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Abstract: The numerical solutions of Riemann problems in three, four, five and

six pieces, which only contain contact discontinuities, are presented by using Taylor

FVM MmB schemes on regular triangular meshes for 2-D gas dynamics systems.

The 2-D Riemann initial data are as defined in [1], under the assumption that

each jump in initial data outside of the origin projects exactly one planar wave of

shocks, centered rarefaction waves , or contact discontinuities. The main ends of

the paper are that spirals will be shown for some configurations and the relations

of the solutions between different distibutions of Riemann initial data are explained

by the numerical solutions of modified Riemann problems.
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1. Introduction

Two dimensional Riemann problems in four-pieces, which are constants in each

quadrant, have theoretically been studied for 2-d scalar conservation law in [2][3],

2-D 2× 2 conservation laws in [4] and 2-D gas dynamics systems in [1].

In [1], some conjectures on the solution structure of the Riemann problem in

four pieces, that initial data are constant in each quadrant, have been given for two

dimensional flow of polytropic gas. In that paper, initial data were selected under

the assumption that each jump in initial data outside of the origin projects exactly

one planar wave of shocks, rarefaction waves, or contact discontinuities. The main

and interesting result is that there is a spiral for some case.

Correspondingly, numerical solutions of the Riemann problems have been pre-

sented in [5][6] for 2-D scalar conservation law, 2-D 2× 2 conservation laws [7] and

2-D isentropic and adiabatic flows [8][9][10]. For Riemann problems in three pieces,

which only contain contact discontinuites , numerical solutions have been calculated

by MmB schemes on regular triangular meshes for 2-D gas dynamics systems[11].

In this paper, we are mainly interested in the numerical discription on the so-

lution structure of Riemann problems in multi-pieces, which only contain contact

discontinuities, for the two dimensional gas dynamics systems—adiabatic flow

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0

(ρ(e + u2 + v2
2 ))t + (ρu(h+ u2 + v2

2 ))x + (ρv(h+ u2 + v2
2 ))y = 0

(1.1)

e =
p

(γ − 1)ρ
, h = e+

p

ρ

where ρ, (u,v) and p denote density, velocity and pressure, respectively. and Rie-

mann data in multi-pieces are discribed as follows,
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(ρ, p, u, v)|t=0 = STi, i = 1, ..., m (1.2)

where STi (i=1,...,m) are constant states. See Fig. 1.1.

Fig. 1.1 Distribution of Riemann Problem

Due to the analyses in [1], the characteristics in a direction θ= (μ, ν) for (1.1)

are writtten as

λ0 = uθ, f low characteristic

λ± = uθ ± c, wave characteristics

where uθ = μu+ νv is velocity in θ direction and c is sound speed, c=
√
γp/ρ.

By Rankine-Hugoniot condition and [1], the conditions of initial data are for a

discontinuous line in a direction.
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Fig. 1.2

where uμ and uν is tangential velocity and normal velocity, repectively,

(i) rarefaction wave (R) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uμ,1 = uμ,2

uν,2 = uν,1 +
∫ ρ2
ρ1

√
p′
ρ dρ

ρ1 �= ρ2

p1ρ
−γ
1 = p2ρ

−γ
2

There are two classes of rarefaction waves according to wave characteristics: forward

rarefaction wave—
→
R (ρ1 > ρ2) and backward rarefaction wave —

←
R (ρ1 < ρ2).

(ii) shock wave (S)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uμ,1 = uμ,2

uν,2 +
√
ρ1
ρ2p

′
12 = uν,1 +

√
ρ2
ρ1p

′
21

ρ1 �= ρ2
p2
p1 =

(γ + 1)ρ2 − (γ − 1)ρ1
(γ + 1)ρ1 − (γ − 1)ρ2

wherer p′12 = p′21 =
p2 − p1
ρ2 − ρ1

. forward shock wave—
→
S (ρ1 < ρ2) and backward shock

wave —
←
S (ρ1 > ρ2).

(iii) contact discontinuity (J)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uμ,1 �= uμ,2

uν,1 = uν,2

ρ1 �= ρ2

p1 = p2

(1.3)

Due to the signals of Curl(u,v)=vx − uy defined in [2], the contact discontinuities

are dvided into two classes which can be found in [9],

J+, if Curl(u, v) = +∞; J−, if Curl(u, v) = −∞
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It is very difficult to give the exact theoretical solution since the structure of

the solution of 2-D Riemann problem for 2-D gas dynamics systems is very com-

plicated. Therefore it is necessary to present numerical Riemann solutions for 2-D

gas dynamics systems. In section 2 of the paper, a simple discription on numerical

methods (see [11]) , MmB schemes on regular triangular meshes, is presented for

2-D conservation laws; then classifications of Riemann problems in three pieces and

more than three pieces and corresponding numerical solutions, which only contain

contact discontinuities, are given in section 3 and section 4, respectively; In section

5, the relations of Riemann problems between three pieces and more than three

pieces are discussed for (1.1) (1.2). We know that Riemann problems in three pieces

are simplest.

2. Numerical methods

Here we recall some discriptions of constructing Taylor FVM MmB schemes on

regular triangular meshes from [11]. First we consider the initial value problem for

2-D scalar conservation law, ⎧⎨⎩ut + f(u)x + g(u)y = 0,

u(x, y, t)|t=0 = u0(x, y)
(2.1)

where u0(x, y) is a piecewise smooth function.

We figure the local regular triangular meshes at point (xi, yi) as follows,
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Fig. 2.1 Local Regular Triangular Meshes
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We first discretize (2.1) by Taylor expansion in time direction,

un+1 = un +Δtun
t +

1
2
Δt2un

tt

= un −Δt(fx + gy) +
1
2
Δt2[(fu(fx + gy))x + (gu(fx + gy))y]

(2.2)

and then integrate (2.2) on Ci, we have

∫ ∫
Ci

un+1ds =
∫ ∫

Ci

unds −Δt
∫
l
(fνx + gνy)dl +

1

2
Δt2

∫
l
(fuν

x + guν
y)(fx + gy)dl

(2.3)

In (2.3), take ui as the integral average u on Ci, that is

ui =
1

Ar(ci)

∫ ∫
Ci

uds (2.4)

To discretize
∫
l(fuν

x+ guν
y)(fx+ gy)dl, by transformation of the coordinates(see

Fig.2.2), we have

Fig. 2.2 Transformation of Coordinates

{
x′ = νxx+ νyy

y′ = νxy − νyx

then ⎧⎨⎩ fx = fx′νx − fy′νy

gy = gx′νy + gy′νx

and

fx + gy = f ′x′ + g′y′
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where

f ′ = fνx + gνy, g′ = gνx − fνy

(2.4) becomes

un+1
i = un

i − Δt
Ar(Ci)

6∑
j=1

(fIjν
x
ij
+ gIjν

y
ij
)|gijgij+1 |

+1
2

Δt2

Ar(Ci)

6∑
j=1

[(fuν
x
ij
+ guν

y
ij)(f

′
x′ + g′y′ )]Ij |gijgij+1 |

(2.5)

According to (2.4), let

(g′y′)Ij = 0

Aij = (fuν
x
ij
+ guν

y
ij)Ij

=

⎧⎪⎨⎪⎩
(fij − fi)ν

x
ij
+ (gij − gi)ν

y
ij

uij − ui
if uij �= ui

(fuν
x
ij
+ guνij)|ui , if uij = ui

(f ′x′)Ij =
1
h
(f ′ij − f ′i)

then we get a second order accurate scheme which is like Lax-Wendroff scheme .

un+1
i = un

i −1
2

Δt|gi1gi2|
Ar(Ci)

3∑
j=1

[(fij − fij+3)ν
x
ij
+ (gij − gij+3 )ν

y
ij
)]

+1
2

Δt2|gi1gi2|
Ar(Ci)h

3∑
j=1

[a2ij(uij − ui)− a2ij+3
(ui − uij+3)]

(2.6)

By the experience of constructing MmB schemes on rectangular meshes [5], mod-

ified schemes of (2.6) are given in the following conservative form,

un+1
i = un

i − Si

3∑
j=1

(f̃gij − f̃gij+3
) (2.7)

where

f̃gij =
1

2
(fgi + fgij)−

1

2
(|aij |+ a−ij(1 + a−ijλ)Q

−
ij
− a+ij(1− a+ijλ)Q

+
ij
)(uij − ui)

f̃gij+3
= 1

2
(fgi + fgij+3

)− 1
2(|aij+3| +a−ij+3

(1 + a−ij+3
λ)Q−ij+3

−a+ij+3
(1− a+ij+3

λ)Q+
ij+3

)(ui − uij+3)

fgk = fkν
x
k + gkν

y
k , k = i, i1, ..., i6
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and

Si = |gijgij+1 |/Ar(Ci), |gijgij+1 | = const.

Q±ij = Q(r±ij ), Q±ij+3
= Q(r±ij+3

)

r+ij =
a+ij+3

(ui − uij+3)

a+ij(uij − ui)
r−ij =

a−ijj (uijj
− uij)

a−ij(uij − ui)

r+ij+3
=

a+ij+3j+3
(uij+3 − uij+3j+3)

a+ij+3
(ui − uij+3)

r−ij+3
=

a−ij(uij − ui)

a−ij+3
(ui − uij+3)

aij =

⎧⎨⎩ [(fij − fi)ν
x
ij
+ (gij − gi)ν

y
ij
]/(uij − ui), uij �= ui

∂f
∂uν

x
ij
+

∂g
∂uν

y
ij |ui , uij = ui

aij+3 =

⎧⎨⎩ [(fi − fij+3)ν
x
ij+3

+ (gi − gij+3)ν
y
ij+3

]/(ui − uij+3), uij+3 �= ui

∂f
∂uν

x
ij+3

+
∂g
∂uν

y
ij+3

|ui, uij+3 = ui

Under some restriction on λ = Δt/h, Q±ij and Q±ij+3
, we can obtain :

un+1
i is a convex combination of un

i1
, ..., un

i6

that is, MmB, see the detail discriptions in [11].

Consider the initial value problem for 2-D systems in conservation laws,

⎧⎨⎩Ut + F (U)x +G(U)y = 0

U(x, y, t)|t=0 = U0(x, y)
(2.8)

where U0(x, y) is a piecewise smooth vector function and U = (u1, ..., un)
T ,F (U) =

(f1(U), ..., fn(U))T and G(U) = (g1(U), ..., gn(U))T .

Here the genaralized schemes of (2.7) for (2.8) are in the following forms,

Un+1
i = Un

i − Si

3∑
j=1

(F̃Gij − F̃Gij+3)

where

F̃Gij =
1

2
(FGi+FGij)−

1

2
Rij(|Λij |+Λ−ij (I+Λ−ijλ)Q

−
ij
−Λ+

ij
(I−Λ+

ij
λ)Q+

ij
)R−1ij

(Uij−Ui)
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F̃Gij+3 =
1
2
(FGi + Fgij+3

) −1
2Rij+3(|Λij+3|+ Λ−ij+3

(I + Λ−ij+3
λ)Q−ij+3

−Λ+
ij+3

(I − Λ+
ij+3

λ)Q+
ij+3

)R−1ij+3
(Ui − Uij+3)

FGk = Fkν
x
k +Gkν

y
k , k = i, i1, ..., i6

Q± = diag(Q1,±, ..., Qn,±), Qk,±
ij = Q(rk,±ij ), Qk,±

ij+3
= Q(rk,±ij+3

)

rk,+ij
=

(R−1ij+3
(Ui − Uij+3))

k

(R−1ij
(Uij − Ui))

k rk,−ij
=

(R−1ijj
(Uijj

− Uij))
k

(R−1ij
(Uij − Ui))

k

rk,+ij+3
=

(R−1ij+3j+3
(Uij+3 − Uij+3j+3

))k

(R−1ij+3
(Ui − Uij+3))

k rk,−ij+3
=

(R−1ij
(Uij − Ui))

k

(R−1ij+3
(Ui − Uij+3))

k

k = 1, .., n

A± = RΛ±R−1, Λ± = 1
2
(Λ± |Λ|)

Aij = RijΛijR
−1
ij Aij+3 = Rij+3Λij+3R

−1
ij+3

and as defined in Roe [12], we let

(F (Uij)− F (Ui))ν
x
ij
+ (G(Uij) −G(Ui))ν

y
ij = Aij(Uij − Ui)

and

(F (Ui)− F (Uij+3))ν
x
ij+3

+ (G(Ui)−G(Uij+3))ν
y
ij+3

= Aij+3(Ui − Uij+3)

3. Riemann problems in three pieces

Firstly, we must clarify that there is no 2-D Riemann problem in two-pieces

which only contain contact discontinuities unless the problem is a one- dimensional

Riemann problem. For example, assume two states (u1, v1) and (u2, v2), and the

directions of contact discontinuity lines are (νx
1 , ν

y
1 ) and (νx

2 , ν
y
2 ). then from (1.3)

they satisfy

νx
1u1 + νy

1v1 = νx
1u2 + νy

1v2

νx
2u1 + νy

2v1 = νx
2u2 + νy

2v2
(3.1)

see Fig. 3.1
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Fig. 3.1

Obviously, if (νx
1 , ν

y
1 ) �= (νx

2 , ν
y
2), then (u1, v1) =(u2, v2), it is a constant state;

Otherwise, if (u1, v1) �= (u2, v2), then (νx
1 , ν

y
1 ) and (νx

2 , ν
y
2) are same. So it is a one

dimensional Riemann problem.

Consider three distributions of Riemann problems in three pieces as follows

Fig. 3.2 Distribution of Riemann Problem in Three Pieces

For Fig.3.2-a, if we don’t consider the signals of Curl(u,v), there is only one case,

the distribution of velocities for initial data is counterclockwise. In this case there

is a piral. See Fig.3.3-a.
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The Riemann data: Take ρ1 = 0.5, ρ2 = 1, ρ3 = 1.5, p1 = p2 = p3 = 2,

u1 = u2 =
√
3/2, u3 = −√

3/2, v1 = −1, v2 = 1, v3 = 0.

a. Distribution of Velocity b. Pseudo-Stream Field

c. Density Contour Lines d. Pressure Contour Lines

Fig. 3.3-I Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

Where pseudo-velocity (U,V) is expressed (U,V)=(u-x/t,v-y/t). From Fig. 3.3-I,

the interactions of the three contact discontinuities produce a spiral in the pseudo-
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subsonic region and wave characteristic lines are tangent to pesudo-sonic lines, see

[1].

For Fig.3.2-b, there is only one case, the distribution of velocities for initial data

is clockwise. See Fig.3.3-b

The Riemann data: Take ρ1 = 0.5, ρ2 = 1.5, ρ3 = 1, p1 = p2 = p3 = 1,

u1 = u2 = −√
3/2, u3 =

√
3/2, v1 = −1, v2 = 1, v3 = 0.

a. Distribution of Velocity b. Pseudo-Stream Field

c. Density Contour Lines d. Pressure Contour Lines

Fig. 3.3-II Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

13



In this case, the interactions of the three contact discontinuities produce two

symmetric shock waves which bound the pseudo-subsonic region and a contact dis-

continuity in the subsonic region.

For Fig.3.2-c, there is no configuration which only contain contact discontinuities

in this situation. It is easy to prove this conclusion. If there are three states (u1, v1),

(u2, v2) and (u3, v3), and corresponding directions of contact discontinuity lines are

(νx
1 , ν

y
1 ), (ν

x
2 , ν

y
2 ) and (νx

3 , ν
y
3 ). Then we have

νx
1u1 + νy

1v1 = νx
1u2 + νy

1v2

νx
2u2 + νy

2v2 = νx
2u3 + νy

2v3

νx
3u3 + νy

3v3 = νx
3u1 + νy

3v1

From Fig.3.1-c, (νx
2 , ν

y
2 ) = −(νx

3 , ν
y
3), then we obtain

νx
2u1 + νy

2v1 = νx
2u2 + νy

2v2

We know that (νx
1 , ν

y
1 ) �= (νx

2 , ν
y
2 ), then due to the above discussion (u1, v1) =

(u2, v2), it makes a contradiction to the distribution of Riemann problem.

From the above analyses, we know that Riemann problems in three pieces are

simplest for 2-D gas dynamics systems. The structure of Riemann solutions in three

pices is a basic one for the solutions of Riemann problems in more than three pieces,

see the following sections.

4. Riemann problems in more than three pieces

In this section we present the classifications and numerical solutions of Riemann

problems in four, five and six pieces which only contain contact discontinuities.

4.1 Riemann problems in four pieces

Consider the following distribution of Riemann problems in four pieces
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Fig. 4.1 Distribution of Riemann Problem in Four Pieces

There are two cases which only contain contact discontinuities. The first one is

called counterclockwise see Fig.4.2-a. There is a spiral in the case.

The Riemann data: Take ρ1 = ρ3 = 0.5, ρ2 = ρ4 = 1.5, p1 = p2 = p3 = p4 = 2.0,

u1 = u2 = 1, u3 = u4 = −1, v1 = v4 = −1, v2 = v3 = 1.

a. Distibution of Velocity b. Pseudo-Stream Field
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c. Density Contour Lines d. Pressure Contour Lines

Fig.4.2-I Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

As Fig. 3.3-I in section 3, in this case there is a spiral in pseudo- subsonic region.

The second one is called clockwise see Fig.4.2-b. In this case there are two shock

waves.

The Riemann data: Take ρ1 = ρ3 = 0.5, ρ2 = ρ4 = 1.5, p1 = p2 = p3 = p4 = 1,

u1 = u2 = −1, u3 = u4 = 1, v1 = v4 = −1, v2 = v3 = 1.

a. Distribution of Velocity b. Pseudo-Stream Field
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c. Density Contour Lines d. Pressure Contour Lines

Fig.4.2-II Mesh Points 201 × 201, λ = 0.15, Time Steps n=200

In this case, the interactions of the four contact discontinuities also produce two

symmetric shock waves, but there are no contact discontinuity in pseudo-subsonic

region as we choose the initial data of velocities in a symmetric form.

4.2 Riemann problems in five-pieces

The distribution of Riemann problem in five pieces:

Fig.4.3 Distribution of Riemann Problem in Five Pieces
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There are 5 cases for this distribution which only contain contact discontinuities.

The first one is counterclockwise see Fig.4.4-a, there is a spiral in this case.

The Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = 1, p1 = p2 = p3 =

p4 = p5 = 2, u1 = u2 = 1.289, u3 = u5 = −0.711, u4 = −1.289, v1 = v5 = −1,

v2 = v3 = 1, v4 = 0.

a. Distribution of Velocity b. Pseudo-Stream Field

c. Density Contour Lines d. Pressure Contour Lines

Fig.4.4-I Mesh Points 201 × 201, λ = 0.1, Time Steps n=250
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From Fig. 4.4-I, we can find that the local structure of the solution is like the

structure of solution in Fig. 3.3-I.

The second one is clockwise see Fig.4.4-b.

The Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = 1, p1 = p2 = p3 =

p4 = p5 = 1, u1 = u2 = −1, u3 = u5 = 1, u4 = 0.402, v1 = v5 = −1, v2 = v3 = 1,

v4 = 0.

a. Distribution of Velocity b. Pseudo-Stream Field

c. Density Contour Lines d. Pressure Contour Lines

Fig.4.4-II Mesh Points 201 × 201, λ = 0.1, Time Steps n=200
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In this case, we find that in the interaction region the structure of solution

about ST1, ST2 and ST3 is like Fig.3.3-II, that is, the interaction of the contact

discontinuities produce two shock waves and one contact discontinuity in the pseudo-

subsonic region. Also for the structure of the solution of ST3, ST4 and ST5.

The classifications of the others by velocities are figured as follows:

Fig.4.5

Corresponding numerical solutions for Fig.4.5 are presented:

For Fig.4.5-a, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = 1,

p1 = p2 = p3 = p4 = p5 = 1, u1 = u2 = u4 = −0.5, u3 = −1.5, u5 = 1.5,

v1 = v5 = −√
3, v2 = v3 = 0, v4 =

√
3

a. Density Contour Lines b. Pressure Contour Lines

Fig.4.6-I Mesh Points 201 × 201, λ = 0.1, Time Steps n=250
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From Fig. 4.6-I, we know that the structure of solution of ST2, ST3 and ST4,

ST4, ST5 and ST1 is like the structure of the solution in Fig. 3.3-II.

For Fig.4.5-b, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = 1,

p1 = p2 = p3 = p4 = p5 = 1.5, u1 = u2 = 1.5, u3 = 0, u4 = −1, u5 = −1.5,

v1 = v5 = 0, v2 = v3 =
√
3/2, v4 = −√

3/2.

a. Density Contour Lines b. Pressure Contour Lines

Fig.4.6-II Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

For Fig.4.5-c, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = 1,

p1 = p2 = p3 = p4 = p5 = 1.5, u1 = u2 = 1, u3 = 1.5, u4 = −0.5, u5 = −1.5,

v1 = v5 = 0, v2 = v3 =
√
3, v4 = −√

3.
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a. Density Contour Lines b. Pressure Contour Lines

Fig.4.6-III Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

In the above two cases, the structures of the solutions are like the structures of

solutions both Fig.3.3-I and Fig.3.3-II.

4.3 Riemann problems in six-pieces

The distribution of Riemann problem in six pieces:

Fig.4.7 Distribution of Riemann Problem in Six Pieces
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There are 6 cases which only contain contact discontinuities. The first one is

counterclockwise see Fig.4.8, there is a spiral in the case.

The Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = ρ6 = 1, p1 = p2 =

p3 = p4 = p5 = p6 = 2, u1 = u2 =
√
3, u3 = u6 = 0, u3 = u4 = −√

3, v1 = v5 = −1,

v2 = v4 = 1, v3 = 2, v6 = −2.

a. Distribution of Velocity b. Pseudo-Stream Field

c. Density Contour Lines d. Pressure Contour Lines

Fig.4.8 Mesh Points 201 × 201, λ = 0.1, Time Steps n=200
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The structure of the solution in Fig. 4.8 is like the structure of the solution in

Fig.3.3-I locally.

The second one is clockwise see Fig.4.9.

The Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = ρ6 = 1, p1 =

p2 = p3 = p4 = p5 = p6 = 1.5, u1 = u2 = −√
3, u3 = u6 = 0, u4 = u5 =

√
3,

v1 = v5 = −1, v2 = v4 = 1, v3 = v6 = 0.

a. Distribution of Velocity b. Pseudo-Stream Field

c. Density Contour Lines d. Pressure Contour Lines

Fig.4.9 Mesh Points 201 × 201, λ = 0.1, Time Steps n=250
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From Fig.4.9, in the interaction region, the structure of the solution in ST1,

ST2 and ST3, and ST4, ST5 and ST6 is like the solution structure in Fig.3.3-II,

respectively.

The classifications of the others are discribed as follows:

Fig.4.10

For Fig.4.10-a, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 = ρ6 =

1, p1 = p2 = p3 = p4 = p5 = p6 = 1, u1 = u2 = u4 = u5 =
√
3/2, u3 = u6 = −√

3/2,

v1 = v4 = 1, v2 = v5 = −1, v3 = v6 = 0.

a. Density Contour Lines b. Pressure Contour Lines

Fig.4.11-I Mesh Points 201 × 201, λ = 0.1, Time Steps n=250
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For Fig.4.10-b, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 =

ρ6 = 1, p1 = p2 = p3 = p4 = p5 = p6 = 1, u1 = u2 = 0, u4 = u5 =
√
3/2,

u3 = u6 = −√
3/2, v1 = −0.5, v2 = 0.5, v3 = 1, v4 = 2, v5 = −2, v6 = −1.

a. Density Contour Lines b. Pressure Contour Lines

Fig.4.11-II Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

For Fig.4.10-c, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 =

ρ6 = 1, p1 = p2 = p3 = p4 = p4 = p6 = 1, u1 = u2 = u4 = u5 =
√
3/2, u3 =

√
3,

u6 = −√
3, v1 = −1.5, v2 = −0.5, v3 = 0, v4 = 0.5, v5 = 1.5, v6 = 0.

a. Density Contour Lines b. Pressure Contour Lines

Fig.4.11-III Mesh Points 201 × 201, λ = 0.1, Time Steps n=300
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For Fig.4.10-d, the Riemann data: Take ρ1 = ρ4 = 0.5, ρ2 = ρ5 = 1.5, ρ3 =

ρ6 = 1, p1 = p2 = p3 = p4 = p5 = p6 = 1, u1 = u2 = −√
3/2, u4 = u5 =

√
3,

u3 = u6 = −√
3, v1 = 2, v2 = −2, v3 = −1.5, v4 = 0.5, v5 = −0.5, v6 = 1.5.

a. Density Contour Lines b. Pressure Contour Lines

Fig.4.11-IV Mesh Points 201 × 201, λ = 0.1, Time Steps n=250

As discussed above, the structure of the solutions in Fig. 4.11-I, II, III and IV

is locally like the structure of the solutions in Fig. 3.3-I and II, respectively.

From the above numerical results, the spirals are clearly shown in the coun-

terclockwise cases and in the other cases there are shock waves when the initial

Riemann data just contain contact discontonuities.

5. Relations of Riemann solutions between in three pieces and more

than three pieces

As shown in section 3 and 4, the solutions of Riemann peoblems for 2-D gas

dynamics are much more complicated than in one dimension. It is very difficult to

give exact solutions for any distribution of the 2-D Riemann problem. Obviously the
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first thing that we can do is to find the simplest distribution of Riemann problem

for 2-D gas dynamics systems. In section 3, we show that there is no 2-D Riemann

problem in two-pieces and exsits Riemann problem in three pieces which only contain

contact discontinuities. In this section, we explain some relations between Riemann

problem in three pieces and Riemann problem in more than three pieces.

In order to find some structure of the solution of Riemann problem in more than

three pieces which is like the structure of the solution of Riemann problem in three

pieces, We consider the following modified Riemann problem in multi-pieces.

a. Original Riemann Problem b. Modified Riemann Problem

Fig.5.1 Distribution of Riemann Problem in Multi-Pieces

It means that we insert a mid-state(MS=
m∑
k=1

(md− stk)) near the origin.

Here we only choose one case for each distribution of Riemann problem among

four, five and six pieces and present the density contour lines of the numerical

solutios of the modified Riemann problems.

(i) Riemann problem in four pieces.
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Here we choose the case of clockwise by taking more mesh points and one mesh

point in the mid-state, see Fig.5.2.

For mor mesh points in mid-state, we choose two configurations, the first one is

that the mid-state is taken as an average, that is,

Ums = [
m∑
k=1

∫ ∫
md−stk

Ukdxdy]/Ar(MS)

Time steps n=150, see Fig.5.2-a. Due to last section, the data of mid-state are

ρms = 1.0, pms = 1.0, ums = 0.0, vms = 0.0

In the second one, the mid-state is taken as two symmetric shock waves between

ST1 and ST3, the data of mid-state are

ρms = 1.0, pms = 2.44, ums = 0.0, vms = 0.0

see Fig.5.2-b.

a. Mid-State as Average b. Mid-State as Two Symmetric Shocks

Fig.5.2 Density Contour Lines, Mesh Points 201 × 201

λ = 0.15, Time Steps n=150

and one mesh point in mid-state is as follows
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Fig.5.2-c Density Contour Lines, Mesh Points 201 × 201

λ = 0.15, Time Steps n=250

(ii) Riemann problem in five pieces.

Consider the second case (Fig.4.4-II) by taking more mesh points and one mesh

point in the mid-state, the data of mid-state are chosen as the above average, see

Fig.5.3.

a. More Points, Time Steps n=150 b. One Point, Time Steps n=200

Fig.5.3 Density Contour Lines, Mesh Points 201 × 201, λ = 0.1

(iii) Riemann problem in six pieces
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Consider the counterclockwise case of Riemann problem in six pieces in section 4

by taking more mesh ponts and one mesh point in mid-state, the data of mid-state

are taken as an average as the above discription, see Fig.5.4.

a. More Points, Time Steps n=150 b. One Point, Time Steps n=200

Fig.5.4 Density Contour Lines, Mesh Points 201 × 201, λ = 0.1

We may also present the following mofified Riemann problems for the Riemann

problem in four pieces.

a. Distribution of velocity, b. Density contour lines

Fig.5.5 Mesh Points 201 × 201, λ = 0.15, Time Steps n=200
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In the above figures, we know that numerical solution in the case of one mesh

point is the same as the original problem and the structure of the solution in the

case of more mesh points is like the structure of the solution of original Riemann

problem near the border of the interaction region. For the detail discriptions of

the solution structure of Riemann problem in multi-pieces, we should study for

the mixed Riemann problem in three pieces which contain shock waves, rarefaction

waves and contact discontinuities.

In addition, due to the structure of triangular meshes, Riemann problem in three

pieces should also be a basic one for us to construct numerical methods which are

produced depending on Riemann solver. So it is necessary to analyse Riemann

problem in three pieces first.
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