g'08)(EF w,68)
+ 972667 g"66) (T w) = g M wan[6r, 6E, 6E]
— 29~ (6€7 w,6¢) +292(66Tw)(g'6¢),  (61)
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which yields

3=
coc1

P16, 656, 66, )[6€. 5¢,]] < [

2
CcpC
+[2({41+

+ [2
and
0001

(660166, 66,12] < [

+ [+

e 62+
U

=2=
0001
2+

+6- 2

0001 + 9L

Co Cl COCQ

]HETHH5€|H5€H
2}n557||55n

}n6§n|65 n (62)

COCl CO 62

}n57n65n2

]nafnnasT,

respectively. Finally, the third directional derivative is

FU(€,6,)[08, 062 [AE, AL,
69 (g’ AE)(g'6€)* (X w)

—297%(g'A)(66T " 56)(Ew

—297%(g'66)* (] wa AE)

— 4973 (g’ A& (g'68) (6] w.0¢)
+2972(9' 08 wa[&7, 06, AL]
— 9 "Waaa&r, 08, 66, AL]
—297%(g'6¢)* (AT w)
+297%(g'06) (AT w,6¢)

— 4973 (g’ AE)(9'66) (6] w)
+297%(g'06) (66T wL AL)

— 29 "wee 06, 66, AL,

which is bounded by

[F17(€. €106, 06, ] [AE, AL, ]|
< l&ll {

v

1

3

2
<48 + 48 5+

— 4973 (g'68)(AET g"5¢) (€T w)
+9729"[6¢,6¢, Ag](Ef w)
+ 972067 g"5¢) (€T we AL)
+292(AET 9" 66) (6N w.6€)

+ g_Q(QIA@wm (€7, 08, 5¢]

)

+g2(66"g"58) (A w)
- gilwzm[AgTv 553 66]
+297%(AET g"66) (66 F w)

+ch2 (24 +18% )
Q

Co

22
+U(U2+

390 g0) 4 2
v3 v v?
¢ o
16-9 + 12—
v v

+ 2972 (g' AE) (06 wy 6€)
(64
o)
e 7 g
(23 +1)] wereiae.
v? T
& c2
+ 2 (4342 Iselise gl (oo
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Before we turn to the length term f5, we first consider the term

F = (Tw)® + g(¢7¢r) (66)
with )
&P < F <l )%

We also note that 1

€112

<

Then
F'(€,6-)[0¢, 6] =2(67 w0) (067 w) + (7w, 6€))
+(9'06) (7€) + 29(£7 065), (67)
which is bounded by

|F/(€,6,)[0€,66,]] < 207 (1€ 111561l + deoe €. 1 15€]], (68)
The second derivative is
F'(€,6,)[6¢,0¢,][0¢, 8¢, ]
= 2(&S w) (66T w.,6¢) + 2(EFw,06) (67 w)
+ 2(8E; w) (€7 w) + 267w, 08) (€ W, 5¢)
+ 26 W)W €7, 06,66 +2(06, w) (€T w, 66)
+2(6Tw) (06, wed€)  + (SE g"06)(€TE)
+ 2(

9'86)(5€, &7 +2(g'0€) (€7 8¢
+29(0¢; 6¢,) (69)
and in particular
F(€,6,)[0€,06,]% = 4(67 w) (66 w5 6¢) +4(067 w) (&7 w5 08)
+2(6¢Tw)? +2(6Fw,6¢)?
+ 2(F wwaa[ér, 66, 06]  + (579" 56)(€FEr)
+4(g'66) (667 ¢,) +29(6¢75¢,), (70)

which yields
|F"(€,&:)[0€, 6&,][0€,0¢,]| < (427 + 420C2) |11 6€1|0€
+ 82021 ||&- 1|0 [19€., |
+ 82oc1||¢- 1661111 9¢
+ 25716, || [16¢, | (1)

and

|F7(&,6,)[66, 86, 17| < (423 + deoes) ||&- |1%]15€)12
+ 162021 1€ || [|6€]] 16 |
+ 257|012, (72)
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respectively. The third derivative is

F"(€,&,)[0€, &, ]2(0€, 0¢,]

= 4(06, w) (667w, 5¢) + A€ W, 08) (667w, 6€)
+ 4(EFw)w,e 06, 8¢, 5€] + 4(06 w,66) (€ w4 6€)

+ 4(667w) (5 w, 6€) + 4(06 W) wey [&-, OE, ¢
+4(06F w) (66 w,06) + A(E W, 0€) (0, w,06)
+ A(ET we 68 war [&r, 08, 6€] + 2(06, w)weg 6y, O, 6¢]
+ 2(L w08 Wy [ér, 66, 6¢] + 28 W) waas €7, 0, 6E, O]
+ 2(Fw)we [0€,,, 66, 6€) +g"[6¢,6¢,6€)(6T &)
+ 2(6€7 ¢ 5€) (0€ , €, + A€ §"56) (66T, )
+4(g'6¢)(5¢T0¢ ) +2(g'06) (667 6¢,),

which is bounded by

|F"(€,6,)[06,06,1%[0¢,0¢, ]| < 4]16-|1* (Goes + 3e122)[|0¢]|||5¢ |
+ 8[1&- 1123 + o2 10€]1 1 0¢, |
+ 16|, ]| (@3 + Toca) |6 (|66 ]/[|6¢]|
+ 162021 ||5¢]|[|0&- [ [15¢ .|
+ 8ot |16, || (|0¢]]-

For the length term fo = g~ *v/F, we thus obtain
FAE 606, 06,] = g (/SO F? + g~ P[5, dc .

which is bounded by

Co C1 1) CpC1

T 4) & 166l + 205218¢ .

46,60 [66.56,]] < (

The second derivative is
F3(6,6:)[66,06,1[0€,0¢,] = 297%(g'0¢) (g 56 F/?
— g (6" g"5¢) /2

— 507G B F 25, 5,

— 597 P I6E ot
+ 597 P 6, 06, 5, 6t

— ig_lF_WQF’ (66, 06, F'[0€, €]
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and in particular
3 (6. 6)106,06: 17 = 297%(g'06)*FY/?
— g (0" g"oE) P
o) PP E (66, 6]
1
4 5971F71/2FN[6€, 557]2

1,
— 197 FTR(F 5, 06 ), (78)

which yields
|£5/(6.€-)[66, 66:][0€, 08,

cacio caet ¢ +Cy) T +c c

< s ng T P L R
r — 2
CoC
+ o5 | €115 |

+ 40“ +400“] 16&[115€ ]

L
v _ ~
+ g+ AR e (79)
and
|£3 (€, &:)[0€, 66,17
26T c2c? C2 + CoC 2 +c c
< s ng + 12000 4 0D | O e
=2
+ 8 +8% 16¢]1116- |
%4 =2
+ = AT (80)
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The third derivative is

F3'(€,6)106,06,17[0€,0€,) = — 69~ *(9'0€) (¢ 66)° F'/?
+4g73(g'66)(6¢" g"6¢)FV/?
+97(g'6¢)PF P R8¢, 08, ]
+2g7%(g'08) (66" g"56) F1/?
— g 29" [6¢, 8¢, 0§ F'/?

_ %g—Q((Sé—Tg//éé-)F—l/2F/ [62-7 (5~f7_]

+973(g'0€)(g'06) F /2 F' (8¢, 6¢,]

— 50 2 1S T 8¢ 06

+ ig_g(g'éf)F_?’/ 2 [6€, 06, F[0€, 6€ ]

— 50 BFV2R6¢, 06.] 56, 0,
+97°(g'08)(g'08) P12 Y [6¢, 6]

g 2(6¢g"56)F Y2 F'[5¢, 8¢,

g 2(g'86)F 32 F'[5€, 06, | F'[0€, 0]

+

9 2(g'06) F V2R [5¢, 8¢, [0€, O€ ]
9 2(g'06)F32(F'[5¢, 6¢.))*

+ Sg T RTO2(F(5E, 66,]) 2 F[0€, O .

— S0 E 56, 06,166, 66, 166 6,

_ %g_Q(g'(%)F—l/ZF”[éf, 6£T]2

- 3971F73/2F“ (66, 66,2 F'[8¢, 6¢ ]

oo PR P B, (8)

+
OOl QOS] =N x| =N =
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which is bounded by
|13 (€, €)18€, 66-2[0€, 8¢ ]

 2led [3 (cO . )
v v \v w

3

v

3cic
+ 2 (1+

8[e 2 2 2y
+U[v2 <1+2+92+74
C (Co Ve | -
+2 (2 T3 B lseliioe. 115
86001 72 74 ~
+ 3 1+3*+2* 16€111[0&-[[110&]
1€+l
A (T T ) e
€7 |3 R
e (1T e e ) (52)
161170 v? T
Lemma 16. Let ||w| =) < @ < 0/V5 and |wy||p=) < € for every.
Moreover, let v? := v*> — ¢ and 7= 72 4 c3. Then, for any € € X, the
first directional derivative of f as given in is bounded by
(€, 6)10€, 6&] < @olI&-[[[16€]] + @ [|0&- | (83)
with 91z .
G, = 224 a = -
ap = 4@2 5 (651 ZQ. (84)

Beweis. We obtain f by adding f; and f>. The first derivative of f can thus be
bounded using , , and the triangle inequality.

(6, €) 15, 66, < ( N 2E vy ) e N15€])
+ ( +2jj3> |-

With %0 % we note that
3
< \/;, and
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and obtain

/ 3\ 7
|f1(& &-)[0€, &) < <4+ \/Q) E||€TH||5§|| + @H&TH-

Rounding up the values yields the bound

< 2a 2161

[F1(€,67)10€, 6&]| < 1o IE Mol + UII5§TII-

O

Lemma 10. Let [w(p)|| < 7 < 5/V5, [w.(p)ll < @1, and | (p)]| < @ for
every p € Q. Moreover let v := 72 —6(2) and T = T2 —|—Eg. Then, for any € € X,
the second directional derivative of f as given in is bounded by
8&,11 <Boll&-NSENNOEN + By I6E N0 |

+ Bullo&NISEN + B ll&- |~ 166 (116 |

(€, 6-)[98, &[98,

with B
— C1 —
50—14 "‘4 ’81:7ﬁ’ 52:

SEE

Beweis. We obtain f by adding f; and fo. The second derivative of f can thus
be bounded using , , and the triangle inequality.

—2
|£7(&,&)[0€, 666, 0¢,]| < |8cge 2C°U+ ”+120001

6%1} + CoCaU + 3000% + E%EQ

+2 o

E% + CoCo

C -
S

- _ _ =2 90—
CoC1V C 01 CoC
T [
: coC :2 cic CoC
1 0
" 9% 4%+ 2 sl |
:%4 - B ~
N L )
With %0 7 we note that
N LS
v 2 v 2 v 2
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and obtain

Q

|£7(€,&-)[8€, 661108, 0€ ]| <

3 7% C2 <
<9+4\f2> q +4v2] & 5€ 5]

130
+ o 196, 115

13c
. ||5£||||5€ [

R— 71 Y
+4QH£TII [16&+1[110€ -

Rounding up the values yields the bound

716 6106 -6, 81 < [14F + 42 ol
e

+7*H5§HII5£ I

—1 =
+§||£T|| [16&-[110€ -

O

Lemma 7. Let |w(p)| < ¢ < 7/V5, ||wm(p)|\ c, ||wm( )| < 2, and
|weze (p)|| < €3 for every p € Q. Moreover let v* = v? — ¢ and 7 =72 + 3.
Then, for any £ € X, the third directional derivative of f as given in 18

bounded by

£ (€, 6,06, 062 [AE, AL,

<§T||70||5£||2 7,6 6| + i To 56 1?) N
+(loel? + T 10eoe N + 110617 ) 1ag)
e e
with
o = 2 (376 + 212,500 + 250> Ts = 4057
70_174( ¢ + 21160 + 26507) | T3 = o2&
=L og2 o Ti= 200
Ti=3 (2901 + 7962) ; V4= 20m7
~ Ll c 7 1
Y2 = 173(5761 + 13v¢s), 75T 18W'

Beweis. We obtain f by adding fi and f;. The third derivative of f can thus
be bounded using , , and the triangle inequality.
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|F715€, 66, AL, AL
HgTH [03 <1 P +2@ +2%0 )

oy
+661i2 (1+1v+360+66 +4”CO+400>
v

UCO

1[.¢ =2 o
+[2§ A +2*+180+4 0y 1@
v v v .

1 62 2 6252
" [4; 2+4 +3*+2*+18 0+ 140
v| v :

3

3
+6(1+60 taog +83 +16 +8%+8

C DRe c

%) iser7ac)

C C 2 72C
+ 2;2 (1 + 4;" + 2?‘; +470 + 47) ] IRFErAANT]

8cpcy

=2 —4
v v
M (1 t3Et 2U4> I6E[[[|6&- ||| AE-|
46061 52 %4 ,
ST G A Ll

Jri l+i ||6¢ ||2||A§ I
||§T||2y5 22 T Tl

%7 we note that

e
IN
D]

IN

| &

SEES]

< \/g, and
2

< | <
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and obtain

7,06 Plac, ag ) < [ (; " g)

e (17 3
+6§ ( 2 )}nafsn Iag)

1(57¢ 13C
#2254 22 jserriac

2y2

[57 132 ]65|||5@|||A5||

401 ||5¢][||0€. ||| AL,
”5 ” 5 10EN16&- 1| A&- ||
20 & |12 A
+ ”5 ” 5 196 171 A]]
135
A RN
+8H£ e [[0&- 17| A&

Rounding up the values yields the bound

ioe,seine ae < LB 4 082 4 1B jsgieag)
1 2 2
+ 2[4 70] LRI

1{576 132 }n&snlagrnuw

+40\|§ ” 6ell106 1126, |
Hf || =z 10& PIIAE]
Pl ||2 8- 171 A¢ 1.

A.2 Bounds in a Neighborhood of a Minimizer

Below we derive bounds that hold in a L*°-neighborhood of a global minimizer.
Let 2** = (2**, A**) be a global minimizer of (4]) and the corresponding Lagrange
multipliers. Moreover, let 1, x2 € B(2**, R) and define Ax := z9 — x1. Then it
holds that ||Az||y«~ < 2R and consequently

AE|| oo < 2R, 85
1AL (]0,1[) (85)
||AfrHLoo (10,1]) é 2R. (86)
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Let ||wHL°°(Q) < ¢, ||wz||L°C(Q) <a, me||L°C(Q) < G, and ”wmm”L‘x’(Q) <
¢3, then the following bounds hold,

1
w(&s) — wiér)] = | / walbr + poE)0E)dp | < @3¢ < 2Rer,  (87)
1
2 (€2) — g (€] = | / wa (€ + pE)dp | < Gll6E] < 2Res,  (88)

1
[wer(§2) — waa (§1)|| = ‘/0 Weze (§1 + po&)dp | < E3|6¢]] < 2Re;. (89)
Moreover, we show that

l9(&2) — g(&1)] = P* — w(&) " w(&) — % + w(&) w(&))

= |lw(&) w(&) — w(&) w(&))
< 2¢pc1 ||6E]|
< 4R¢gey (90)

l9(&2)* — 9(&1)%] = |(9(&2) — 9(€))(9(&2) + 9(&1))]
< (2e0c [|6€]) (20%)
< 4eoe, o2 ||6¢||
< 8Ree,v° (91)

9(€2)% — 9(&2)°| = lg(&2) — 9(€0)] 19(£2)* + 29(£1)g(E2) + 9(&2)?|
< (2602 [|6¢])) (40"
< 8coe v ||5¢||
< 16 Rege, v (92)

1
19(€) — g (&) = | / o (62 + ud6)[5€]dp
< 2 + eom) |5¢]

< AR(E + Gots) (93)

1
19" (&) — ¢" €Dl = | / g (€ + u3€)dy]

< 2(3c1¢2 + cocs) [|6€|
< 2R(3¢1¢ + Coc3) (94)

Furthermore, with F' as given in , and we get
V(L = RP <& )P < F < &P < (L + R
and

|F/(€,6,)[6¢, 86,)| < 2071|6106+ ]| + 420 [1&. |2 16¢]
< 2%2(L** + R)||0&- || + 4cocy (L + R)2||5§||. (95)
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This yields
|F(&2,670)" = F(&1,6r1)"?
1 1
<5l [ P61+ 892 F 6+ o)
0

%Q(L** +R)
- Q(L** _ R)

|F(&2,6r2) 72 = F(&1,&1) 712
1 1
< 5l [ B+ ) 6+ )
0

7 (L** + R)
— QS (L** _ R)S

|F(&2,6r2) 732 — F(&1,&1) %2
3 1
<3 /O (€, + pd€) 5/ F/ (¢, + pd€)dul

7 (L** + R)
- 25 (L** _ R)S

2¢pc1 (L + R)?

R

6]l

2¢gC1 (L** + R)2

16¢]l

2¢gcy (L** + R)2

||6€7'|| + y5(L** _ R)5

161l
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For f; as defined in , we obtain

(f1 (€2,&r2) —

=g(&)”

f{,(£17 57,1))) [A€7 AgT] [55 557’]

(g
‘r wa( 2 55)

&1

Q )
(667 w(&1))
(€ )
(&7 1wz (€1)06) (g’
(€

(

(

(

"(&2)0¢

Using the bounds from above we finally obtain

| (f(€2,672) —

with

B =

f{/(gh 57,1)) [Afv Agr] [667 657]'

9(&2) 77| = 29(&1)% (9 (£2)0€) (&1 w(£2)) (g (£2)AE)

)8E) (EF 1w (&) (g’ (£1)A€)
5 w(&2))(g' (&2
"(&1)A¢)

Tow(62))(AET "

&1)(&7 1w(€) (AT g" (£1)6¢)
g )( §r oWa (&2)A¢
9'(£1)86) (€] ywa (&) AE

(6&r w4 (&2)AE)

+9(&)°g(& 2(5frwz(§1)Af)

7,2, A, 6¢]

&r1, A, 0]

< BiRV|IAE[2 + [|AE 2V 116612 + (166,12

4
"o (5 + 802oc, 0" + 82yc10° + 12601 + 1602 + 420Ts

+ 1627 + 12¢,¢, + 42, + 425 + 263).
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For fy as defined in we obtain
(fé/(g% 57—72) - fé,(flv 5771))[A§7 A&.][(S{, 557'}
= 9(&)7%9(&) 7% | 29(6)°(9'(£2)8) (g (€2)AE) F(&2)'/?

—29(&)*(9'(€1)86) (g (&) AL F (&)
— 9(€2)9(61)° (A" " (£2)56) F (&)
+9(61)g(62)> (AET g (61)86) F (&) /2

—1g<52>g<sn3< (62)/ A (&)~ /7 F'(62) 66, 56,
9(6)9(&2)* (9(&1) AOF (€1) 2 F'(61)[6€, 6]
9(62)9(61)° (9 (£2)58) F (&) TP F (&) [AE, A
9(61)9(&2)*(9' (€1)66) F (&) T2 F/(€1)[AE, AL
9(62)%9(€1)° F(&2) /2 F" (&2)[AE, AL ][6€, 66, ]
9(61)% (&) F (&) 72 F (&) [AE, A (8¢, 66,
9(62)°9(61)°F (&) %P F(&)[AE, A& F! (€) [0, 56,

%\H%M—‘[\JM—‘[\DM—'N}M—‘[\JM—‘[\JM—‘

9(61)%9(&2)* F(61) 722 F/ (1) [A, A& F (6)[6€, 6¢,]
Using the bounds from above, this yields

(2 (€2, €r2) — £5(€1,6-1))[0€, 8&,][0€, 6€ ]|
< BaRVIIAL]2 + AL PVI6E]12 + 106-]  (101)

with
A 4
P = 53 (20 +10¢; + T + T3 + 108021 + 3680¢10° + 882010

+ 20€0Cy + 8CoC3 + 20C7 + 24¢,Co

+ 5 + 0 + 0
E(L** _ R) 23(‘[/** _ R)B 25 (L** _ R)E)

(T + B) + 2200 (L™ + R)?) ) (102)

Lemma 8. Let z** = (2**,\**) be a global minimizer of and the cor-
responding Lagrange multipliers. Moreover, let 1,22 € B(z**, R) and define
Ax := 29 — x1. Then there is a B < oo such that

(£ (€2,6r.2) = (61, 6r1))[AE, A& [O8, 06| < BR ||z — 2| [|6z]|.  (103)
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Beweis. With and (|101) we obtain

|(F(E2,6r.2) = " (€1, 600))[AE, AL (06, 66|
<[ (62, 6r2) — 11, 600))[AE, AL [0, 6, ]|
+(f5 (&2, 6r2) — 13 (€1, &0)) [AE, AE[0€,0¢, ]|
< BRV|AEI)? + AL 2V/]16€]1% + 11612
< BR ||y — 21| ||0x]

with B = max{f1, B2}
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